kGraft

Live patching of the Linux kernel

Jifi Kosina, Petr Mladek, Vojtéch Pavlik, Jiri Slaby

SUSE Labs

September 25™ 2014
Paris, France

SUSE

We adapt. You succeed.

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 1/23

Why Live Patching?

@ 1000 machines & severe security problem
o Needs fixing now!
@ Rebooting the machines

@ Is not a quick way to fix an issue
@ Has a risk of not coming up

@ Live patching

o Allows quick response
o Leaves an actual update to a scheduled downtime window

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 2/23

Where is Live Patching Useful?

@ Common tiers of change management

@ Incident response — we are exploited
@ Emergency change — we could be exploited (we are vulnerable)
© Scheduled change — time is not critical, we are safe

@ Live patching fits in with 1 and 2

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 3/23

Presentation Outline

@ «GRrarT
e KGRAFT Internals
e Live Demo

e Conclusion

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 4/23

Section 1

KGRAFT

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 5/23

KGRAFT

@ Research project

@ Live patching technology

@ Developed by SUSE Labs

@ Specifically for the Linux kernel

@ Based on modern Linux technologies

INT3/IPI-NMI self-modifying code

e Lazy update mechanism

e fentry-based NOP space allocation

e Standard kernel module loading/linking mechanisms

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 6/23

Advantages of KGRAFT

@ Does not require stopping the kernel
o Ever!
@ Not even for short time periods
e Unlike competing technologies
@ Allows code review on KGRAFT patch sources

e Patches can be built from C source directly
@ No need for object code manipulation

@ Only an alternative: object code based automated patch generation
@ kGraft is lean

e Small amount of code
e Leveraging other Linux technologies
e No complex instruction en/decoders or such

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 7/23

How does KGRAFT work?

@ A kGraft patch is a .ko kernel module

@ The .ko is inserted into the kernel using insmod
@ Alllinking (incl. the fix) is done by kernel

@ KGRAFT replaces whole functions in the kernel
e Even while those functions may be executed

@ An updated KGRAFT module can replace an existing patch

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 8/23

@ kGraft is designed for fixing critical bugs
@ Primarily for simple changes

@ Changes in kernel data structure layout require special care
e Depending on the size of the change, reboot may be needed
@ Same as with other live patching techniques

@ KGRAFT depends on a stable build environment

e Having history of built kernels
o Best suited for

@ Linux distributions
@ Their customers
@ Anyone who builds their own kernels

@ Not good for 3rd party support

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 9/23

Section 2

KGRAFT Internals

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 10/23

KGRAFT and fentry

@ KGRAFT needs some space at the start of a function
e Toinsert a jump to a patched function
@ The space can be provided by Gcc profiling

@ -pg -mfentry
o KGRAFT uses this

@ fentry call instructions

o Patched out at boot
o Replaced with 5-byte NOPs

f kernel_func) f kernel_func)
CALL fentry 5-byte NOP
ﬁ
\4 \4

Jiri Slaby (SUSE Labs) kGraft September 25! 2014, Paris 11/23

Using 5-byte NOPs Space

INT3 handler is installed with a JMP to the destination address
@ First byte of NOP is replaced by INT3
©@ Remaining bytes are replaced by address
© First byte is replaced by JMP
© NMI IPIs are used to flush instruction decoders on other CPUs

Y g Y g Y g Y

kernel_func kernel_func kernel_func kernel_func
5-byte NOP INT3 | xxxx INT3 | addr JMP addr
— — —
v v v v

.
INT3 handler

| S —

Jiri Slaby (SUSE Labs) kGraft September 25! 2014, Paris 12/23

Patching a Function

@ Patching during runtime, no stop_kernel () ;
@ Callers are never patched

o Rather, callee’s NOPs are replaced by a JMP to the new function
o JMP remains forever

@ But this takes care of function pointers, including in structures
o Like indirect calls (handler->function())

@ Does not require saving any old data in case we want to un-patch

Jiri Slaby (SUSE Labs) kGraft September 25! 2014, Paris 13/23

Patching a Function in Pictures

buggy_func
1 JMP fixed
)
kernel_func
_ \4

buggy_func();

fixed_func

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 14/23

Issue: Non-consistency

@ Replaced function changes semantics and subsequent calls rely

on each other?
@ ltis called recursively?

l

)
kernel_func

buggy_func();
v

buggy_func() ;
v

BOOM!

| —

d

Jiri Slaby (SUSE Labs)

buggy_func

kGraft

September 25t 2014, Paris

15/23

Cure: RCU-like Replacement

@ We need to provide a consistent “world-view” to each thread

e User processes
o Kernel processes
o Interrupts

@ Solution: “reality check” trampoline
o Per-thread flag set on each kernel entry/exit

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 16/23

RCU-like Replacement

v~ Welcome to
Userspace T |,/ the new universe!

Kernelspace

)
O EE— buggy_func
kernel_func L
heavy work reality_check v
v which universe -
buggy_func(); are you
: coming from?
: e mE—
v fixed_func
| — -
v

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 17/23

Lazy Replacement

@ All processes must wake up or execute a syscall
@ Sometimes this requires a signal to be sent (like for getty’s)
@ Once all processes have the "new universe" flag set

e Patching is complete
e Trampolines can be removed

@ Files to check

@ /proc/<pid>/kgr_in_progress
® /sys/kernel/kgraft/kgr_in_progress

Jiri Slaby (SUSE Labs) kGraft September 25! 2014, Paris 18/23

Lazy Replacement

Userspace T |

Kernelspace

buggy_func

)
kernel_func

heavy work

\

buggy_func();
g \\\\\\\$ fixed_func

\

| S —

N

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 19/23

Get It

@ Upstreaming
o KGRAFT was submitted and reviewed upstream
@ There are other groups working on competing technologies
o KPATCH, KSPLICE, criu-based aproach, ...
e SUSE will work together with them
e Expectations: common standard kernel live patching
@ Publishing

o Part of SLE12 kernel tree
o GIT repository upstream

@ http://git.kernel.org/pub/scm/linux/kernel/git/jirislaby/
kgraft.git

Jiri Slaby (SUSE Labs) kGraft September 25! 2014, Paris 20/23

http://git.kernel.org/pub/scm/linux/kernel/git/jirislaby/kgraft.git
http://git.kernel.org/pub/scm/linux/kernel/git/jirislaby/kgraft.git

Maintenance

@ KGRAFT patch is an RPM package
@ Once installed, always protected

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 21/23

@ Kernel with a security vulnerability
@ Exploit program
@ kGraft patch

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 22/23

Conclusion

@ Demanded live Linux kernel patching
@ Dubbed KGRAFT

Jiri Slaby (SUSE Labs) kGraft September 25t 2014, Paris 23/23

	kGraft
	kGraft Internals
	Live Demo
	Conclusion

