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OUTLINE

• “Chunkflow” of ptmalloc
• Common primitives
• Way to libc
• Crafting chunks to overlap
• Controlling the pointers
• Colorful fastbin attack
• More colorful non-fastbin

corruption



Purpose

• Turn corruptions on the heap to 
overwrite in libc !

• Unless there are datum on the 
heap to hijack control flow…



Chunkflow

• Learn about how 
malloc/free/realloc will affect 
chunks on the heap & chunks in 
bins
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Common primitives

• Arbitrary overflow in heap
• Use after free
• Off-by-one
• Out of bound
• ……



Way to libc

• Mostly we need to leak libc addr.
• Put chunks into non-fastbin!



Way to libc II

• All fastbins?
• Trigger malloc_consolidate

– When requesting a large bin chunk 
(>0x400 in 64-bit) (malloc)

– When a chunk is merged into top 
(free)



Way to libc III

• Top chunk size?
• Not only house of force
• Trigger sysmalloc
• Top chunk will be freed



Crafting overlapped chunks

• Core skills in heap exploit
• Turn use-after-free or off-by-one 

into arbitrary overflow
• Familiar with security checks
• https://heap-

exploitation.dhavalkapil.com/diving_into_glibc_heap/s
ecurity_checks.html



Crafting overlapped chunks

• Use after free
• Arbitrary size : fastbin attack
• Limited size

– free -> consolidate -> malloc back



Crafting overlapped chunks

• Off-by-one
• Quite common in input functions
• Traditional method : shrink free 

chunk



Crafting overlapping chunks

• Off-by-one
• Quite common in input functions
• Traditional method : shrink free 

chunk



Crafting overlapped chunks

• Off-by-one
• Popular method : House of 

Einherjar
• Fake prev_size trick

Freed chunk Vul chunk Alloced 
chunk

Overflow, clear prev_inuse bit



Crafting overlapped chunks

• Off-by-one
• Popular method : House of 

Einherjar
• Fake prev_size trick

Freed chunk
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Crafting overlapped chunks

• New check in unlink of glibc 2.23
• chunksize(P) != prev_size 

(next_chunk(P))
• “corrupted size vs. prev_size”
• Not very difficult to bypass



Crafting overlapped chunks

• Final pattern of overlapping

Pointer A

Pointer B

Controlled data(A) 
goes beyond an 
address pointed by 
another pointer (B)

You almost own the 
heap



Controlling the pointers

• Put a chunk into fastbin
– Chunk size
– Next chunk size

• Put a chunk into unsorted bin
– Chunk size & prev_inuse
– Next chunk size & prev_inuse
– Next next chunk’s prev_inuse



Controlling the pointers

• When a chunk is in bins, and
there are ‘fd’ or ‘bk’ on the heap.
Here comes chances to jump out
of the heap.



Colorful Fastbin

• Typical technique in past ctfs

• Double free : fastbin dup
• UAF : corrupted fd



Colorful Fastbin

• Selecting targets
– An ‘int’ size (4-bytes)

• realloc_hook / malloc_hook
• GOT
• Utilizing misalignment



Colorful Fastbin

• Just overwriting malloc hook?
• Also, main_arena can be

controlled



Colorful Fastbin

• Overwriting top
– Crafting another size in main_arena
– Huge global_max_fast



Powerful Unsorted Bin

• Simple unsorted bin attack
– Corrupt ‘bk’ pointer of an unsorted

bin chunk
– Request the exact size,
– Lead to an abitrary memory write

(bk + 0x10 in 64bit) with unsorted
bin addr.

• But, due to illegal ‘bk’, next
malloc might crash



Powerful Unsorted Bin
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Powerful Unsorted Bin

• House of orange
– FSOP
– Corrupt ‘_IO_list_all’ with unsorted

bin address
– Force fp->chain to point to heap

(0x60 small bin)
– Craft fake vtable to bypass the

boudary check
• Once knowing libc, one unsorted

bin attack leads to shell



Powerful Unsorted Bin

• Only once?
• No!
• We could repair the unsorted bin

after its corruption



Powerful Unsorted Bin

• Plan α
– After corrupting global_max_fast,

use index overflow to overwrite
unsorted bin

– Shortcomings : difficult to repeat the
attack



Powerful Unsorted Bin

• Plan β
– Use large bin code
– Almost unlimited arbitrary memory

write with heap address



Small Bin Attack

• House of lore
• Need to create 2 address-known

fake chunk, also need heap
address



Small Bin Attack
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Large Bin Shoot
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Large Bin Shoot
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Large Bin Shoot
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Large Bin Shoot

• Corrupt large chunk ‘bk_nextsize’
with address A

• Call ‘malloc’ to put a large chunk
(victim) into large bin. And its
size is smaller than chunk in large
bin

• Then address A+0x20 will be
overwritten by ‘victim’ pointer



Unsorted Bin Attack
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Unsorted Bin Attack
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More Attack Gesture
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Summary

• Purpose : jump out of heap!
• Core skills : crafting overlapped

chunks
• Dancing pointers : various bins

tricks
• Misalignment tricks, hunting size

in haystack



THANKS
HAVE FUN WITH HEAP!


