
© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Without Stop Machine
The Next Step of Kernel Live Patching

Masami Hiramatsu
<masami.hiramatsu.pt@hitachi.com>
Linux Technology Research Center
Yokohama Research Lab. Hitachi Ltd.,

LinuxCon NA 2014
(Aug. 2014)

1

© Hitachi, Ltd. 2014. All rights reserved.

Speaker

• Masami Hiramatsu
– A researcher, working for Hitachi

• Researching many RAS features

– A linux kprobes-related maintainer
• Ftrace dynamic kernel event (a.k.a. kprobe-tracer)
• Perf probe (a tool to set up the dynamic events)
• X86 instruction decoder (in kernel)

2

© Hitachi, Ltd. 2014. All rights reserved.

Agenda: Kpatch Without Stop Machine

 Background Story

 Kpatch internal

 Kpatch without stop_machine

 Conclusion and Discussion

Note: this presentation is only focusing on the kernel-module side of kpatch.

More generic design and implementation, please attend to -

 kpatch: Have Your Security And Eat It Too! – Josh Poimboeuf

 Aug. 22. pm2:30

3

© Hitachi, Ltd. 2014. All rights reserved.

Agenda: Kpatch Without Stop Machine

 Background Story
 What is kpatch?

 Live patching requirements

 Major updates and Minor updates

 Kpatch internal
 Kpatch Overview

 Active Safeness check

 Stop_machine

 Kpatch without stop_machine
 Live Patcing Rules

 Kpatch Reference Counter

 Safeness check without stop_machine

 Conclusion and Discussion

4

© Hitachi, Ltd. 2014. All rights reserved.

What’s Kpatch?

• Kpatch is a LIVE patching function for kernel
– This applys a binary patch to kernel on-line
– Patching is done without shutdown

• Only for a small and critical issues
– Not for major kernel update

5

© Hitachi, Ltd. 2014. All rights reserved.

Why Live Patching Required?

• Live patching is important for appliances for
mission critical systems
– Some embedded appliances are hard to maintain

frequently
• Those are distributed widely in country side
• Not in the big data center!

– Some appliances can’t accept 10ms downtime
• Factory control system etc.

6

© Hitachi, Ltd. 2014. All rights reserved.

But for Major Updates?

• M.C. systems have periodic maintenance
– Major fixes can be applied and rebooted
– In between the maintenance, live patching will be used

• Live patching and major update are complement
each other
– Live patching temporarily fixes small critical incidents
– Major update permanently fixes all bugs

7

Planned
Maintenance

Major UpdateLive Patching

criticalminor

© Hitachi, Ltd. 2014. All rights reserved.

The History of Live patching on Linux

• Live patching is not new

8

Pannus Live Patch (2004-2006)
http://pannus.sourceforge.net/

Livepatch (2005)
http://ukai.jp/Slides/2005/1202-b2con/mop/livepatch.html

ksplice (2007-)
https://www.ksplice.com/

kGraft (2014)

kpatch (2014)

2004

For
applic
ation

For
kernel

2014

Use ftrace to replace function
Will be supported by major distributors

Build from scratch
Acquired and supported by Oracle

Developed for CGL
No distribution support

Ptrace and mmap based one

© Hitachi, Ltd. 2014. All rights reserved.

Agenda: Kpatch Without Stop Machine

 Background Story
 What is kpatch?

 Live patching requirements

 Major updates and Minor updates

 Kpatch internal
 Kpatch Overview

 Active Safeness check

 Stop_machine

 Kpatch without stop_machine
 Live Patcing Rules

 Kpatch Reference Counter

 Safeness check without stop_machine

 Conclusion and Discussion

9

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch: Overview

• Kpatch has 2 components
– Kpatch build: Build a binary patch module
– Kpatch.ko: The kernel module of Kpatch

10

Original
src

Patched
src

Patch

Build Current
vmlinux

Build Patched
vmlinux

Per-function
diff

Patch
module

A module which
contains new

 functions

Done by Kpatch build

Running
linux

Kpatch.ko

Done by kpatch.ko

Do patch
New functions

On old functions

Today’s talk

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch: How to Patch

• Kpatch uses Ftrace to patch
– Hook the target function entry with registers
– Change regs->ip to new function (change the flow)

11

Call foo()Call foo()

Call fentryCall fentry
Save RegsSave Regs

Call ftrace_opsCall ftrace_ops Get new IP from
Hash table

Get new IP from
Hash table

Restore RegsRestore Regs
Change regs->ipChange regs->ip

ReturnReturn

……

ReturnReturn

……

foo()

New foo()
Ret to regs->ipRet to regs->ip

……

Ftrace hooks
Foo() entry

Find the new
 IP from hash
table

Ftrace returns
To new foo()

ReturnReturn

Foo() is called even
After patching.

