UNIVERSITY OF MUMBAI

Bachelor of Engineering

Electrical Engineering

(Second Year – Sem. III & IV), Revised course

(REV- 2012) from Academic Year 2013 -14,

Under

FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

Syllabus Scheme for Second Year Electrical Engineering (Semester III & IV) Revised course (Rev 2012) from Academic Year 2012 -13 (Electrical Engineering)

Scheme for Semester III

Sub Codo	Subject Name	Teach	ning Scheme	(Hrs.)	Credits Assigned			
Coue		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EEC301	Applied Mathematics – III*	4		1	4		1	5
EEC302	Electronic Devices and Circuits	4	2		4	1		5
EEC303	Conventional and Non- conventional Power Generation	4	1		4	1		5
EEC304	Electrical Networks	4	2		4	1		5
EEC305	Electrical and Electronic Measurements	4	2		4	1		5
EEC306	Object Oriented Programming and Methodology*	-	4#			2		2
	Total	20	11	1	20	6	1	27

Subject	Subject Name	Examination Scheme										
Code			The	ory Marks		Term Work	Practical	Oral	Total			
		Inte	ernal ass	sessment	End Sem	WUIK	and Oral					
		Test 1	Test 2	Avg. of Test 1 & Test 2	Exam							
EEC301	Applied Mathematics – III*	20	20	20	80	25			125			
EEC302	Electronic Devices and Circuits	20	20	20	80	25	25*		150			
EEC303	Conventional and Non- conventional Power Generation	20	20	20	80	25			125			
EEC304	Electrical Networks	20	20	20	80	25			125			
EEC305	Electrical and Electronic Measurements	20	20	20	80	25		-	125			
EEC306	Object Oriented Programming and Methodology*					25	50*		75			
Total				100	400	150	75		725			

Out of four hours, 2 hours theory shall be taught to entire class followed by 2 hrs. practical in batches.

*Common for Electrical, Bio-medical Engineering, Instrumentation, Electronics and

Electronics & Telecommunication branches.

Subject	Subject Name	Teaching Scheme (Contact Hours)		Credits Assigned		d
Couc		Theory	Pract./Tut.	Theory	Pract./Tut.	Total
EEC	Applied Mathematics III	04		01	04	05
301						

]	Examina	ation Schem	ie		
		Theory			Theory			-	
Subject Code	Subject Name	l As	Internal ssessme	nt	End Sem. Exam.	Exam. Duration (in Hrs)	m Wo rk	Prac t. / oral	Total
		Test 1	Test 2	Avg					
EEC 301	Applied Mathematics III	20	20	20	80	03	25	-	125

Subject Code	Subject Name Credits						
EEC301	Applied Mathematics III 05						
Course Objectives	 To provide students with a sound foundation in Mathematics them for graduate studies in Electronics and Telecommunica To provide students with mathematics fundamental necessar solve and analyze engg. problems. To provide opportunity for students to work as part of teams disciplinary projects. 	and prepare tion Engg. y to formulate, on multi					
Course Outcomes	 Students will demonstrate basic knowledge of Laplace Transseries, Bessel Functions, Vector Algebra and Complex Varia Students will demonstrate an ability to identify formulate and electronics and telecommunication Engg. Problem using App Mathematics. Students will show the understanding of impact of Engg. Ma Telecom Engg. Students who can participate and succeed in competitive exa GRE. 	sform. Fourier able. d solve plied athematics on ams like GATE,					

Module No.	Unit	Topics	Hrs.
	No.		
1.0		Laplace Transform	12
	1.1	Laplace Transform (LT) of Standard Functions: Definition. unilateral	
		and bilateral Laplace Transform, LT of $sin(at)$, $cos(at)$, e^{at} , t^n , $sinh(at)$,	
		cosh(at), erf(t), Heavi-side unit step, dirac-delta function, LT of periodic	

