
Salesforce1 Developer Cheat Sheet

Overview
Salesforce1 is a mobile app development platform for everyone. Designed for scale with
open APIs for extensibility and integration, and powerful developer tools, there’s no limit to
what you can build on the platform. Salesforce1’s flexible development models enable every
user to create custom apps backed by mobile back-end services and a unique, yet familiar,
mobile user experience. ISVs can develop apps that take advantage of advanced packaging
and version management controls, complete enterprise marketplace capabilities with the
AppExchange, and feed-first discovery of their apps within the Salesforce1 Platform.

Installation, Administration,
and Point-and-Click Development
For installation steps, mobile app administration, and development using point-and-click
tools, see the Salesforce1 Mobile Admin Cheat Sheet or the Salesforce1 App Admin Guide.

Visualforce Pages in Mobile
You can access Visualforce pages from the following areas of the mobile app; each area is
optimized for a specific purpose:

• Navigation Menu — For pages that aren’t related to other objects or that require a full
screen, add the page to the navigation menu, or as a global action in the publisher.

• Record Page — Pages that appear within the context of a record should go on the
object’s page layout.

• Related Items — If you want a Visualforce page to appear on the related information
page of an object record, add the page as a mobile card. Mobile cards are mobile only;
they don’t appear in the full Salesforce site.

• Global or Object-Specific Publisher Actions — If you want a Visualforce page
to surface in the publisher, you can create it as a global or object-specific action. Custom
actions aren’t specific to mobile users, and appear in both the Salesforce1 app and in the
full Salesforce site. In the Salesforce1 app, custom actions appear in the publisher. In the
full Salesforce site, custom actions appear in the publisher menu.

These options are explained in more detail in the following sections

Visualforce Pages in the Publisher
When displayed in the Salesforce1 app, the standard Salesforce header and sidebar are
automatically removed. However, Visualforce pages used as custom actions in the publisher
are shared with the full Salesforce site, and pages added to the Salesforce1 navigation may
or may not be shared. Pages shared with the full site shouldn’t have these items explicitly
removed, unless that’s the standard practice for all Visualforce pages in your organization.

http://developer.salesforce.com

1. The record highlights header displays
when a record is loaded, but can be
scrolled up and off the screen by the
user. When on screen, it’s 158 pixels
tall on all devices, and takes the full
width of the screen. You can’t control
the display of the record highlights.

2. Record actions and details,
automatically generated by
Salesforce1.

3. A Visualforce page added to the
object’s page layout.

4. Set the width to 100%; the element
sizes automatically, minus some
padding on either side.

5. Control the height of the Visualforce
page’s area by setting the height of
the item in pixels in the page layout
editor. The Visualforce element uses
exactly that height, even if the content
is shorter. In that case, the extra area
is blank. If the page’s content is taller, the content is clipped. As a best practice, don’t set
inline Visualforce pages to be taller than the smallest device screen you intend to support.

1. The record highlights header
displays when a record is
loaded, but can be scrolled up
and off the screen by the user.
When on screen, it’s 158
pixels tall on all devices, and
takes the full width of the
screen. You can’t control the
display of the record header.

2. Mobile cards display above
all of the related items on
the record.

3. Set the width to 100%; the
element sizes automatically,
minus some padding on either
side. The content of mobile
cards can’t be scrolled, so make
sure it fits in the space you
provide it.

4. Control the height of the
mobile card by setting the
height in pixels in the page layout editor. The mobile card area uses exactly that height,
even if the mobile card’s content is shorter. In that case, the extra area is blank. If the
card’s content is taller, the content is clipped. As a best practice, don’t create mobile
cards taller than the smallest device screen you intend to support. Be sure to set the
height of screen elements relevant to your environment. So if you have an element
that’s always 300 pixels high, set the height to 300 pixels.

5. The record’s related items are displayed after all mobile cards.

Visualforce Pages on Records
Visualforce pages added to an object’s page layout display on the record details page.
Unlike mobile cards, you can control the Visualforce element’s placement on the
Salesforce1 record details page, putting fields and other record details above and below it,
by changing its placement on the object’s page layout. Visualforce pages added this way
follow the same rules for ordering that fields and other elements do.

Visualforce Pages on Record Related Items
Mobile cards appear on the Record Information page of a record. It’s a best practice to add
only one or two cards, since users have to scroll past them to get to the other related items.
If you need a full screen to display your page, consider moving it to a custom action on the
object instead.

1. The Salesforce1 header,
which provides access to the
main Salesforce1 menu, is 42
pixels tall. The contents of
the header can’t be changed.