Function pointer is
Available 

ftrace

kpatch.ko

© Hitachi, Ltd. 2014. All rights reserved.

Conflict of Old and New Functions

• Kpatch will update the execution path of
 a function
– Q: What happen if the patched function is under

 executed?
– A: Old and new functions are executed at the

 same time

 !!This should not happen!!

• Kpatch ensures the old functions are not
 executed when patching
– “Active Safeness Check”

12

© Hitachi, Ltd. 2014. All rights reserved.

Active Safeness Check

• Executing functions are on the stack
• And IP register points current function too

• Active Safeness Check
– Do stack dump to check the target functions are

not executed, for each thread.
– Need to be done when the process is stopped.

– stop_machine is used
13

Func1Func1

Func2Func2

Func3Func3 Func1+XX

Func2+YY

Stack at here

Func1+XX

Stack at here

© Hitachi, Ltd. 2014. All rights reserved.

Active Safeness Check With Stop_machine

• Kpatch uses stop_machine to check stacks

14

Time

Patching
Process

Process1

Process2

Process3

Add
Ftrace entry

Call old
 func1

Call old
 func2

© Hitachi, Ltd. 2014. All rights reserved.

Active Safeness Check With Stop_machine

• Kpatch uses stop_machine to check stacks

15

Time

Patching
Process

Process1

Process2

Process3

Add
Ftrace entry

Call old
 func1

Call old
 func2

All running processes and
 interrupts are stopped

Call Stop Machine

© Hitachi, Ltd. 2014. All rights reserved.

Active Safeness Check With Stop_machine

• Kpatch uses stop_machine to check stacks

16

Time

Patching
Process

Process1

Process2

Process3

Add
Ftrace entry

Safeness
Check

Call old
 func1

Call old
 func2

Walk through the all
Thread and check

Old funcs on stacks

All running processes and
 interrupts are stopped

Call Stop Machine

© Hitachi, Ltd. 2014. All rights reserved.

Active Safeness Check With Stop_machine

• Kpatch uses stop_machine to check stacks

17

Time

Patching
Process

Process1

Process2

Process3

Add
Ftrace entry

Update hash
table

Safeness
Check

Call old
 func1

Call old
 func2

Call New
 func2

Call New
 func2

Call New
 func1

Call New
 func1

Walk through the all
Thread and check

Old funcs on stacks

Now switch to
New functionsAll running processes and

 interrupts are stopped

Call Stop Machine Return

© Hitachi, Ltd. 2014. All rights reserved.

Stop_machine: Pros and Cons

• Pros
– Safe, simple and easy to review, Good for the 1st

version

• Cons
– Stop_machine stops all processes a while

• It is critical for control/network appliances

– In virtual environment, this takes longer time
• We need to wait all VCPUs are scheduled on the host

machine

18

© Hitachi, Ltd. 2014. All rights reserved.

Agenda: Kpatch Without Stop Machine

 Background Story
 What is kpatch?

 Live patching requirements

 Major updates and Minor updates

 Kpatch internal
 Kpatch and Ftrace

 Kpatch and Safeness check

 Stop_machine

 Kpatch without stop_machine
 Live Patching Rules

 Kpatch Reference Counter

 Safeness check without stop_machine

 Conclusion and Discussion

19

© Hitachi, Ltd. 2014. All rights reserved.

Live Patching Rules

• Live patching must follow the rules
1. All the new functions in a patch must be applied

at once
● We need an atomic operation

2. After switching new function, the old function
 must not be executed
● We have to ensure no threads runs on old

 functions
● And no threads sleeps on them

20

© Hitachi, Ltd. 2014. All rights reserved.

Two actions for the solution

1. Introduce an atomic reference counter

2. Active safeness check at the context switch

21

© Hitachi, Ltd. 2014. All rights reserved.

