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Speaker

• Masami Hiramatsu
– A researcher, working for Hitachi

• Researching many RAS features

– A linux kprobes-related maintainer
• Ftrace dynamic kernel event (a.k.a. kprobe-tracer)
• Perf probe (a tool to set up the dynamic events)
• X86 instruction decoder (in kernel)
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Note: this presentation is only focusing on the kernel-module side of kpatch.

More generic design and implementation, please attend to - 

   kpatch: Have Your Security And Eat It Too! – Josh Poimboeuf

   Aug. 22. pm2:30
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What’s Kpatch?

• Kpatch is a LIVE patching function for kernel
– This applys a binary patch to kernel on-line
– Patching is done without shutdown

• Only for a small and critical issues
– Not for major kernel update
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Why Live Patching Required?

• Live patching is important for appliances for 
mission critical systems
– Some embedded appliances are hard to maintain 

frequently
• Those are distributed widely in country side
• Not in the big data center!

– Some appliances can’t accept 10ms downtime
• Factory control system etc.
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But for Major Updates?

• M.C. systems have periodic maintenance
– Major fixes can be applied and rebooted
– In between the maintenance, live patching will be used

• Live patching and major update are complement
each other
– Live patching temporarily fixes small critical incidents
– Major update permanently fixes all bugs
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The History of Live patching on Linux

• Live patching is not new
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Pannus Live Patch (2004-2006)
http://pannus.sourceforge.net/

Livepatch (2005)
http://ukai.jp/Slides/2005/1202-b2con/mop/livepatch.html

ksplice (2007-)
https://www.ksplice.com/

kGraft (2014)

kpatch (2014)

2004

For 
applic
ation

For 
kernel

2014

Use ftrace to replace function
Will be supported by major distributors

Build from scratch
Acquired  and supported by Oracle

Developed for CGL
No distribution support

Ptrace and mmap based one
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Kpatch: Overview

• Kpatch has 2 components
– Kpatch build: Build a binary patch module
– Kpatch.ko: The kernel module of Kpatch
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Kpatch: How to Patch

• Kpatch uses Ftrace to patch
– Hook the target function entry with registers
– Change regs->ip to new function (change the flow)
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Call foo()Call foo()

Call fentryCall fentry
Save RegsSave Regs

Call ftrace_opsCall ftrace_ops Get new IP from
Hash table

Get new IP from
Hash table

Restore RegsRestore Regs
Change regs->ipChange regs->ip

ReturnReturn

……

ReturnReturn

……

foo()

New foo()
Ret to regs->ipRet to regs->ip

……

Ftrace hooks
Foo() entry

Find the new
 IP from hash
table

Ftrace returns
To new foo()

ReturnReturn

Foo() is called even
After patching.

Function pointer is
Available 

ftrace

kpatch.ko
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Conflict of Old and New Functions

• Kpatch will update the execution path of
 a function
– Q: What happen if the patched function is under

 executed?
– A: Old and new functions are executed at the

 same time

                !!This should not happen!!

• Kpatch ensures the old functions are not
 executed when patching
– “Active Safeness Check”

12



© Hitachi, Ltd. 2014. All rights reserved.

Active Safeness Check

• Executing functions are on the stack
• And IP register points current function too

• Active Safeness Check
– Do stack dump to check the target functions are 

not executed, for each thread.
– Need to be done when the process is stopped.

– stop_machine is used
13
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Active Safeness Check With Stop_machine

• Kpatch uses stop_machine to check stacks
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Process1
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Active Safeness Check With Stop_machine

• Kpatch uses stop_machine to check stacks
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Active Safeness Check With Stop_machine

• Kpatch uses stop_machine to check stacks
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Active Safeness Check With Stop_machine

• Kpatch uses stop_machine to check stacks
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Stop_machine: Pros and Cons 

• Pros
– Safe, simple and easy to review, Good for the 1st 

version

• Cons
– Stop_machine stops all processes a while

• It is critical for control/network appliances

– In virtual environment, this takes longer time
• We need to wait all VCPUs are scheduled on the host 

machine
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Live Patching Rules

• Live patching must follow the rules
1. All the new functions in a patch must be applied 

at once
● We need an atomic operation

2. After switching new function, the old function
 must not be executed
● We have to ensure no threads runs on old

 functions
● And no threads sleeps on them
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Two actions for the solution

1. Introduce an atomic reference counter

2. Active safeness check at the context switch
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Atomic Function Reference Counter

1. Introduce an atomic reference counter
– Without stop_machine, functions can be called

 while patching
• Ensure no one actually runs functions -> refcounter
• Increment the refcounter at entry
• Decrement the refcounter at exit

– If refcounter is 0, update ALL function paths
• We are sure there is no users
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Kpatch Reference Counter

• Patching(switching) controlled by refcount
Time

Patching
Process

Process1

Process2

Process3

Add
Ftrace entry+1

Start patcing
Refcnt = 1
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Kpatch Reference Counter

• Patching(switching) controlled by refcount
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 func1
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+1

-1-1

-1

+1
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While patching
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Kpatch Reference Counter

• Patching(switching) controlled by refcount
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Kpatch Reference Counter

• Patching(switching) controlled by refcount
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Kpatch Reference Counter (cont.)