		function	
	1.2	Properties of Laplace Transform: Linearity, first shifting theorem, second	
		shifting theorem, multiplication by t^n , division by t , Laplace Transform of derivatives and integrals, change of scale, convolution theorem, initial and final value theorem, Parsavel's identity	
	1.3	Inverse Laplace Transform: Partial fraction method, long division method, residue method	
	1.4	Applications of Laplace Transform: Solution of ordinary differential equations	
2.0		Fourier Series	10
	2.1	Introduction: Definition, Dirichlet's conditions, Euler's formulae	
	2.2	Fourier Series of Functions: Exponential, trigonometric functions, even and odd functions, half range sine and cosine series	
	2.3	Complex form of Fourier series, orthogonal and orthonormal set of functions, Fourier integral representation	
3.0		Bessel Functions	08
	3.1	Solution of Bessel Differential Equation: Series method, recurrence relation, properties of Bessel function of order +1/2 and -1/2	
	3.2	Generating function, orthogonality property	
	3.3	Bessel Fourier series of functions	
4.0		Vector Algebra	12
	4.1	Scalar and Vector Product: Scalar and vector product of three and four vectors and their properties	
	4.2	Vector Differentiation: Gradient of scalar point function, divergence and curl of vector point function	
	4.3	Properties: Solenoidal and irrotational vector fields, conservative vector field	
	4.4	Vector Integral: Line integral, Green's theorem in a plane, Gauss' divergence theorem, Stokes' theorem	
5.0		Complex Variable	10
	5.1	Analytic Function: Necessary and sufficient conditions, Cauchy Reiman equation in polar form	

5.2	Harmonic function, orthogonal trajectories	
5.3	Mapping: Conformal mapping, bilinear transformations, cross ratio, fixed points, bilinear transformation of straight lines and circles	
	Total	52

Text books:

- 1. P. N. Wartikar and J. N. Wartikar, "*A Text Book of Applied Mathematic*", Vol. I & II, Vidyarthi Griha Prakashan
- 2. A. Datta, "Mathematical Methods in Science and Engineering", 2012
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication

Reference Books:

- 1. B. S. Tyagi, "Functions of a Complex Variable," Kedarnath Ram Nath Publication
- 2. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication
- 3. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition
- 4. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc
- 5. Murry R. Spieget, "Vector Analysis", Schaum's outline series, Mc-Graw Hill Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work/ Tutorial:

At least 08 assignments covering entire syllabus must be given during the '**class wise tutorial**'. The assignments should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every assignment graded from time to time. The grades will be converted to marks as per '**credit and grading system'** manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject	Subject Name	Teaching (Contac	g Scheme t Hours)	0	Credits Assigne	d
Coue		Theory	Pract./Tut.	Theory	Pract./Tut.	Total
EEC302	Electronic Devices and Circuits (abbreviated as EDC)	4	2	4	1	5

]	Examina	ation Schem	ne			
			Theory			Ter				
Subject Code	Subject Name	Internal Assessment E		Internal Assessment Exa		End Sem. Exam.	Exam. Duration (in Hrs)	m Wo rk	Prac t. / oral	Total
		Test 1	Test 2	Avg						
EEC302	Electronic Devices and Circuits	20	20	20	80	03	25	25*	150	

Subject Code	Subject Name	Credits
EEC302	Electronic Devices and Circuits (abbreviated as EDC)	05
Course Objectives	 To teach the basic concept of various electronic devices, c application To develop ability among students for problem form design and solving skills 	ircuits and their ulation, system
Course Outcomes	 Students will be able to build, develop, model, a electronic circuits along with learning the device characteristics Students will be able to design electrical and electronic circuits circuits along electrical and electronic circuits along electrical electronic electronic circuits along electrical electronic electroni	nd analyze the e ratings and cuits

Module	Contents	Hours
1	Diode: Construction Principle of operation and application of special diode – 1) Zener, 2) LED, 3) Schottky, 4) Photodoide. Full Wave Rectifier and Filter Analysis: specification of the devices and components required for C, LC, CLC & RC filter.	06

	Bipolar Junction Transistor:	
	Biasing Circuits: Types, dc circuit analysis, load line, thermal	
	runaway, stability factor analysis, thermal stabilization and	
2	Modeling: Small signal analysis of CE configurations with	
	different biasing network using h-parameter model. Introduction	12
	to re-model and hybrid-pi model.	
	Amplification. Derivation of expression for voltage gain, current	
	gain, input impedance and output impedance of CC, CB, CE amplifiers. Study of frequency response of BIT amplifier	
	Field Effect Transistor:	
	IFET and MOSFET.	
2	Types construction and their characteristics Biasing circuits for	
5	FET amplifiers, FET small signal analysis, derivation of	08
	expressions for voltage gain and output impedance of CS	
	amplifiers.	
	MOSFET- Types, construction and their characteristics	
	Feedback Amplifier:	
	Introduction to positive and negative feedback, negative	
4	input impedance, output impedance, voltage gain, current gain	
	and bandwidth	09
	Cascade amplifiers:	
	Types of coupling, effect of coupling on performance of BJT	
	and JFET amplifiers, cascade connection, Darlington-pair	
5	DC and AC analysis of Differential amplifier, single and dual	
	inputs and balanced and unbalanced outputs using BJT. FET	05
	Oscillators:	
6	Positive feedback oscillators, frequency of oscillation and	
	bridge, c)Hartley/ Colpitts with derivations, crystal Oscillator.	08
	UJT relaxation oscillator	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Books Recommended:

Text Books:

1. Robert Boylestad and Louis Nashelsky, *Electronic Devices and Circuits*,

Prentice-Hall of India.