Atomic Function Reference Counter

1. Introduce an atomic reference counter
– Without stop_machine, functions can be called

 while patching
• Ensure no one actually runs functions -> refcounter
• Increment the refcounter at entry
• Decrement the refcounter at exit

– If refcounter is 0, update ALL function paths
• We are sure there is no users

22

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter

• Patching(switching) controlled by refcount
Time

Patching
Process

Process1

Process2

Process3

Add
Ftrace entry+1

Start patcing
Refcnt = 1

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter

• Patching(switching) controlled by refcount
Time

Patching
Process

Process1

Process2

Process3

Add
Ftrace entry

Prepare new
Hash table

Safeness
Check

Call old
 func1

Call old
 func2

Call old
 func1

+1 +1

+1

-1-1

-1

+1

Start patcing
Refcnt = 1

Each function call
Inc/dec refcnt

While patching

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter

• Patching(switching) controlled by refcount

25

Time

Patching
Process

Process1

Process2

Process3

Add
Ftrace entry

Prepare new
Hash table

Safeness
Check

Call old
 func1

Call old
 func2

Call old
 func3

Call old
 func3

Call old
 func1

+1 +1

+1

+1

+1

-1

-1-1

-1

-1

+1

Patching process
Is over, but refcnt

Is not 0

Start patcing
Refcnt = 1

Each function call
Inc/dec refcnt
While patching

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter

• Patching(switching) controlled by refcount

26

Time

Patching
Process

Process1

Process2

Process3

Add
Ftrace entry

Prepare new
Hash table

Safeness
Check

Call old
 func1

Call old
 func2

Call old
 func3

Call old
 func3

Call old
 func1

Call New
 func2

Call New
 func2

Call New
 func1

Call New
 func1

+1 +1

+1

+1

+1

-1

-1-1 -1

-1

-1

+1

Patching process
Is over, but refcnt

Is not 0

Refcnt is 0
Patch enabled on

 all funcs

Start patcing
Refcnt = 1

Don’t count
refcnt anymore

Each function call
Inc/dec refcnt
While patching

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter (cont.)

• Control the reference counter
– Need to stop counting before and after patching
– Use atomic_inc_not_zero/dec_if_positive

• These are stopped automatically if counter == 0

27

func call

00

Do not hook function
Entry/exit before patching

refcnt

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter (cont.)

• Control the reference counter
– Need to stop counting before and after patching
– Use atomic_inc_not_zero/dec_if_positive

• These are stopped automatically if counter == 0

28

1 2 1 0

atomic_dec_if_positiveatomic_inc_not_zero
func call

atomic_inc
forcibly inc refcnt Patching

atomic_dec

func call

00
refcnt

Do not hook function
Entry/exit before patching

© Hitachi, Ltd. 2014. All rights reserved.

Kpatch Reference Counter (cont.)

• Control the reference counter
– Need to stop counting before and after patching
– Use atomic_inc_not_zero/dec_if_positive

• These are stopped automatically if counter == 0

29

1 2 1 0 0 0

atomic_dec_if_
positive

->do nothing

atomic_inc_not_zero
-> do nothing

func call

atomic_dec_if_positiveatomic_inc_not_zero
func call

atomic_inc
Patching

atomic_dec

func call

0

atomic_dec_if_
positive

->do nothing

0
refcnt

Do not hook function
Entry/exit before patching

© Hitachi, Ltd. 2014. All rights reserved.

Active Safeness check without stop_machine

2. Active safeness check at the context switch
– To find threads sleeping(or going to sleep) on the

functions
– For all running processes, hook the context

 switch and check stack entries safely.
– For the sleeping tasks, we can check it safely.

30

© Hitachi, Ltd. 2014. All rights reserved.

Safeness Check without Stop_machine

• 2 stages safeness checking

31

Patching
Process

stack check if task
 is not running

rc
u

lo
ck

rcu unlo ck

check over all threads

List up
Running
threads

Time
Stage1: Check sleeping tasks

Running
process A

Running
process B

wait on runqRun

Run

context switch

wait on runq

© Hitachi, Ltd. 2014. All rights reserved.

Safeness Check without Stop_machine

• 2 stages safeness checking

32

Patching
Process

stack check if task
 is not running

rc
u

lo
ck

rcu unlo ck

check over all threads
running pid

running pid
running pid

List up
Running
threads

hook

stack check
for current process

Update

Wait for all running
task is checked

Time

…

Stage1: Check sleeping tasks Stage2: Check running tasks

Running
process A

Running
process B

wait on runqRun

Run

context switch

wait on runq

© Hitachi, Ltd. 2014. All rights reserved.

