Thinking about
Heap Exploitation

BrieflyX
Blue-lotus / Redbud

brieflyx.me
2018.4

OUTLINE

“Chunkflow” of ptmalloc
Common primitives

Way to libc

Crafting chunks to overlap
Controlling the pointers
Colorful fastbin attack

More colorful non-fastbin
corruption

Purpose

* Turn corruptions on the heap to
overwrite in libc !

 Unless there are datum on the
heap to hijack control flow...

Chunkflow

 |Learn about how
malloc/free/realloc will affect
chunks on the heap & chunks in
bins

Chunkflow

Fastbin

malloc_cdnsolidate Regular
bin

malloc

Unsorted malloc split
bin

Common primitives

 Arbitrary overflow in heap
« Use after free

» Off-by-one

» Out of bound

Way to libc

* Mostly we need to leak libc addr.
* Put chunks into non-fastbin!

Way to libc I

 All fastbins?

* Trigger malloc_consolidate

— When requesting a large bin chunk
(>0x400 in 64-bit) (malloc)

— When a chunk is merged into top
UCE)

Way to libc llI

* Top chunk size?
* Not only house of force
* Trigger sysmalloc
* Top chunk will be freed
assert ((old_top == initial_top (av) && old_size == 0) ||
((unsigned long) (old_size) >= MINSIZE &&

prev_inuse (old_top) &&
((unsigned long) old_end & (pagesize - 1)) == 0));

Crafting overlapped chunks

» Core skills in heap exploit

* Turn use-after-free or off-by-one
into arbitrary overflow

* Familiar with security checks

Crafting overlapped chunks

« Use after free
 Arbitrary size : fastbin attack
* Limited size
— free -> consolidate -> malloc back

Crafting overlapped chunks

« Off-by-one
» Quite common in input functions

 Traditional method : shrink free
chunk

0x208 0x100

W

Initial state

B is free

Overflow into B

- Size truncated to 0x200 from 0x208

- Further allocations in that space do not
Overflow: size(B) = 0x200 properly update C’s “prev_size” field

inl

0x100 0Ox80
- e >

Two allocations within the old B chunk

Bl B2 The first is not a fastbin

vy
[N

The beginning of the old B chunk is free

Cis freed and merged with the old B, where
a valid non-fastbin free chunk resides

1+ allocations larger than B1’s initial size
B2 is overlapped

Crafting overlapped chunks

« Off-by-one

* Popular method : House of
Einherjar

* Fake prev_size trick

Alloced
chunk

Freed chunk Vul chunk

Overflow, clear prev_inuse bit

Crafting overlapped chunks

« Off-by-one

* Popular method : House of
Einherjar

* Fake prev_size trick

Freed chunk Vul chunk Alloced

Non-fastbin chunk
‘\

prev_size

Crafting overlapped chunks

* New check in unlink of glibc 2.23

* chunksize(P) != prev_size
(next_chunk(P))

« “corrupted size vs. prev_size”

* Not very difficult to bypass

Crafting overlapped chunks

* Final pattern of overlapping

Pointer A

Pointer B

Controlled data(A)
goes beyond an

address pointed by
another pointer (B)

You almost own the
heap

Controlling the pointers

 Put a chunk into fastbin
— Chunk size
— Next chunk size

* Put a chunk into unsorted bin
— Chunk size & prev_inuse
— Next chunk size & prev_inuse
— Next next chunk’s prev_inuse

Controlling the pointers

* When a chunk is in bins, and
there are ‘fd’ or ‘bk’ on the heap.

Here comes chances to jump out
of the heap.

Colorful Fastbin

 Typical technique in past ctfs

* Double free : fastbin dup
 UAF : corrupted fd

Colorful Fastbin

Selecting targets

— An ‘int’ size (4-bytes)
realloc_hook / malloc_hook
GOT

Utilizing misalignment

Colorful Fastbin

» Just overwriting malloc hook?

* Also, main_arena can be
controlled

Colorful Fastbin

* Overwriting top
— Crafting another size in main_arena
— Huge global _max_fast

struct malloc_state
{
mutex_t mutex;
int flags;

mfastbinptr fastbinsY[NFASTBINS];

mchunkptr top;

Powerful Unsorted Bin

» Simple unsorted bin attack

— Corrupt ‘bk’ pointer of an unsorted
bin chunk

— Request the exact size,

— Lead to an abitrary memory write
(bk + 0x10 in 64bit) with unsorted
bin addr.

* But, due to illegal ‘bk’, next
malloc might crash

Powerful Unsorted Bin

unsorted_chunks (av)->bk = bck;|
bck->fd = unsorted_chunks (av);

Unsorted bin

Powerful Unsorted Bin

* House of orange

— FSOP
— Corrupt * 10_list_all’ with unsorted
bin address

— Force fp->chain to pointto heap
(0x60 small bin)

— Craft fake vtable to bypass the
boudary check

* Once knowing libc, one unsorted
bin attack leads to shell

Powerful Unsorted Bin

* Only once?
* No!

* We could repair the unsorted bin
after its corruption

Powerful Unsorted Bin

e Plan a

— After corrupting global max_fast,
use index overflow to overwrite
unsorted bin

— Shortcomings : difficult to repeat the
attack

Powerful Unsorted Bin

* Plan 3

— Use large bin code

— Almost unlimited arbitrary memory
write with

Small Bin Attack

* House of lore

* Need to create 2 address-known
fake chunk, also need heap
address

Small Bin Attack

Small bin

FD
BK FD
BK

Large Bin Shoot
Unsorted bin -

0x4a0 Next request,
FD do not match
BK O0x4a0

FD

BK

Large bin
FD
BK

fd_nextsize

bk_nextsize

Large Bin Shoot

victim_index = largebin_index (size);

bck = bin_at (av, victim_index); .
fwd = bck->fd; Put into large

bin & sorted by

' <ol size
if (fwd != bck)

{

size |= PREV_INUSE;

assert ((bck->bk->size & NON_MAIN_ARENA)
if ((unsigned long) (size) < (unsigned Aong) (bck->bk->size))

fwd = bck;
bck = bck->bk;

victim->fd_nextsize = fwd->fd;
victim->bk_nextsize = fwd->fd->bk_nextsize;
fwd->fd—>bk=nextsize = victim—>bk=nextsize—>fd=nextsize = victim;

Large Bin Shoot
Unsorted bin -

Ox4a0
FD

FD
BK

BK

victim

Large bin
FD /|

BK

fd_nextsize

bk _nextsize

Large Bin Shoot

Corrupt large chunk ‘bk_nextsize’
with address A

Call ‘malloc’ to put a large chunk
(victim) into large bin. And its
size Is smaller than chunk in large
bin

Then address A+0x20 will be
overwritten by ‘victim’ pointer

Unsorted Bin Attack

Next request for
0x50 size

unsorted_chunks (av)->bk = bckﬂ
bck->fd = unsorted_chunks (av);

Unsorted bin

FD

BK

Unsorted Bin Attack

Unsorted bin

7o 0x56

AAAAAAAA

BK

More Attack Gesture
Unsorted bin

FD

BK

Large bin
FD
BK

fd_nextsize

bk _nextsize

Summary

Purpose : jump out of heap!

Core skills : crafting overlapped
chunks

Dancing pointers : various bins
tricks

Misalignment tricks, hunting size
iIn haystack

THANKS

HAVE FUN WITH HEAP!

