
  

Josh Poimboeuf
Senior Software Engineer, Red Hat
LinuxCon North America
August 22, 2014

kpatch
Have your security and eat it too!
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Agenda

● What is kpatch?
● Why use kpatch?
● Demo
● How it works
● Features & Limitations
● Try it!
● Questions?
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What is kpatch?

● Live kernel patching framework
● Patch a running kernel
● No reboots
● No disruption to applications
● Used for security and stability fixes

● Not for major kernel updates



4

Open source

● Started as internal Red Hat project
● Feb 2014: Released on github
● Goal: merge into upstream Linux
● Already stable and useful
● 100% self-contained
● Works on many distributions

● Fedora, Ubuntu, Debian, Arch, RHEL7*, CentOS7, OL7

              * Use at your own risk
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Why kpatch?
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Kernel bugs are problematic

● Many security bugs waiting to be 
found

● Large attack surface
● Huge code base

● System-level impact -> high priority
● Many high-priority security fixes
● Kernel update = reboot
● Kernel updates are often delayed
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Why is rebooting a problem?

● Disruption to users/applications
● Sysadmins don't always have control 
of users or applications

● Many applications aren't distributed
● Re-architecting can be expensive or impractical

● Distributed systems need to reboot too
● (Up)time is money
● Hardware reboot failures
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Security vs business factors

● Security doesn't exist in a vacuum
● Judgment calls / business decisions
● Risk of getting hacked vs reboot costs
● Reboot now?  Or risk it and wait?
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Security at the expense of flexibility 
comes at the expense of security
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kpatch to the rescue

● Remove security / flexibility trade-offs
● No more risk analysis, judgment calls, 
business decisions, etc.

● Apply security fixes immediately
● No disruption to users/applications
● Can wait for a better time to reboot
● Scheduled reboots
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kpatch benefits

● Security-focused
● Flexibility and predictability

● Uptime-focused
● Security

● The rest of us
● All of the above

● Decouple (arbitrary) security fix 
schedule from reboot schedule
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“But this sounds crazy...”

● Integrated with kernel (not a Band-Aid)
● Uses ftrace to do the patching
● Replacement functions are first class functions
● Compatible with oops, ftrace, kprobes, kdump, perf, etc.
● Taint flag

● Patching process is deterministic
● Simple design

● Code is 100% self-contained
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Is it safe?

*if you're very careful with your patch selection

*
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Demo



15

How it works
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How it works

1. Build the patch module
● kpatch-build foo.patch

2. Patch the kernel 
● kpatch load kpatch-foo.ko
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Building the patch module

● Much harder than patching the kernel!
● Compile kernel with/without patch
● Compare binaries
● Detect which have functions changed
● Extract object code of changed 
functions into patch module

● Edge cases...
● Compiler optimizations, kernel special ELF sections
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Determining patch safety

● Some patches are inherently unsafe
● Data structure changes
● Data semantic changes

● Tooling does some safety analysis
● Impossible for a program to definitively 
determine whether a patch is safe
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A human must analyze each patch 
to determine whether it's safe to 
apply in a live patching context!
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Human patch analysis

● What function does
● What patch does
● How patch changes data interactions
● Modify patch if needed
● Kernel expert recommended

● Or get your Linux distribution to do it
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Patching the kernel
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Patching the kernel

1. Load new functions into memory

2. Link new functions into kernel
● Allows access to unexported kernel symbols

3. Activeness safety check
● Prevent old & new functions from running at same time
● stop_machine() + stack backtrace checks

4. Patch it!
● Uses ftrace
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Patching with ftrace

Original
Function

ftrace kpatch

New
Function

call

return

return

no op

Old
Function

noop

Original
Function

call
no op

Old
Function

call

Before
patching:

After
patching:

call

return

call



24

Features & Limitations
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Features

● Patch rollback
● Patch on reboot
● Multiple patches
● Atomic patch upgrade
● Module patching (and deferred)
● User load/unload hook functions
● Skip backtrace safety check
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Limitations

● Human safety analysis required!
● Not a general purpose upgrade tool
● ~80% of all CVE patches currently 
supported

● Data structure changes, edge cases
● Goal: 99%

● stop_machine() latency: 1ms – 40ms
● Currently x86_64 only
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kpatch on RHEL 7

● Not supported at this time
● Working with small customer group to 
get early operational feedback

● Goal: get it (or something like it) 
merged upstream first
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Try it!
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Feedback wanted

● We've built the “car”
● Kicked the tires
● Many test drives
● Not many long family road trips or daily commuters yet?

● Looking for brave users to solve real-
world problems with it

● Help influence the direction of kpatch
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Try it!

● See the README on github
● Quick start guide
● More in-depth information

● Open github issues
● Join the mailing list
● Ping us on IRC
● Contributors welcome!
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Reference

● Github repository
● https://github.com/dynup/kpatch

● Mailing list
● https://www.redhat.com/mailman/listinfo/kpatch

● IRC channel: #kpatch on freenode
● Contact me: jpoimboe@redhat.com

https://github.com/dynup/kpatch
https://www.redhat.com/mailman/listinfo/kpatch
mailto:jpoimboe@redhat.com
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Questions?
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