- 2. Millman and Halkias, 'Electronic Devices and Circuits', Tata McGraw-Hill.
- 3. David Bell, *Electronic Devices and Circuits*, Oxford University Press

Reference Books:

- 1. Thomas Floyd, 'Electronic Devices', Prentice-Hall of India
- 2. Ramakant A. Gayakwad, Op-Amps and Linear Integrated Circuits
- 3. Neamen D.A., *Electronic Circuit Analysis and Design*, McGraw Hill International.
- 1. S. Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits" TMH

List of Experiments Recommended:

- 1. Study of VI characteristics of standard PN junction diode, zener diode, schottkey diode.
- 2. Rectifier- Filter performance analysis
- 3. BJT biasing network stability analysis
- 4. Frequency response of BJT CE amplifier
- 5. Study of JFET characteristics and calculation of coefficients
- 6. Study of MOSFET characteristics and calculation of coefficients
- 7. Frequency response of JFET CS amplifier
- 8. Study of negative feedback on amplifier performance
- 9. Study of photo devices applications
- 10. Study of differential BJT amplifier
- 11. Study of Darlington pair amplifier
- 12. Study of a RC phase shift oscillator
- 13. Study of a Wien Bridge oscillator
- 14. Study of a Hartley/ Colpitts oscillator
- 15. Study of UJT Relaxation Oscillator

Term work:

Term work shall consist of minimum eight experiments, assignments (min two) The distribution of marks for term work shall be as follows:

Laboratory work (Experiments):	10 marks
Assignments:	10 marks
Attendance (Theory and Practical):	05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Subject Subject Name		Teaching (Contac	g Scheme t Hours)	Credits Assigned			
Code		Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
EEC303	Conventional and Non-conventional Power Generation (abbreviated as CNPG)	4	1	4	1	5	

		Examination Scheme							
	Subject Name	Theory					Ter		
Subject Code		Internal Assessment			End Sem. Exam.	Exam. Duration (in Hrs)	m Wo rk	Prac t. / oral	Total
		Test 1	Test 2	Avg					
EEC303	Conventional and Non-conventional Power Generation	20	20	20	80	03	25		125

Subject Code	Subject Name	Credits				
EEC303	Conventional and Non-conventional Power Generation (abbreviated as CNPG)	05				
Course Objectives	• To impart the knowledge of basics of different types of power generation & power plants in detail so that it helps them in industry oriented learning					
Course Outcomes	• Student will be familiar with techniques of power generation, operation and maintenance of power plants					
	• Helps in understanding of impact of power solutions on the society and will be aware of contemporary issues					

Module	Contents	Hours
	Conventional and Non- Conventional sources of energy	
	Present energy scenario world wide and Indian perspective.	
1	Economics of the power plant	
	Load curve, load duration curve, various factors and effects of	10
	fluctuating load on operation and methods of meeting fluctuating	
	load. Selection of generating equipment, load sharing cost of	
	electrical energy, basic tariff methods(numericals)	

2	Thermal power plant Law of Thermodynamics. Analysis of steam cycle-Carnot, Rankine, Reheat cycle and Regenerative cycle. Layout of power plant Lay out of pulverized coal burners, fluidized bed combustion, coal handling systems, ash handling systems. Forced draught and induced draught fans, boiler feed pumps, super heater regenerators, condensers, boilers, de- aerators and cooling towers.	10
3	Hydro power plant Rainfall, run off and its measurement hydrograph, flow duration curve, reservoir storage capacity, classification of plants-run off river plant, storage river plant, pumped storage plant, layout of hydroelectric power plant, turbine-pelton, Kaplan, Francis(Francis)	6
4	Nuclear power plant Introduction of nuclear engineering, fission, fusion, nuclear material, thermal fission reactor and power plant - PWR BWR, liquid metal fast breeder, reactors, reactor control, introduction to plasma technology.	6
5	Diesel and gas turbine power plant General layout, Advantages and disadvantages, component, performance of gas turbine power plant, combined heat power generation.	4
6	 Power Generation using non-conventional energy sources Solar Energy Solar concentrators and tracking ; Dish and Parabolic trough concentrating generating systems, Central tower solar thermal power plants ; Solar Ponds. Basic principle of power generation in a PV cell ; Band gap and efficiency of PV cells solar cell characteristics, Manufacturing methods of mono- and poly-crystalline cells; Amorphous silicon thin film cells. Wind Energy Basic component of WEC, Types of wind turbine-HAWT, VAWT, Performance parameters of wind turbine, Power in wind, Wind electric generators, wind characteristics and site selection; Wind farms for bulk power supply to grid. Fuel Cell Introduction to fuel cell, principle of operation of fuel cell, Types of fuel cell 	12

