HITACHI

Inspire the Next

LinuxCon NA 2014
(Aug. 2014)

Kpatch Without Stop Machine
The Next Step of Kernel Live Patching

Masami Hiramatsu

<masami.hiramatsu.pt@hitachi.com>

Linux Technology Research Center ‘@)

Yokohama Research Lab. Hitachi Ltd., Y
T

Yokohama Research Lab.
Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved. 1

Speaker IEJJ;%?]EL

* Masami Hiramatsu

— A researcher, working for Hitachi
* Researching many RAS features

— A linux kprobes-related maintainer
* Ftrace dynamic kernel event (a.k.a. kprobe-tracer)
* Perf probe (a tool to set up the dynamic events)
* X86 instruction decoder (in kernel)

Linux Technology Ce

nter

© Hitachi, Ltd. 2014. All rights reserve

Agenda: Kpatch Without Stop Machine ,EJI%?QL

Background Story

Kpatch internal

Kpatch without stop _machine
Conclusion and Discussion

Note: this presentation is only focusing on the kernel-module side of kpatch.
More generic design and implementation, please attend to -

kpatch: Have Your Security And Eat It Too! — Josh Poimboeuf

Aug. 22. pm2:30

© Hitachi, Ltd. 2014. All rights reserved. 3

Agenda: Kpatch Without Stop Machine

Background Story

What is kpatch?
Live patching requirements
Major updates and Minor updates

Kpatch internal

Kpatch Overview
Active Safeness check
Stop _machine

Kpatch without stop_machine

Live Patcing Rules
Kpatch Reference Counter
Safeness check without stop _machine

Conclusion and Discussion

HITACHI

Inspire the Next

rch Lab,
T h IgyC nter

© Hitachi, Ltd. 2014. All rights reserved. 4

What's Kpatch? IEJI‘??EI\LI!&

* Kpatch is a LIVE patching function for kernel
— This applys a binary patch to kernel on-line
— Patching is done without shutdown

* Only for a small and critical issues
— Not for major kernel update

© Hitachi, Ltd. 2014. All rights reserved. 5

Why Live Patching Required? TACH

* Live patching is important for appliances for
mission critical systems
— Some embedded appliances are hard to maintain
frequently

* Those are distributed widely in country side
* Not in the big data center!

— Some appliances can’'t accept 10ms downtime
* Factory control system etc.

© Hitachi, Ltd. 2014. All rights reserved. 6

But for Major Updates? ﬂﬂ%?ﬂ!&

* M.C. systems have periodic maintenance
— Major fixes can be applied and rebooted
— In between the maintenance, live patching will be used

* Live patching and major update are complement
each other

— Live patching temporarily fixes small critical incidents
— Major update permanently fixes all bugs

Planned
Maintenance

I

0

minor critical

aaaaaaaaaaaaaaaaaaaa

Live Patching Major Update Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved.

The History of Live patching on Linux

* Live patching is not new

HITACHI

Inspire the Next

2004 2014
For Pannus Live Patch (2004-2006) Develobed for CGL
. http://pannus.sourceforge.net/ . p .
applic No distribution support
ation
Ptrace and mmap based one
Livepatch (2005)2 :
http://ukai.jp/Slides/2005/1202-b2con/mop/livepatch.html
ksplice (2007-)
For https://www.ksplice.com/
kernel

Build from scratch } kGraft (2014)

Acquired and supported by Oracle

Use ftrace to replace function
Will be supported by major distributors

kpatch (2014)

mo

ThIgth

© Hitachi, Ltd. 2014. All rights reserved.

Agenda: Kpatch Without Stop Machine

Background Story

What is kpatch?
Live patching requirements
Major updates and Minor updates

Kpatch internal

Kpatch Overview
Active Safeness check
Stop_machine

Kpatch without stop_machine

Live Patcing Rules
Kpatch Reference Counter
Safeness check without stop _machine

Conclusion and Discussion

HITACHI

Inspire the Next

. ‘ yl
Yokohama Research Lab. T C
Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved. 9

Kpatch: Overview n'@'pll‘i%?]'\ﬂf

* Kpatch has 2 components
— Kpatch build: Build a binary patch module
— Kpatch.ko: The kernel module of Kpatch

Original m Current

Src vmlinux

‘ Patch
Patch module

Patched m
src

Per-function
diff

Kpatch.ko

Do patch
New functions
On old functions

Patched
vmlinux

A module which
contains new
functions

Yokohama Research Lab.
Linux Technology Center

Today’s talk

© Hitachi, Ltd. 2014. All rights reserved. 10

Kpatch: How to Patch

* Kpatch uses Ftrace to patch
— Hook the target function entry with registers
— Change regs->ip to new function (change the flow)

Foo() is called even
After patching.
Function pointer is
Available ©

Ftrace hooks

Call foo() \

HITACHI

Inspire the Next

Find the new

Foo() entry IP from hash
foo() firace table
Call fentry —~_, Save Regs cwatch o
Call ftrace_ops =—>Get new IP from
Return Hash table

Restore Regs

Ret to regs->ip

AN

Change regs->ip

New foo()

Return

Return

< Ftrace
To new foo()

returns
&

Yokohama Research Lab. T
Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved. 11

Conflict of Old and New Functions ﬂﬂ%?ﬂ!&

* Kpatch will update the execution path of
a function

— Q: What happen if the patched function is under
executed?