2. The rest of the device
screen is dedicated to the
Visualforce page.

Note: You must be sure to
select the Available for
Salesforce mobile apps
checkbox. This designates
that the page is mobile-ready
and can be used in Salesforce1.

1

2

1

2

5

1

4

3

5

2

4

3

Creating a Visualforce Custom Action
Creating a Visualforce custom action is the same process as global actions or object-
specific actions described on the Salesforce1 Admin Cheat Sheet. To use a Visualforce
page in a global or object-specific action, select Custom Visualforce for Action Type.

Note, when making an object-specific Visualforce publisher action, you need to set the
Standard Controller of your page to the SObject you want to create the action on.

Styling a Mobile Visualforce Page for Salesforce1
Use Salesforce Mobile Design Templates as a starting point for your UI/UX design to
dramatically shorten the time it takes to develop a great looking web/hybrid app on
the Salesforce Platform. Combine these open-source modular design templates with
Salesforce1 Platform Mobile Services and your mobile app to view, edit and update
customer data, view backend reports, find nearby records, and more.

The quickest way to get started with the Mobile Design Templates is via their interactive
home page. As you scroll down the page, you’ll see each template broken down into its
constituent HTML5/CSS3 components.

http://bit.ly/sfdcmobiletemplates

Managing Navigation with the sforce.one Object
The Salesforce1 Platform includes a strict event mechanism for navigation. This is
exposed in Visualforce as a JavaScript object called sforce.one. It’s available in any
Visualforce page that appears in Salesforce1.

sforce.one.navigateToSObject
(recordId,view)

Navigates to the record home of a particular
SObject specified by recordId. view is
optional and can specify the view within
record home to select.

sforce.one.navigateToURL
(url, isredirect)

Navigates to the specified URL. Relative urls
will retain navigation history, absolute urls
will open a new browser window.
isredirect indicates a history entry
should not be created.

sforce.one.
navigateToFeed(subjectId,type)

Navigates to the specific feed subjectId.
type is the expected feed type.

sforce.one.
navigateToFeedItemDetail
(feedItemID)

Triggers a navigation to the specific feed item.

sforce.one.
navigateToRelatedList(relate
dListId, parentRecordId)

Triggers a navigation to the specific related list.

sforce.one.
navigateToList(listViewId,
listViewName, scope)

Triggers a navigation to the specific list view.

sforce.one.
createRecord(entityName,
recordTypeId)

Triggers the record create workflow for
the specified entityName and optional
recordTypeId.

sforce.one.
editRecord(recordId)

Triggers the record edit workflow for the
specified recordId.

sforce.one.back(refresh) Goes back to the previous state. Pass true to
indicate the component should refresh
if possible.

Define an HTML5 Visualforce Page
Use the docType="html-5.0" attribute in the <apex:page> tag to define the structure
of the rendered page. If html-5.0 is specified, you can utilize HTML5 browser features like
tags, JavaScript APIs (like drag and drop, local storage, and geolocation), and the useful
Visualforce features as well. This will also relax the default HTML tidying in Visualforce
for HTML5 applications.
When building a custom styled mobile page, set standardStylesheets="false" on
the <apex:page> tag to eliminate any conflicts with the standard Salesforce stylesheets.
These are added to the generated page header if the showHeader attribute is set to false.”
Use the applyHtmlTag and applyBodyTag attributes of the <apex:page> tag to
suppress the automatic generation of <html> and <body> tags, in favor of static markup
you add to the page yourself.

Offline Caching Using the HTML5 Manifest Attribute
Use the manifest attribute of the <apex:page> tag to set an HTML5 cache manifest
for offline caching of a page’s critical resources. You can use Visualforce to provide a page’s
cache manifest.

The value of the manifest attribute is passed through to the generated HTML.
For example:
 <apex:page showHeader="false" sidebar="false"
 standardStylesheets="false"
 docType="html-5.0" manifest="/apex/CacheManifest">

 <header>

 <h1>Congratulations!</h1>

 </header>

 <article>

 <p>This page looks almost like HTML5!</p>

 </article>

 </apex:page>

Setting Custom HTML Attributes on
Visualforce Components
You can add arbitrary attributes to many Visualforce components that will be “passed
through” to the rendered HTML. This is useful, for example, when using Visualforce with
JavaScript frameworks, such as jQuery Mobile, AngularJS, and Knockout, which use data-*
or other attributes as hooks to activate framework functions. It can also be used to improve
usability with HTML5 features such as placeholder “ghost” text, pattern client-side
validation, and title help text attributes.

To add a pass-through attribute to, for example, an <apex:outputPanel> component,
prefix the attribute with "html-" and set the attribute value as normal.