How to add refcnt and context switch hook?

• To hook the function entry/return
– Use kretprobe to hook it
– For each function entry/return, inc/dec refcount

• To hook the context switch
– Use kprobe to hook it
– Do safeness check (on stack) and update running pid list

• Both are dynamic probe
– After checking the safeness, all kretprobes/kprobes are r

emoved from the target functions
– We have minimal overhead

33

© Hitachi, Ltd. 2014. All rights reserved.

Demo

• Demonstrating kpatching with/without stop_machine
– Using ftrace to trace stop_machine()

34

(Setup ftrace)
echo stop_machine > /sys/kernel/debug/tracing/set_ftrace_filter
echo function_graph > /sys/kernel/debug/tracing/current_tracer

(Run the kpatch)
kpatch load kpatch-test-patch.ko

(Check the result)
echo 0 > /sys/kernel/debug/tracing/tracing_on
cat /sys/kernel/debug/tracing/trace

(Setup ftrace)
echo stop_machine > /sys/kernel/debug/tracing/set_ftrace_filter
echo function_graph > /sys/kernel/debug/tracing/current_tracer

(Run the kpatch)
kpatch load kpatch-test-patch.ko

(Check the result)
echo 0 > /sys/kernel/debug/tracing/tracing_on
cat /sys/kernel/debug/tracing/trace

© Hitachi, Ltd. 2014. All rights reserved.

Demo result

• With stop_machine

• Without stop_machine

35

 cat trace
tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | | | | | |
 0) ! 6410.455 us | stop_machine();

 cat trace
tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | | | | | |
 0) ! 6410.455 us | stop_machine();

 cat trace
tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | | | | | |

 cat trace
tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | | | | | |

No stop_machine is executed

© Hitachi, Ltd. 2014. All rights reserved.

Agenda: Kpatch Without Stop Machine

 Background Story
 What is kpatch?

 Live patching requirements

 Major updates and Minor updates

 Kpatch internal
 Kpatch Overview

 Kpatch and Safeness check

 Stop_machine

 Kpatch without stop_machine
 Live Patcing Rules

 Kpatch Reference Counter

 Safeness check without stop_machine

 Conclusion and Discussion

36

© Hitachi, Ltd. 2014. All rights reserved.

Conclusion

• Succeed to get rid of stop_machine() from
 kpatch
– This is a proof of concept of stop_machine-free

 kpatch
• This means kpatch CAN BE ready for mission critical

 systems
• But still under discussion stage

• Upstreaming could be a long way
– At first, push current stop_machine-based kpatch

 to upstream
– Stop_machine-free will be the next step

37

© Hitachi, Ltd. 2014. All rights reserved.

Current Issues

• Possible to miscount the function reference
– Kretprobe has no error notification

• Kretprobe can be failed to handle the function return because of return-
address buffer shortage

• Possible to fail patching with big patch
– We have to monitor all the functions are safe in the patch
– Big patch has many patched functions

• Some of them can be always used in the system
• Incremental patching could be better

• Module unloading using stop_machine
– This will happen if we replace old patch with new one
– Incremental patching can avoid this.

38

© Hitachi, Ltd. 2014. All rights reserved.

Future work

• Use a generic return-hook mechanism
– Kretprobe is for PoC, not for general use

• It can’t detect the failure of hooking

– Should be more safe (e.g. miss-hook handler)

• Context switch hook can be more general
– Tracepoint/traceevent makes it better.
– This requires kpatch as embedded feature

• Upstreaming

39

© Hitachi, Ltd. 2014. All rights reserved.

Resources and Links

• Get rid of the stop_machine from kpatch
• https://github.com/dynup/kpatch/issues/138

• My no-stopmachine branch
• https://github.com/mhiramathitachi/kpatch/tree/no-stop

machine-v1

– This requires IPMODIFY flag patchset for kernel
• http://thread.gmane.org/gmane.linux.kernel/1757201

40

© Hitachi, Ltd. 2014. All rights reserved.

Questions?

© Hitachi, Ltd. 2014. All rights reserved.

Trademarks

43

• Linux is a trademark of Linus Torvalds in the
United States, other countries, or both.

• Other company, product, or service names m
ay be trademarks or service marks of others.