— A: Old and new functions are executed at the
same time

IThis should not happen!!

* Kpatch ensures the old functions are not
executed when patching
— “Active Safeness Check”

Active Safeness Check]EJI‘%%EL

* Executing functions are on the stack
* And IP register points current function too

Stack at here

Func1
Func1+XX
\\\)
[Func2 } Stack at here
\\ / Func2+YY
Func3 < Func1+XX

* Active Safeness Check

— Do stack dump to check the target functions are
not executed, for each thread.

— Need to be done when the process is stopped. [HH
- stop_machine is used ez

© Hitachi, Ltd. 2014. Al rights reserved. 13

Active Safeness Check With Stop _machine]EJI%?QL

* Kpatch uses stop _machine to check stacks

Time
>
Patching Add]
Process Ftrace entry
Call old
Process1 funct
Process?2
Call old
Process3 func
L [&)

Active Safeness Check With Stop _machine

HITACHI

Inspire the Next

* Kpatch uses stop _machine to check stacks

Call Stop Machine Time

>
. |
Patching [Add] !
Process Ftrace entry) |
|
=
Process’ funcl J
|
|
Process?2 !
|
|
Calloid | !
Process3 func2 | |

All running processes and
interrupts are stopped fm)

Yokohama Research Lab. T
Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved. 15

Active Safeness Check With Stop _machine

HITACHI

Inspire the Next

* Kpatch uses stop _machine to check stacks

Call Stop Machine Time
>
. |
Patching [Add] | [Safeness]
|
Process Ftrace entryJ | Check
|
Call old :
Process1 funcl J | walk through the all
: Thread and check
1 | Old funcs on stacks
Process?2 ,
|
|
Calloid | !
Process3 func2 | |
All running processes and
interrupts are stopped fm)

Yokohama Research Lab. T
Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved. 10

Active Safeness Check With Stop _machine ﬂﬂ%?ﬂ!&

* Kpatch uses stop _machine to check stacks

Call Stop Machine w Timg

Patching [Add] [Safeness] [Update hash]
Process Ftrace entry Check table

Call old
Process1 funct

|

Walk through the all
Thread and check

old f tack
PrOCGSSZ UNCS ON S1acCKs 'C?ll':n[\(l:zw
Call old Call New
Process3 func? funct

Now switch to
New functions A

Yokohama Research Lab. T
Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved. 17

All running processes and
interrupts are stopped

HITACHI

Stop_machine: Pros and Cons Inspire the Next
* Pros
— Safe, simple and easy to review, Good for the 1st
version
* Cons

— Stop_machine stops all processes a while
* It is critical for control/network appliances

— In virtual environment, this takes longer time

* We need to wait all VCPUs are scheduled on the host
machine

© Hitachi, Ltd. 2014. Al rights reserved. 18

Agenda: Kpatch Without Stop Machine]EJI%?QL

Kpatch without stop machine

Live Patching Rules
Kpatch Reference Counter
Safeness check without stop _machine &

Yokohama Research Lab. T
Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved. 19

Live Patching Rules IEJI‘??EI\LI!&

* Live patching must follow the rules

1. All the new functions in a patch must be applied
at once
* We need an atomic operation

2. After switching new function, the old function
must not be executed
* We have to ensure no threads runs on old
functions

* And no threads sleeps on them

© Hitachi, Ltd. 2014. Al rights reserved. 20

Two actions for the solution IEJI‘%E\.—!!&

1. Introduce an atomic reference counter
2. Active safeness check at the context switch

Atomic Function Reference Counter ,EJI%?QL

1. Introduce an atomic reference counter

— Without stop _machine, functions can be called
while patching
* Ensure no one actually runs functions -> refcounter
* Increment the refcounter at entry
* Decrement the refcounter at exit

— If refcounter is 0, update ALL function paths
* We are sure there is no users

Kpatch Reference Counter]EJI%?QL

* Patching(switching) controlled by refcount

Time
| >
Patching q![Add]
Process Ftrace entry
|
Process1 |
|
|
Process2 |
|
|
Process3 |
|
|