Introduction to other sources	
Basics of power generation by using Biomass, geothermal and	
tidal energy sources, MHD	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Books Recommended:

Text Books:

- 1. MV Deshpande, *Elements of Power station design*, Tata McGraw Hill
- 2. DH Bacon, Engineering Thermodynamics, London Butterworth
- 3. PK Nag, Power Plant Engineering-Steam & Nuclear, Tata McGraw Hill

Reference Books:

- 1. Fredrick T Morse, Power Plant Engineering, East-West Press Pvt Ltd
- 2. Mahesh Verma, Power Plant Engineering, Metrolitan Book Co Pvt Ltd
- 3. RK Rajput, A Text Book of Power System engineering, Laxmi Publication
- 4. George W Sutton-(Editor), *Direct Energy Conversion*, Lathur University, Electronic Series Vol 3, McGraw Hill

Term work:

Term work shall consist of minimum two group assignments based on the syllabus followed by the seminar on the same and three tutorials based on the syllabus The distribution of marks for term work shall be as follows:

Laboratory work (Tutorial):	10 marks
Seminar:	10 marks
Attendance (Theory and Practical):	05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be randomly selected from all the modules.

Subject	Subject Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
Coue		Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
EEC304	Electrical Networks (abbreviated as EN)	4	2	4	1	5	

	Subject Name	Examination Scheme							
		Theory					Ter		
Subject Code		Internal Assessment			End Sem. Exam.	Exam. Duration (in Hrs)	m Wo rk	Prac t./ oral	Total
		Test 1	Test 2	Avg					
EEC304	Electrical Networks	20	20	20	80	03	25		125

Subject Code	Subject Name	Credits
EEC304	Electrical Networks (abbreviated as EN)	05
Course Objectives	 To impart the knowledge of various fundamental technic and synthesis of electrical network. To mould creative engineers needed in education and in development along with problem solving skills 	ques for analysis dustrial
Course Outcomes	 Students will be familiar with the various techniques to systems in transient and steady state conditions. Will be able to demonstrate skills to use modern a software and equipments to analyse problems. 	o analyze electrical engineering tools,

Module	Contents	Hours
1	Network Theorems Solution of network using dependent sources, mesh analysis, super mesh analysis, nodal analysis, super node analysis, source transformation and source shifting, superposition theorem, Thevenin's theorems and Norton's theorem, maximum power transfer theorem. Solution of network with A.C. sources: magnetic coupling, mesh analysis, nodal analysis, superposition theorem, Thevenin's theorems, Norton's theorem, maximum power transfer theorem, Tellegen's theorem, Millman's theorem, reciprocity theorem.	12

2	Graph theory and network topology Introduction, graph of network, tree, co-tree, loop incidence matrix, cut set matrix, tie set matrix and loop current, number of possible tree of a graph, analysis of network equilibrium equation, duality.	06
3	First Order and Second order differential equations Initial condition of networks, General and partial solutions, time constant, integrating factor, more complicated network, geometrical interpretation of derivative.	06
4	The Laplace Transform The Laplace transform and its application to network analysis, transient and steady state response to step, ramp, impulse and sinusoidal input function, transform of other signal waveform, shifted step, ramp and impulse function, waveform synthesis	06
5	Network Functions; Poles and Zeros Network functions for one port and two port networks, Driving point and transfer functions, ladder network, General network, poles and zeros of network functions, restrictions on Pole and zero locations for driving point functions and Transfer functions, time domain behavior from pole - zero plot. Two port parameters	12
	Open circuit, short circuit, transmission and hybrid Parameters, relationships between parameter sets, reciprocity and symmetry conditions, parallel connection of two port networks	
6	Network Synthesis Concept of stability, Hurwitz polynomials, Properties and testing of positive real functions, Driving point synthesis of LC, RC, RL network.	06

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Books Recommended:

Text Books:

- 1. W H Hayt, S M Durbin, J E Kemmerly, '*Engineering Circuit Analysis*', 7th Edition Tata McGraw-Hill Education.
- 2. M. E. Van Valkenburg, 'Network Analysis', 3rd Edition, PHI Learning.
- 3. D. Roy Choudhury, 'Networks and Systems', 2nd Edition, New Age International.
- 4. M. E. Van Valkenburg, 'Linear Circuits', Prentice Hall.

