The Journal of Open Source Software

DOI: 10.21105/joss.0XXXX

Software
= Review 7
= Repository @
= Archive &z

© ® ~N o

Editor: Editor Name 7

Submitted: 01 January XXXX
Published: 01 January XXXX

License
Authors of papers retain

copyright and release the work i

under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

optimade-python-tools: a Python library for
implementing and consuming materials data via

OPTIMADE APIs

Matthew L. Evans" ?, Casper Andersen®, Shyam Dwaraknath*, Markus
Scheidgen®, Adam Fekete! ® 8, and Donald Winston* ’

1 Institut de la Matiére Condensée et des Nanosciences, Université catholique de Louvain, Chemin
des Etoiles 8, Louvain-la-Neuve 1348, Belgium 2 Theory of Condensed Matter Group, Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 OHE, U.K. 3 EPFL 4
LLBL 5 FHI 6 Namur 7 Polyneme LLC 8 KCL

Summary

In recent decades, improvements in algorithms, hardware and theory have enabled crystalline
materials to be studied at the atomistic level with great accuracy and speed. To enable dissem-
ination, reproducibility, and reuse, many digital crystal structure databases have been created
and curated, ready for comparison with existing infrastructure storing structural characteri-
zations of real crystals. These databases are often made available with bespoke, application
programming interfaces (APIls) to-allow for automated, and often open, access to the un-
derlying data. Such esoteric APIs incur maintenance and usability costs upon both the data
providers and consumers, neither of whom may necessarily be software specialists.

The OPTIMADE API specification (C. Andersen et al., 2020; C. W. Andersen et al., 2021),
released in July 2020, aimed to reduce these costs by designing a common API for use across a
consortium of collaborating materials databases. Whilst based on the robust JSON:API stan-
dard (The JSON, n.d.), the OPTIMADE API specification presents several domain-specific
features and requirements that can be tricky to implement for non-specialist teams. The
package presented here, optimade-python-tools, provides a modular reference server im-
plementation and a set of associated tools to accelerate the development process for data
providers, toolmakers and end-users themselves.

Statement of need

In order to accommodate existing materials database APIs, the OPTIMADE specification
allows for flexibility in the specific data served but enforces a simple, but domain-specific, filter
language on well-defined resources. This flexibility could be daunting to database implementers
and maintainers and could act to increase the activation barrier to hosting an API. optimade
-python-tools aims to catalyse the creation of APIs from existing and new data sources by
providing a configurable and modular reference server implementation for hosting materials
data in an OPTIMADE-compliant way. The package leverages the modern Python libraries
pydantic (Pydantic, n.d.) and FastAP| (FastAPI, n.d.) to specify the data models and API
routes defined in the OPTIMADE specification, additionally providing a schemas following the
OpenAPI format (The OpenAPI Specification, n.d.). Two storage back-ends are supported
out of the box, with full filter support for databases that employ the popular MongoDB
(MongoDB, n.d.) or Elasticsearch (Elasticsearch, n.d.) frameworks.

Mickey Mouse et al., (XXXX). optimade-python-tools: a Python library for implementing and consuming materials data via OPTIMADE 1
APIs. , X(X), X. https://doi.org/10.21105 /joss.0XXXX

https://doi.org/10.21105/joss.0XXXX
https://github.com/Materials-Consortia/optimade-python-tools
http://example.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.0XXXX

The Journal of Open Source Software

«» Functionality

s The modular functionality of optimade-python-tools can be broken down by the different
22 stages of a user query to the reference server. Consider the following query URL:

1 optimade.example.org/vl/structures?filter=chemical_formula_anonymous="ABC"

wu This query should match any crystal structures in the database with a composition that
s consists of any three elements in a 1:1:1 ratio. The “anatomy” of this query is displayed in

s Figure 1.

a7 1. After routing the query to the appropriate /structures/ endpoint adhering to v1 of
a8 the specification, the filter string chemical_formula_anonymous="ABC" is tokenized
49 and parsed into an abstract tree by a FilterParser object using the Lark parsing
50 library (Lark?) against the Extended Backus-Naur Form (EBNF) grammar defined by
51 the specification.

52 2. The abstract tree is then transformed by a FilterTransformer object into a database
53 query specific to the configured back-end for the server. This transformation can include
54 aliasing and custom transformations such that the underlying database format can be
55 accommodates.

56 3. The results from the database query are then deserialized by EntryResourceMapper
57 objects into the OPTIMADE-defined data models and then re-serialized into JSON
58 before being served to the user over HTTP.

https://optimade.odbx.science/v0/structures?filter=elements HAS "Na"&page_limit=5&sort=-nelements

v

WSGI (uvicorn)

FastAPI Routing
@router.get("/structures™)

FilterParser
filter EntryResponse
expression i
expression_clause "data": [...],
expression_phrase "meta": §...3,
comparison . "included": [...],
property_first_comparison EntryCollection "links": f...3
property elements 3
set_op_rhs
HAS
value
string "Na"
FilterTransformer e S s
grefements: grsinm: [Wan13r | Sy y f DB EntryResourceAttributes
shelems": £"$in": ["Na"]33} e.g. ongo

\ EntryMapper

Figure 1: Anatomy of an OPTIMADE query handled by the library.

so Beyond this query functionality, the package also provides:

60 = A fuzzy implementation validator that performs HTTP queries against remote OPTI-
61 MADE APIs, with test queries and expected responses generated dynamically based on
62 the data served at the introspective /info/ endpoints of the APl implementation.