Start patcing ﬁ
Refent = 1 roarmrecra o [

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter]EJI%?QL

* Patching(switching) controlled by refcount
Time
>

Patching [Add][Prepare new][Safeness]
Process q Ftrace entry) {_Hash table Check

' Call old
Process1 m< ' >m m func2 a

[Each function call

Process? Inc/dec refcnt
While patching
Call old
Process3 +1 m O

[
|
|
|
|
|
|
|
|
| >
|

Start patcing fm)
Refent = 1 rocramrecars L [N

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter

HITACHI

Inspire the Next

* Patching(switching) controlled by refcount

Time

| | | >
. | | |
Patching 1 [Add][Prepare new][Safeness] ! !
Process Ftrace entry) |_Hash table Check :
| |
b Call old Call old Call old :
Process’ N func2 nc3 J
B et G @) ez @ @ oca)
[: | |

Each function call
| |
Process? ! [Inc/dec refcnt Call old |
: While patching m(' -1
—"
: Call old |
Process3 | +1 , w Patching process |
I G Is over, but refcnt !
! Is not O :
Start patcing O
Refent = 1 vttt T |

© Hitachi, Ltd. 2014. All rights reserved. 25

Kpatch Reference Counter ﬂﬂ%?ﬂ!&

* Patching(switching) controlled by refcount
Time
>

| |

o o
Patching 1 [Add][Prepare new][Safeness] ! !
Process q Ftrace entry) {_Hash table Check p :
|

!

Process1 m nc1) m func2 [m(:

——I

Don'’t count
refcnt anymore

—

|
| . | |
l Each function call I
Process? | [Inc/dec refent Call old I Call New
: While patching m(8 1 _func2
> |
: Call old |
Process3 I +1 8 w Patching process 1 (Call Ne
' e Is over, but refcnt 1 fun
' Is not O :
Start patcing Refent is 0 ﬁ)
Refent = 1 Patch enabled on T
all funcs T

©rEac, Lid. 2014. All rights reserved. 26

Kpatch Reference Counter (cont.)]EJI%?QL

* Control the reference counter
— Need to stop counting before and after patching

— Use atomic_inc_not_zero/dec if positive
* These are stopped automatically if counter ==

0 0 S
!func call I q
£ mo
Do not hook function :Fnkuihizcahﬁzfsggcgeﬁ:_r“
Entry/exit before patching

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter (cont.) ﬂﬂ%?ﬂ!&

* Control the reference counter
— Need to stop counting before and after patching

— Use atomic_inc_not_zero/dec if positive
* These are stopped automatically if counter ==

0 0 1 2 10

atomic_inc
forcibly inc refcnt

Patching atomic_dec

atomic_inc_not_zero

N

func call

ﬁ !func call ! >

Do not hook function fokonama esearch hi‘é; e

Entry/exit before patching

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter (cont.) ﬂﬂ%?ﬂ!&

* Control the reference counter
— Need to stop counting before and after patching

— Use atomic_inc_not_zero/dec if positive
* These are stopped automatically if counter ==

0 0 1 2 10 0 0

atomic dec

atomic inc :
~ Patching —

atomic_inc_not_zero

N

func call ato of=

DO C
o[0 0 0
[] func call
ﬁ atomic_inc_not_zero @) j
Do not hook function -> do nothing e (529

Entry/exit before patching

© Hitachi, Ltd. 2014. All rights reserved.

Active Safeness check without stop_machine HITACHI

2.

Inspire the Next

Active safeness check at the context switch

— To find threads sleeping(or going to sleep) on the
functions

— For all running processes, hook the context
switch and check stack entries safely.

— For the sleeping tasks, we can check it safely.

© Hitachi, Ltd. 2014. Al rights reserved. 30

Safeness Check without Stop _machine]EJI%?QL

* 2 stages safeness checking

Stage1: Check sleeping tasks
A

{ \ Time
>
Patching ?‘8 stack check if task |[€
Process g is not running IS
O < > C_)
= o
check over all threads [x
List up
Running
threads
i Run wait on run
Running s, . vatonrung
process A
ﬂ context switch
Running wait on runqg Run @
-- —
proceSS B Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved. 31

Safeness Check without Stop _machine]EJI%?QL

* 2 stages safeness checking

Stage1: Check sleeping tasks Stage2: Check running tasks
A

[\ 1 \ T|me
>
.) S Wait for all runnin
Patching ?‘8 stack check if task ||€ [task is checked J }
Process g is not running IS
o< >3 -
check over all threads [x [. .
running pid
ListV t Update
i“””;”g stack check
reads for current process
N
Running Run \ > wait on runq
process A
hook context switch
Running wait on runq Run ®
-- S—
process B