• Control the reference counter
– Need to stop counting before and after patching
– Use atomic_inc_not_zero/dec_if_positive

• These are stopped automatically if counter == 0

27

func call

00

Do not hook function
Entry/exit before patching

refcnt
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Kpatch Reference Counter (cont.)

• Control the reference counter
– Need to stop counting before and after patching
– Use atomic_inc_not_zero/dec_if_positive

• These are stopped automatically if counter == 0
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1 2 1 0

atomic_dec_if_positiveatomic_inc_not_zero
func call

atomic_inc
forcibly inc refcnt Patching

atomic_dec

func call

00
refcnt

Do not hook function
Entry/exit before patching
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Kpatch Reference Counter (cont.)

• Control the reference counter
– Need to stop counting before and after patching
– Use atomic_inc_not_zero/dec_if_positive

• These are stopped automatically if counter == 0
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Active Safeness check without stop_machine

2. Active safeness check at the context switch
– To find threads sleeping(or going to sleep) on the 

functions
– For all running processes, hook the context

 switch and check stack entries safely.
– For the sleeping tasks, we can check it safely.
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Safeness Check without Stop_machine

• 2 stages safeness checking
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Safeness Check without Stop_machine

• 2 stages safeness checking
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How to add refcnt and context switch hook?

• To hook the function entry/return
– Use kretprobe to hook it
– For each function entry/return, inc/dec refcount

• To hook the context switch
– Use kprobe to hook it
– Do safeness check (on stack) and update running pid list

• Both are dynamic probe
– After checking the safeness, all kretprobes/kprobes are r

emoved from the target functions
– We have minimal overhead
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Demo

• Demonstrating kpatching with/without stop_machine
– Using ftrace to trace stop_machine()

34

(Setup ftrace)
# echo stop_machine > /sys/kernel/debug/tracing/set_ftrace_filter
# echo function_graph > /sys/kernel/debug/tracing/current_tracer

(Run the kpatch)
# kpatch load kpatch-test-patch.ko

(Check the result)
# echo 0 > /sys/kernel/debug/tracing/tracing_on
# cat /sys/kernel/debug/tracing/trace

(Setup ftrace)
# echo stop_machine > /sys/kernel/debug/tracing/set_ftrace_filter
# echo function_graph > /sys/kernel/debug/tracing/current_tracer

(Run the kpatch)
# kpatch load kpatch-test-patch.ko

(Check the result)
# echo 0 > /sys/kernel/debug/tracing/tracing_on
# cat /sys/kernel/debug/tracing/trace
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Demo result

• With stop_machine

• Without stop_machine
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 cat trace
# tracer: function_graph
#
# CPU  DURATION                  FUNCTION CALLS
# |     |   |                     |   |   |   |
 0) ! 6410.455 us |  stop_machine();

 cat trace
# tracer: function_graph
#
# CPU  DURATION                  FUNCTION CALLS
# |     |   |                     |   |   |   |
 0) ! 6410.455 us |  stop_machine();

 cat trace
# tracer: function_graph
#
# CPU  DURATION                  FUNCTION CALLS
# |     |   |                     |   |   |   |

 cat trace
# tracer: function_graph
#
# CPU  DURATION                  FUNCTION CALLS
# |     |   |                     |   |   |   |

No stop_machine is executed
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Conclusion

• Succeed to get rid of stop_machine() from
 kpatch
– This is a proof of concept of stop_machine-free

 kpatch
• This means kpatch CAN BE ready for mission critical

 systems
• But still under discussion stage

• Upstreaming could be a long way
– At first, push current stop_machine-based kpatch

 to upstream
– Stop_machine-free will be the next step
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Current Issues

• Possible to miscount the function reference
– Kretprobe has no error notification

• Kretprobe can be failed to handle the function return because of return-
address buffer shortage

• Possible to fail patching with big patch
– We have to monitor all the functions are safe in the patch
– Big patch has many patched functions

• Some of them can be always used in the system
• Incremental patching could be better

• Module unloading using stop_machine
– This will happen if we replace old patch with new one
– Incremental patching can avoid this.
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Future work

• Use a generic return-hook mechanism
– Kretprobe is for PoC, not for general use

• It can’t detect the failure of hooking

– Should be more safe (e.g. miss-hook handler)

• Context switch hook can be more general
– Tracepoint/traceevent makes it better.
– This requires kpatch as embedded feature

• Upstreaming
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Resources and Links

• Get rid of the stop_machine from kpatch
• https://github.com/dynup/kpatch/issues/138

• My no-stopmachine branch
• https://github.com/mhiramathitachi/kpatch/tree/no-stop

machine-v1

– This requires IPMODIFY flag patchset for kernel
• http://thread.gmane.org/gmane.linux.kernel/1757201
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Questions?
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Trademarks
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• Linux is a trademark of Linus Torvalds in the 
United States, other countries, or both.

• Other company, product, or service names m
ay be trademarks or service marks of others.