<apex:page showHeader="false" standardStylesheets="false"
doctype="html-5.0">

 <apex:outputPanel layout="block" html-data-role="panel"
 html-data-id="menu">

 <apex:insert name="menu"/>

 </apex:outputPanel>

 <apex:outputPanel layout="block" html-data-role="panel"
 html-data-id="main">

 <apex:insert name="main"/>

 </apex:outputPanel>

</apex:page>

Check the Visualforce Developer’s Guide to see all of the Visualforce components that
support pass-through attributes.

User Input and Interaction
Use <apex:input>, the type attribute, and pass-through HTML attributes to create
mobile-friendly forms and user interfaces.

While you can use <apex:inputField> to create an HTML input element for a value
that corresponds to a field on a Salesforce object, this is not the most efficient component to
use over a mobile wireless connection. However, the benefit of <apex:inputField> is the
built-in client-side and server-side validation.

Set the type Attribute for Input Widgets
Set the type attribute on input components to display UI widgets that help users enter data.
Each input adapts for the type of data expected: text fields show a keyboard, date fields show
a date picker, etc. For example:

<apex:form >
 <apex:outputLabel value="Phone" for="phone"/>
 <apex:input id="phone" value="{!fPhone}" type="tel"/>

 <apex:outputLabel value="Email" for="email"/>
 <apex:input id="email" value="{!fText}" type="email"/>

 <apex:outputLabel value="That Number" for="num"/>
 <apex:input id="num" value="{!fNumber}" type="number"/>

 <apex:outputLabel value="The Big Day" for="date"/>
 <apex:input id="date" value="{!fDate}" type="date"/>

</apex:form>

Input type
You can also set type to auto, and the data type of the associated controller property or
method is used. You can also explicitly set the following input types:
• date • datetime • datetime-local • month • week • time • email
• number • range • search • tel • text • url

Client-Side Validation
Set HTML5 pass-through attributes to avoid sending a request to the server and waiting
for a response. To enable client-side validation, set an html-pattern attribute on the
<apex:input> tag to match expected form values.

If the input matches the regular expression validation pattern, the input is considered
valid. If it doesn’t match, an error message displays and the form isn’t submitted to the
server. The following example requires an email address from a specific domain. It uses the
placeholder attribute to display sample ghost text.

<apex:input id="email" value="{!fText}" type="email"
 html-placeholder="you@example.com"
 html-pattern="^[a-zA-Z0-9._-]+@example.com$"
 html-title="Please enter an example.com email address"/>

You can also provide auto-suggestion by using <apex:input.list> to generate an
HTML5 <datalist>. For example, the following will provide options based on what the
user types in the box: <apex:input.list="Aaa,Aabb,Aaacc">

Navigation
Salesforce1 provides a framework for handling various navigation controls and events,
that isn’t available to Visualforce pages when they run on the full Salesforce site. For
pages shared between the Salesforce1 app and the full site, use the sforce object when it’s
available, and standard Visualforce navigation when it’s not. The following example runs
after a JavaScript remoting request successfully returns from the @RemoteAction method
that creates a quick order. This code is from a Visualforce page that’s used as a custom
action, which adds it to the publisher in the Salesforce1 app and the publisher menu in the
full site. The intent of the code is to navigate to the detail page for the account for whom
the order was placed, and it needs to work in both places:

// Go back to the Account detail page
if((typeof sforce != 'undefined') && (sforce != null)) {
 // Salesforce1 navigation
 sforce.one.navigateToSObject(aId);
}
} else {
 // Set the window's URL using a Visualforce expression
 window.location.href = '{!URLFOR($Action.Account.View, aId)}';
}

Publisher Events
When you expose a Visualforce page or canvas app in the publisher, you can use well-
defined events to enable communication between the page and the publisher as well as
utilize the Submit button to submit the form, close the publisher, and post to the feed.

For Visualforce Include:
 <script type='text/javascript' src='/canvas/sdk/js/29.0/
publisher.js'></script>

For Force.com Canvas Include:
 <script type='text/javascript' src='/canvas/sdk/js/29.0/
canvas-all.js'></script>

The publisher event methods can be used both by the Visualforce and Canvas. Not all
publisher event methods are available to Canvas and Visualforce, and the availability of
these events are outlined below.

Note: When viewing a Visualforce publisher action outside of Salesforce1, the
Submit button is no longer visible automatically. Use the navigation example above
to distinguish whether or not you are viewing the action from Salesforce1 and create
a submit button to fire the publisher.close event on submit.