© Hitachi, Ltd. 2014. All rights reserved. 32

How to add refcnt and context switch hook? ﬂﬂ%?ﬂ!&

* To hook the function entry/return
— Use kretprobe to hook it
— For each function entry/return, inc/dec refcount

* To hook the context switch
— Use kprobe to hook it
— Do safeness check (on stack) and update running pid list

* Both are dynamic probe

— After checking the safeness, all kretprobes/kprobes are r
emoved from the target functions

— We have minimal overhead

© Hitachi, Ltd. 2014. Al rights reserved. 33

Demo ﬂglpt%?]'\fe'!f

* Demonstrating kpatching with/without stop _machine
— Using ftrace to trace stop _machine()

(Setup ftrace)
echo stop_machine > /sys/kernel/debug/tracing/set_ftrace filter
echo function_graph > /sys/kernel/debug/tracing/current_tracer

(Run the kpatch)
kpatch load kpatch-test-patch.ko

(Check the result)
echo 0 > /sys/kernel/debug/tracing/tracing_on
cat /sys/kernel/debug/tracing/trace

Yokochama Research Lab. T
Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved. 34

HITACHI
DemO I’eSU|t Inspire the Next

* With stop_machine

cat trace

tracer: function_graph

#

CPU DURATION FUNCTION CALLS

#1 | | IR
0) ! 6410.455 us | stop_machine();

* Without stop _machine

cat trace

tracer: function_graph

#

CPU DURATION FUNCTION CALLS

| R

No stop_machine is executed x

Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved. 35

Agenda: Kpatch Without Stop Machine

Background Story

What is kpatch?
Live patching requirements
Major updates and Minor updates

Kpatch internal

Kpatch Overview
Kpatch and Safeness check
Stop_machine

Kpatch without stop_machine

Live Patcing Rules
Kpatch Reference Counter
Safeness check without stop _machine

Conclusion and Discussion

HITACHI

Inspire the Next

rch Lab,
T h IgyC nter

© Hitachi, Ltd. 2014. All rights reserved. 30

: HITACHI
Conclusion Inspire the Next

* Succeed to get rid of stop_machine() from
Kpatch

— This is a proof of concept of stop _machine-free
Kpatch

* This means kpatch CAN BE ready for mission critical
systems

* But still under discussion stage

* Upstreaming could be a long way

— At first, push current stop _machine-based kpatch
to upstream

— Stop _machine-free will be the nextstep oo 7 [c

nnnnnnnnnnnnnnnnnnnnn

© Hitachi, Ltd. 2014. All rights reserved. 37

Current Issues IEJJ;%?]EL

* Possible to miscount the function reference

— Kretprobe has no error notification

* Kretprobe can be failed to handle the function return because of return-
address buffer shortage

* Possible to fail patching with big patch
— We have to monitor all the functions are safe in the patch

— Big patch has many patched functions
* Some of them can be always used in the system
* Incremental patching could be better

* Module unloading using stop _machine
— This will happen if we replace old patch with new one "4
— Incremental patching can avoid this. -

Linux Technology Center

© Hitachi, Ltd. 2014. Al rights reserved. 38

Future work IEJI‘??E\T!!&

* Use a generic return-hook mechanism

— Kretprobe is for PoC, not for general use
* It can’t detect the failure of hooking

— Should be more safe (e.g. miss-hook handler)

* Context switch hook can be more general
— Tracepoint/traceevent makes it better.
— This requires kpatch as embedded feature

* Upstreaming

aaaaaaaaaaaaaaaaaa
Linux Technology Center

© Hitachi, Ltd. 2014. Al rights reserved. 39

Resources and Links IL'JI‘??EQL

* Get rid of the stop _machine from kpatch
* https://github.com/dynup/kpatch/issues/138

* My no-stopmachine branch

* https://github.com/mhiramathitachi/kpatch/tree/no-stop
machine-v1

— This requires IPMODIFY flag patchset for kernel
* http://thread.gmane.org/gmane.linux.kernel/1757201

© Hitachi, Ltd. 2014. All rights reserved. 40

HITACHI

Inspire the Next

Questions?

. ‘ !l
Yokohama Research Lab. T
Linux Technology Center

© Hitachi, Ltd. 2014. All rights reserved.

HITACHI

Inspire the Next

%/ W'/
0

Yokohama Research Lab.
Linux Technology Center

Trademarks IEJI%%I\T!!%

* Linux is a trademark of Linus Torvalds in the
United States, other countries, or both.

* Other company, product, or service names m
ay be trademarks or service marks of others.

© Hitachi, Ltd. 2014. All rights reserved. 43