Reference Books:

- 1. F. F. Kuo,' Network Analysis and synthesis', John Wiley and sons.
- 2. N Balabanian and T.A. Bickart, 'Linear Network Theory: Analysis, Properties, Design and Synthesis', Matrix Publishers, Inc.
- 3. C. L.Wadhwa, 'Network Analysis and synthesis', New Age international.
- 4. B. Somanathan Nair, "Network Analysis and Synthesis", Elsevier Publications

Term work:

Term work shall consist of minimum four tutorials and three simulations (minimum), assignments (min two)

The distribution of marks for term work shall be as follows:

Laboratory work (Experiment/ programs a	and journal):10 marks
Assignments:	10 marks
Attendance (Theory and Practical):	05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Subject Code	Subject Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
Coue		Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
EEC305	Electrical and Electronic Measurements (abbreviated as EEM)	4	2	4	1	5	

			Examination SchemTheoryInternal AssessmentEnd Sem.Exam.Duration Exam.(in Hrs)			ne			
						Ter _			
Subject Code	Subject Name	l As				m Wo rk	m t. / Wo oral rk		
		Test 1	Test 2	Avg					
EEC305	Electrical and Electronic Measurements	20	20	20	80	03	25		125

Subject Code	Subject Name	Credits				
EEC305	Electrical & Electronic Measurements	05				
Course Objectives	• Students should be able to understand working principles instruments & devices used for measurement of the Electronic structure in the structure instrument of the struc	 Students should be able to understand working principles of various instruments & devices used for measurement of the Electrical parameters 				
Course Outcomes	• This knowledge helps them to build, assemble and use the devices for the relevant measurements	e instruments &				

Module	Contents	Hours
1	Principles of Analog Instruments Errors in Measurement, Difference between Indicating and Integrating Instruments. Moving coil and Moving iron Ammeters & Voltmeters. Extension of ranges by using shunt, Multipliers, Instrument Transformers (only a brief explanation), Dynamometer type Wattmeter & Power Factor meters. Reed Moving Coil type Frequency Meters. Principle of double voltmeter. Double frequency meter. Weston type Synchroscope. DC Permanent magnet moving coil type Galvanometers. Ballistic Galvanometer. AC Vibration Galvanometer (only the basic working Principle and Application).	16

	Principles of Digital Instruments	
2	Advantages of digital meters over analogue meters. Resolution & sensitivity of digital meters. Working principles of digital	
2	Voltmeter, Ammeter, Frequency meter, Phase Meter, Energy	10
	meter, Tachometer and Multimeter	
	Measurement of Resistance	
3	Wheatstone's Bridge, Kelvin's Double Bridge and Megger	05
	Measurement of Inductance & Capacitance	
4	Maxwell's Inductance bridge, Maxwell's Inductance &	05
4	Capacitance Bridge, Hay's bridge, Anderson's Bridge,	
	Desaugthy's Bridge, Schering Bridge, Q meter	
	Potentiometer	
5	Working principle of Crompton's Type and its applications for	04
	calibration of Ammeter, Voltmeter & Wattmeter	
	Transducers	
	Electrical Transducers, Active & Passive Transducers	
	Resistive Transducer-Potentiometer, Resistance Pressure	
	Temperature Transducer- Resistance Thermometer, Thermistor,	
6	Thermo couple, RTD	08
	Inductive Transducer-Using Self Inductance, Variable Reluctance	
	type, Differential Output Transducers, LVD1, KVD1	
	Capacitive Transducer-Capacitive Pressure Transducer	
	Piezo Electrical Transducer, Photo Electric Transducer(Photo	
	emissive, Photo Conductive, Photo Voltaic)	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Books Recommended:

Text Books:

