
Thinking about 
Heap Exploitation
BrieflyX
Blue-lotus / Redbud
brieflyx.me
2018.4



OUTLINE

• “Chunkflow” of ptmalloc
• Common primitives
• Way to libc
• Crafting chunks to overlap
• Controlling the pointers
• Colorful fastbin attack
• More colorful non-fastbin

corruption



Purpose

• Turn corruptions on the heap to 
overwrite in libc !

• Unless there are datum on the 
heap to hijack control flow…



Chunkflow

• Learn about how 
malloc/free/realloc will affect 
chunks on the heap & chunks in 
bins



Chunkflow

chunk

Fastbin

Unsorted 
bin

Regular 
bin

free

malloc_consolidate

malloc

malloc split
free



Common primitives

• Arbitrary overflow in heap
• Use after free
• Off-by-one
• Out of bound
• ……



Way to libc

• Mostly we need to leak libc addr.
• Put chunks into non-fastbin!



Way to libc II

• All fastbins?
• Trigger malloc_consolidate

– When requesting a large bin chunk 
(>0x400 in 64-bit) (malloc)

– When a chunk is merged into top 
(free)



Way to libc III

• Top chunk size?
• Not only house of force
• Trigger sysmalloc
• Top chunk will be freed



Crafting overlapped chunks

• Core skills in heap exploit
• Turn use-after-free or off-by-one 

into arbitrary overflow
• Familiar with security checks
• https://heap-

exploitation.dhavalkapil.com/diving_into_glibc_heap/s
ecurity_checks.html



Crafting overlapped chunks

• Use after free
• Arbitrary size : fastbin attack
• Limited size

– free -> consolidate -> malloc back



Crafting overlapped chunks

• Off-by-one
• Quite common in input functions
• Traditional method : shrink free 

chunk



Crafting overlapping chunks

• Off-by-one
• Quite common in input functions
• Traditional method : shrink free 

chunk



Crafting overlapped chunks

• Off-by-one
• Popular method : House of 

Einherjar
• Fake prev_size trick

Freed chunk Vul chunk Alloced 
chunk

Overflow, clear prev_inuse bit



Crafting overlapped chunks

• Off-by-one
• Popular method : House of 

Einherjar
• Fake prev_size trick

Freed chunk
Non-fastbin Vul chunk Alloced 

chunk

prev_size



Crafting overlapped chunks

• New check in unlink of glibc 2.23
• chunksize(P) != prev_size 

(next_chunk(P))
• “corrupted size vs. prev_size”
• Not very difficult to bypass



Crafting overlapped chunks

• Final pattern of overlapping

Pointer A

Pointer B

Controlled data(A) 
goes beyond an 
address pointed by 
another pointer (B)

You almost own the 
heap



Controlling the pointers

• Put a chunk into fastbin
– Chunk size
– Next chunk size

• Put a chunk into unsorted bin
– Chunk size & prev_inuse
– Next chunk size & prev_inuse
– Next next chunk’s prev_inuse



Controlling the pointers

• When a chunk is in bins, and
there are ‘fd’ or ‘bk’ on the heap.
Here comes chances to jump out
of the heap.



Colorful Fastbin

• Typical technique in past ctfs

• Double free : fastbin dup
• UAF : corrupted fd



Colorful Fastbin

• Selecting targets
– An ‘int’ size (4-bytes)

• realloc_hook / malloc_hook
• GOT
• Utilizing misalignment



Colorful Fastbin

• Just overwriting malloc hook?
• Also, main_arena can be

controlled



Colorful Fastbin

• Overwriting top
– Crafting another size in main_arena
– Huge global_max_fast



Powerful Unsorted Bin

• Simple unsorted bin attack
– Corrupt ‘bk’ pointer of an unsorted

bin chunk
– Request the exact size,
– Lead to an abitrary memory write

(bk + 0x10 in 64bit) with unsorted
bin addr.

• But, due to illegal ‘bk’, next
malloc might crash



Powerful Unsorted Bin

Unsorted bin

0x7ff……

BK

Uncontrolled area

FD

BK

0x4a0

bck
FD

BK



Powerful Unsorted Bin

• House of orange
– FSOP
– Corrupt ‘_IO_list_all’ with unsorted

bin address
– Force fp->chain to point to heap

(0x60 small bin)
– Craft fake vtable to bypass the

boudary check
• Once knowing libc, one unsorted

bin attack leads to shell



Powerful Unsorted Bin

• Only once?
• No!
• We could repair the unsorted bin

after its corruption



Powerful Unsorted Bin

• Plan α
– After corrupting global_max_fast,

use index overflow to overwrite
unsorted bin

– Shortcomings : difficult to repeat the
attack



Powerful Unsorted Bin

• Plan β
– Use large bin code
– Almost unlimited arbitrary memory

write with heap address



Small Bin Attack

• House of lore
• Need to create 2 address-known

fake chunk, also need heap
address



Small Bin Attack

FD

BK

Small bin

FD

BK

0x100
FD

BK

FD

Non-heap area

Non-heap area



Large Bin Shoot

FD

BK

FD

BK

Unsorted bin

Large bin

Uncontrolled area

Next request,
do not match
0x4a0

FD

BK

0x4a0

FD

BK

0x4b0

fd_nextsize

bk_nextsize



Large Bin Shoot

FD

BK

FD

BK

FD

BK

0x4b0

fd_nextsize

bk_nextsize

Unsorted bin

Large bin

Uncontrolled area

FD

BK

0x4a0 Next request,
do not match
0x4a0

Put into large
bin & sorted by
size



Large Bin Shoot

FD

BK

FD

BK

Unsorted bin

Large bin

0x56…

Uncontrolled area

fwd

victim

FD

BK

0x4a0

FD

BK

0x4b0

fd_nextsize

bk_nextsize



Large Bin Shoot

• Corrupt large chunk ‘bk_nextsize’
with address A

• Call ‘malloc’ to put a large chunk
(victim) into large bin. And its
size is smaller than chunk in large
bin

• Then address A+0x20 will be
overwritten by ‘victim’ pointer



Unsorted Bin Attack

FD

BK

Unsorted bin

0x56

0x56…

Uncontrolled area

Next request for
0x50 size

bck
FD

BK

0x4a0



Unsorted Bin Attack

FD

BK

Unsorted bin

0x56

AAAAAAAA

……

Controlled

FD

BK

0x4a0



More Attack Gesture

FD

BK

FD

BK

Unsorted bin

Large bin

0x56

Uncontrolled area

FD

BK

0x4a0

fd_nextsize

bk_nextsize

FD

BK

0x4b0



Summary

• Purpose : jump out of heap!
• Core skills : crafting overlapped

chunks
• Dancing pointers : various bins

tricks
• Misalignment tricks, hunting size

in haystack



THANKS
HAVE FUN WITH HEAP!


