

Josh Poimboeuf
Senior Software Engineer, Red Hat
LinuxCon North America
August 22, 2014

kpatch
Have your security and eat it too!

2

Agenda

● What is kpatch?
● Why use kpatch?
● Demo
● How it works
● Features & Limitations
● Try it!
● Questions?

3

What is kpatch?

● Live kernel patching framework
● Patch a running kernel
● No reboots
● No disruption to applications
● Used for security and stability fixes

● Not for major kernel updates

4

Open source

● Started as internal Red Hat project
● Feb 2014: Released on github
● Goal: merge into upstream Linux
● Already stable and useful
● 100% self-contained
● Works on many distributions

● Fedora, Ubuntu, Debian, Arch, RHEL7*, CentOS7, OL7

 * Use at your own risk

5

Why kpatch?

6

Kernel bugs are problematic

● Many security bugs waiting to be
found

● Large attack surface
● Huge code base

● System-level impact -> high priority
● Many high-priority security fixes
● Kernel update = reboot
● Kernel updates are often delayed

7

Why is rebooting a problem?

● Disruption to users/applications
● Sysadmins don't always have control
of users or applications

● Many applications aren't distributed
● Re-architecting can be expensive or impractical

● Distributed systems need to reboot too
● (Up)time is money
● Hardware reboot failures

8

Security vs business factors

● Security doesn't exist in a vacuum
● Judgment calls / business decisions
● Risk of getting hacked vs reboot costs
● Reboot now? Or risk it and wait?

9

Security at the expense of flexibility
comes at the expense of security

10

kpatch to the rescue

● Remove security / flexibility trade-offs
● No more risk analysis, judgment calls,
business decisions, etc.

● Apply security fixes immediately
● No disruption to users/applications
● Can wait for a better time to reboot
● Scheduled reboots

11

kpatch benefits

● Security-focused
● Flexibility and predictability

● Uptime-focused
● Security

● The rest of us
● All of the above

● Decouple (arbitrary) security fix
schedule from reboot schedule

12

“But this sounds crazy...”

● Integrated with kernel (not a Band-Aid)
● Uses ftrace to do the patching
● Replacement functions are first class functions
● Compatible with oops, ftrace, kprobes, kdump, perf, etc.
● Taint flag

● Patching process is deterministic
● Simple design

● Code is 100% self-contained

13

Is it safe?

*if you're very careful with your patch selection

*

14

Demo

15

How it works

16

How it works

1. Build the patch module
● kpatch-build foo.patch

2. Patch the kernel
● kpatch load kpatch-foo.ko

17

Building the patch module

● Much harder than patching the kernel!
● Compile kernel with/without patch
● Compare binaries
● Detect which have functions changed
● Extract object code of changed
functions into patch module

● Edge cases...
● Compiler optimizations, kernel special ELF sections

18

Determining patch safety

● Some patches are inherently unsafe
● Data structure changes
● Data semantic changes

● Tooling does some safety analysis
● Impossible for a program to definitively
determine whether a patch is safe

19

A human must analyze each patch
to determine whether it's safe to
apply in a live patching context!

20

Human patch analysis

● What function does
● What patch does
● How patch changes data interactions
● Modify patch if needed
● Kernel expert recommended

● Or get your Linux distribution to do it

21

Patching the kernel

22

Patching the kernel

1. Load new functions into memory

2. Link new functions into kernel
● Allows access to unexported kernel symbols

3. Activeness safety check
● Prevent old & new functions from running at same time
● stop_machine() + stack backtrace checks

4. Patch it!
● Uses ftrace

23

Patching with ftrace

Original
Function

ftrace kpatch

New
Function

call

return

return

no op

Old
Function

noop

Original
Function

call
no op

Old
Function

call

Before
patching:

After
patching:

call

return

call

24

Features & Limitations

25

Features

● Patch rollback
● Patch on reboot
● Multiple patches
● Atomic patch upgrade
● Module patching (and deferred)
● User load/unload hook functions
● Skip backtrace safety check

26

Limitations

● Human safety analysis required!
● Not a general purpose upgrade tool
● ~80% of all CVE patches currently
supported

● Data structure changes, edge cases
● Goal: 99%

● stop_machine() latency: 1ms – 40ms
● Currently x86_64 only

27

kpatch on RHEL 7

● Not supported at this time
● Working with small customer group to
get early operational feedback

● Goal: get it (or something like it)
merged upstream first

28

Try it!

29

Feedback wanted

● We've built the “car”
● Kicked the tires
● Many test drives
● Not many long family road trips or daily commuters yet?

● Looking for brave users to solve real-
world problems with it

● Help influence the direction of kpatch

30

Try it!

● See the README on github
● Quick start guide
● More in-depth information

● Open github issues
● Join the mailing list
● Ping us on IRC
● Contributors welcome!

31

Reference

● Github repository
● https://github.com/dynup/kpatch

● Mailing list
● https://www.redhat.com/mailman/listinfo/kpatch

● IRC channel: #kpatch on freenode
● Contact me: jpoimboe@redhat.com

https://github.com/dynup/kpatch
https://www.redhat.com/mailman/listinfo/kpatch
mailto:jpoimboe@redhat.com

32

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