63 = Entry "adapters” that can convert between OPTIMADE-compliant entries and the data
64 models of the popular Python libraries pymatgen (Ong et al., 2013) and ase (the
6 Atomic Simulation Environment) (Larsen et al., 2017).

Mickey Mouse et al., (XXXX). optimade-python-tools: a Python library for implementing and consuming materials data via OPTIMADE 2
APIs. , X(X), X. https://doi.org/10.21105 /joss.0XXXX

https://doi.org/10.21105/joss.0XXXX

The Journal of Open Source Software

66

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107

108

109

Use cases

The package is currently used in production by three major data providers for atomistic data:

= The Materials Project uses optimade-python-tools alongside their existing API
(MAPI?) and MongoDB database, providing access to highly-curated density-functional
theory calculations across all known inorganic materials. optimade-python-tools
handles filter parsing, database query generation and response validation by running the
reference server implementation with minimal configuration.

= The NoMaD Repository and Archive integrates the optimade-python-tools server in
an existing web app and uses the Elasticsearch implementation of the filtering module
to allow access to 100M(?) published first-principles calculations submitted by users.

= Materials Cloud uses optimade-python-tools to provide domain-specific API access
to published calculations that were created with AiiDa (AiiDa?) and archived on their
system. In this case, each individual archive entry has its own database and separate
API. The classes within optimade-python-tools have been extended to make use of
AiiDa and its underlying PostgreSQL (PostgreSQL?) storage engine.

Acknowledgements

M.E. would like to acknowledge the EPSRC Centre for Doctoral Training in Computational
Methods for Materials Science for funding under grant number EP/L015552/1 and support
from the European Union’s Horizon 2020 research and innovation program under the European
Union's Grant agreement No. 951786 (NOMAD CoE).

Andersen, C., Armiento, R., Blokhin, E., Conduit, G., Dwaraknath, S., Evans, M. L., Fekete,
A., Gopakumar, A., Grazulis, S., Merkys, A., Mohamed, F., Oses, C., Pizzi, G., Rignanese,
G.-M., Scheidgen, M., Talirz, L., Toher, C., & Winston, D. (2020). The OPTIMADE spec-
ification (Version 1.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.
4195051

Andersen, C. W., Armiento, R., Blokhin, E., Conduit, G. J., Dwaraknath, S., Evans, M. L.,
Fekete, A., Gopakumar, A., Grazulis, S., Merkys, A., Mohamed, F., Oses, C., Pizzi, G.,
Rignanese, G.-M., Scheidgen, M., Talirz, L., Toher, C., Winston, D., Aversa, R., .. Yang,
X. (2021). OPTIMADE: An API for exchanging materials data. http://arxiv.org/abs/
2103.02068

Elasticsearch (Version 6.4). (n.d.). https://www.elastic.co
FastAPI (Version 0.65.1). (n.d.). https://github.com/tiangolo/fastapi

Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., Christensen, R., Dutak, M.,
Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Jensen,
P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J., Kaasbjerg, K., Lysgaard,
S., .. Jacobsen, K. W. (2017). The atomic simulation environment—a Python library for
working with atoms. J. Phys.: Condens. Matter, 29(27), 273002. https://doi.org/10.
1088/1361-648x/aa680e

MongoDB (Version 4.4). (n.d.). https://www.mongodb.com

Ong, S. P, Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier,
V. L., Persson, K. A., & Ceder, G. (2013). Python Materials Genomics (pymatgen): A
robust, open-source python library for materials analysis. Computational Materials Science,
68, 314-319. https://doi.org/10.1016/j.commatsci.2012.10.028

Pydantic (Version 1.8.2). (n.d.). https://github.com/samuelcolvin/pydantic

Mickey Mouse et al., (XXXX). optimade-python-tools: a Python library for implementing and consuming materials data via OPTIMADE 3
APIs. , X(X), X. https://doi.org/10.21105 /joss.0XXXX

https://doi.org/10.5281/zenodo.4195051
https://doi.org/10.5281/zenodo.4195051
https://doi.org/10.5281/zenodo.4195051
http://arxiv.org/abs/2103.02068
http://arxiv.org/abs/2103.02068
http://arxiv.org/abs/2103.02068
https://www.elastic.co
https://github.com/tiangolo/fastapi
https://doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1088/1361-648x/aa680e
https://www.mongodb.com
https://doi.org/10.1016/j.commatsci.2012.10.028
https://github.com/samuelcolvin/pydantic
https://doi.org/10.21105/joss.0XXXX

The Journal of Open Source Software

o The JSON:API specification (Version 1.0). (n.d.). https://jsonapi.org/format/1.0/
w The OpenAPI specification (Version 3.1). (n.d.). https://spec.openapis.org/oas/v3.1.0

Mickey Mouse et al., (XXXX). optimade-python-tools: a Python library for implementing and consuming materials data via OPTIMADE 4
APIs. , X(X), X. https://doi.org/10.21105 /joss.0XXXX

https://jsonapi.org/format/1.0/
https://spec.openapis.org/oas/v3.1.0
https://doi.org/10.21105/joss.0XXXX

	Summary
	Statement of need
	Functionality
	Use cases
	Acknowledgements