Visualforce Canvas Field Description

X X

publisher.
clearPanelState

Fired by the publisher when the
canvas app/page is deactivated or
hidden. This can happen when the
user selects a different application
in the publisher or after the Share/
Submit button has been clicked.

X

publisher.close Fired by the page to tell the
publisher to close. Pair this action
with a publisher.post to submit and
close using the Submit button on
the publisher.

Visualforce Canvas Field Description

X

publisher.failure Fired by the publisher when an
error condition is encountered
such as when invalid data has
been submitted.

For example:
• The text in the feed is too long
• The page you’re attempting to

publish to the feed doesn’t exist
• The canvas app URL is invalid

The canvas app should listen for
this event and alert the user that an
error occurred and the post didn’t
get created.

X

publisher.
getPayload

Fired by the publisher when the
Share button is clicked. The payload
contains information such as the
text entered into the What are you
working on? field and who the feed
item is being shared with.

X
publisher.post Fired by the publisher to indicate to

the page that the Submit button has
been pressed.

X publisher.refresh Fired by the page to refresh the feed.

X X
publisher.
setupPanel

Fired by the publisher when the feed
is initially loaded.

X

publisher.
setPayload

Fired by the canvas app to indicate
to the publisher that the content
being sent to the publisher should
be shared in the feed item. This
event is in response to publisher.
getPayload and contains
information about the feed item
you’re trying to create.

You can create three feed item types:
• TextPost
• LinkPost
• CanvasPost

X X

publisher.
setValidForSubmit

Fired by the canvas app/page to
indicate to the publisher that the
canvas app/page is ready to submit
a payload. After this event fires, the
Share/Submit button becomes active.

This code snippet enables the
Share button:
$$.client.publish(sr.
client,
{name : 'publisher.
setValidForSubmit',
payload : true});

X X
publisher.
showPanel

Fired by the publisher when the
user selects a canvas app/page in the
publisher. This event indicates that
the canvas app is being displayed.

X
publisher.success Fired by the publisher after the

Share button is tapped and data is
successfully submitted.

Subscription on Publisher Events Visualforce Example:
Use subscription methods to monitor events on your page and respond accordingly.
You can place these directly on the page and use them by including the publisher.js
library mentioned above.

//Fired by the publisher when the user selects a Visualforce action
//in the publisher.
//This event indicates that the Visualforce is being displayed.
Sfdc.canvas.publisher.subscribe({name: "publisher.showPanel",
onData:function(e) {
 //Enables the Share button on the publisher
 Sfdc.canvas.publisher.publish({name: "publisher.
 setValidForSubmit", payload:"true"});
}});

//Fired by the publisher to indicate to the page that the submit
button has been pressed.
Sfdc.canvas.publisher.subscribe({name: "publisher.post",
onData:function(e) {
 //Closes the publisher and refreshes the feed
 Sfdc.canvas.publisher.publish({name: "publisher.close",
 payload:{ refresh:"true"}});
}});

Publisher Events continued.

Publisher Canvas App Access Considerations continued.

◊ This code snippet shows the default size values of a canvas app in the feed:

"dimensions": {
 "width": "420px",
 "height": "100px",
 "maxHeight": "400px",
 "maxWidth": "420px"
}

◊ The feed is a fixed width of 420 pixels. For example, if you resize your canvas app to
be 200 pixels, the feed width remains 420 pixels.

◊ You can use the resize() method in the Force.com Canvas SDK to change the
values of your canvas app up to the maxHeight and maxWidth.

Working with Canvas Apps in the Publisher
and Chatter Feed
When submitting your request using the Share button you can choose what type
of feed item you would like to create. We currently support three types:

1. Text Post - This is the standard text type of post. The TextPost payload must contain:
a. p.feedItemType = "TextPost"
b. p.auxText - The text that you want to post. We concatenate this text with whatever

the user enters into the "What are you working on" field. There must be some text
provided (either by the user in the text box, or by your app) or there will be an error.

2. Link Post - This is the standard link type of post. The LinkPost payload must contain:
a. p.feedItemType = "LinkPost"
b. p.auxText - This is the text that appears over the link box in the feed item
c. p.url - This is the URL the link will direct to
d. p.urlName - This is the friendly name that appears over the URL in the link box

3. Canvas Post - This is a new feed item type that will create a feed item that can load a
Canvas App directly in the feed. The CanvasPost must contain:

a. p.feedItemType = "CanvasPost"
b. p.auxText - This is the text that appears over the canvas box in the feed item
c. p.namespace - The namespace of your Canvas App (if set)
d. p.developerName - The API name of your Canvas App
e. p.thumbnailUrl - An HTTPS URL to an icon you would like to display next to

the app. If none is provided, the default canvas puzzle icon will be used
f. p.parameters - A JSON string of custom parameters you would like to send to

the app. This is an optional value that will be sent in the Signed Request as the
"parameters" object

g. p.title - The linked title that will display in the canvas box in the feed item.
When clicked, this initiates the canvas app load

h. p.description - A 255 character description that will appear under the link title