- 4. Electrical & Electronic Measurements and Instrumentation by AK Sawhney, Dhanpat Rai & Sons
- 5. Modern Electronic Instrumentation and Measurement Techniques by Helfric and Cooper, Prentice Hall of India
- 6. Electronic Instrumentation By H.S.Kalsi, Third Edition, Tata McGraw Hill

Reference Books:

- 1. Principle of Measurement & Instrumentation by Alan.S.Moris, Prentice Hall of India
- 2. Electrical Measurement & Instrumentation by RS Sirohi & Radhakrisnan, New Age International

List of Experiments Recommended:

- 1) Demonstration of working parts of moving coil, moving iron, Dynamometer, reed type instruments
- 2) Measurement of low, medium & high resistance
- 3) Calibration of ammeter, voltmeter, wattmeter by using potentiometer
- 4) Measurement of Inductance and Capacitance using Maxwell's, Hay's & Anderson Bridge
- 5) Study of digital voltmeter, Frequency meter & Energy meter by using Kits
- 6) Testing of CT & PT by using the Kit

Term work:

Term work shall consist of minimum six experiments, assignments (min two) The distribution of marks for term work shall be as follows:

Laboratory work (Experiments):	10 marks
Assignments:	10 marks
Attendance (Theory and Practical):	05 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)				Credits As	ssigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EEC 306	Object Oriented Programming and Methodology		4#			2		2

Subject Code	Subject Name	Examination Scheme							
Coue			Theory Marks				Practical	Oral	Total
	Internal assessment End Sem.		End Sem. Exam	, WOIK	and Oral				
		Test	Test	Avg. Of Test	Exam				
		1	2	1 and 1 est 2					
EEC 306	Object Oriented Programming Methodology					25	50*		75

Subject Code	Subject Name	Credits
EEC306	Object Oriented Programming and Methodology	05
Course Objectives	 To understand the concept of Object Oriented Programming To help student to understand use of programming languag to resolve problems. To impart problems understanding, analyzing skills in ord Algorithms. To provide knowledge about JAVA fundamentals: data keywords and control structures. To understand methods, arrays, inheritance, Interface multithreading and concept of Applet. 	e such as JAVA der to formulate types, variables, , package and

Course Outcomes	• Students will be able to code a program using JAVA constructs.
	• Given an algorithm a student will be able to formulate a program that correctly implements the algorithm.
	• Students will be able to generate different patterns and flows using control structures and use recursion in their programs.
	• Students will be able to use thread methods, thread exceptions and thread priority.
	• Students will implement method overloading in their code.
	• Students will be able to demonstrate reusability with the help of inheritance.
	• Students will be able to make more efficient programs.

Module	Unit	Торіс	Hrs.
No.	No.		
1		Fundamental concepts of object oriented programming	4
	1.1	Overview of programming	
	1.2	Introduction to the principles of object-oriented programming: classes, objects, messages, abstraction, encapsulation, inheritance, polymorphism, exception handling, and object-oriented containers	
	1.3	Differences and similarity between C++ and JAVA	
2		Fundamental of Java programming	4
	2.1	Features of Java	
	2.2	JDK Environment & tools	
	2.3	Structure of Java program	
	2.4	Keywords, data types, variables, operators, expressions	
	2.5	Decision making, looping, type casting	
	2.6	Input output using scanner class	
3		Classes and objects	6
	3.1	Creating classes and objects	
	3.2	Memory allocation for objects	1
	3.3	Passing parameters to Methods	
	3.4	Returning parameters	1
	3.5	Method overloading	

	3.6	Constructor and finalize ()	
	3.7	Arrays: Creating an array	
	3.8	Types of array : One dimensional arrays ,Two Dimensional array, string	
4		Inheritance, interface and package	6
	4.1	Types of inheritance: Single, multilevel, hierarchical	
	4.2	Method overriding, super keyword, final keyword, abstract class	
	4.3	Interface	
	4.4	Packages	-
5		Multithreading	4
	5.1	Life cycle of thread	
	5.2	Methods	1
	5.3	Priority in multithreading	
6		Applet	2
	6.1	Applet life cycle	
	6.2	Creating applet	
	6.3	Applet tag	1
		Total	26

Text Books:

- 1. Rajkumar Buyya, "Object-oriented programming with JAVA", Mcgraw Hill
- 2. E Balgurusamy, "Programming with JAVA", Tata McGraw Hill

Reference Books:

- 1. Herbert Schildt, "The Complete Reference JAVA", Tata McGraw Hill
- 2. Barry Holmes and Daniel T. Joyce, "*Object Oriented Programming with Java*", Jones & Bartlett Learning