Creating Canvas Feed Items
There are two ways to get a canvas app into the feed. The above example demonstrates
creating the app from the Publisher. You can also create the canvas feed item directly from the
Connect API. The field requirements are the same, but the format would be slightly different.
For instance, to create the preceding canvas feed item through the Connect API you would:
POST to the feed resource you want, like https://<instance>.salesforce.com/
services/data/v29.0/chatter/feeds/news/<userId>/feed-items

The message would look like:
{
 "body" : {
 "messageSegments" : [{
 "type" : "Text",
 "text" : "Please Approve my trip: Release Planning at HQ"
 }]
 },
 "attachment" : {
 "description" : "This is a travel itinerary for Itinerary -
Release Planning at HQ. Click the link to open the Canvas App.",
 "parameters" : "{"itinerary":"123"}",
 "title" : "Itinerary - Release Planning at HQ",
 "namespacePrefix" : "",
 "developerName" : "Itinerary_App",
 "height" : "100px",
 "thumbnailUrl" : "https://icons.iconarchive.com/icons/
aha-soft/perfect-transport/48/ Airplane-icon.png",
 "attachmentType" : "Canvas"
 }
}

Set Canvas App Location and Create the Action
To add a canvas app to the publisher, you must set the location and create the action when
you create the canvas app.

Note: Support for Force.com Canvas apps in the publisher, the Chatter feed, and
Chatter Mobile is currently available through a pilot program and is available in all
new Development Edition organizations. For information on enabling it for your
organization, contact salesforce.com.

1. In Salesforce, from Setup, click Create > Apps.

2. In the Connected Apps related list, click New. Fill out the fields for your canvas app.

3. In the Locations field, select Publisher. You must select this location for your canvas app
to appear in the publisher.

4. In the Canvas App Settings section, select the Create Actions Automatically field.
This creates a quick action for the canvas app.

For the canvas app to appear as a publisher action, you must add the action to the global layout.

Create a Canvas Action
If you didn’t select the Create Actions Automatically field when you created the canvas app,
then you’ll need to create the action manually.

1. From Setup, click Create > Global Actions

2. Click New Action.

3. In the Action Type field, select Custom Canvas.

4. In the Canvas App field, select the canvas app that you want to appear as an action.
Only canvas apps that have a location of Publisher will appear in this field.

5. In the Height field, enter the height of the canvas app in pixels. This is the initial
height of the canvas app when it appears in the publisher. You can use the Force.com
Canvas SDK resize() method to change the height up to a maximum of 500 pixels.

6. In the Label field, enter a value. This value appears as the publisher action title in the
user interface.

7. In the Name field, enter a unique value with no spaces.

8. Optionally, in the Icon field, you can upload an icon by clicking Change Icon.
You must upload the icon as a static resource before you can change it here.

9. Click Save.

Sequence of Publisher Events in Force.com Canvas
Here’s the order of publisher events from the perspective of the canvas app:

1. The canvas app listens for publisher.setupPanel.

2. The canvas app listens for publisher.showPanel.

3. The user interacts with the canvas app, for example, clicks a button or enters some
text. The canvas app does any validation required and then fires publisher.
setValidForSubmit. As a result, the publisher then enables the Share button.

4. The canvas app listens for publisher.getPayload.

5. The canvas app fires publisher.setPayload.

6. The canvas app listens for publisher.success.

7. The canvas app listens for publisher.failure.

8. The canvas app listens for publisher.clearPanelState.

Publisher Canvas App Access
When you display a canvas app inside of a feed item, the context information you receive from
the signed request or from a getContext() call contains information specific to the feed:

• Location—If the canvas app is in the feed, then the Environment.
displayLocation field contains the value ChatterFeed.

• Parameters—When you create a feed item that contains a canvas app, you can specify
a JSON string as the parameters value. When the canvas app receives the context, the
parameters in the feed item will be contained in the Environment.Parameters object.

• Size—The Environment.Dimensions object contains information about the size of the
canvas app.
◊ The canvas app height defaults to 100 pixels.
◊ The canvas app width defaults to 420 pixels, which is the same as the maximum width

of a canvas app in the feed.
◊ The maximum height of a canvas app in the feed is 400 pixels.
◊ The maximum width of a canvas app in the feed is 420 pixels.

For other cheatsheets: http://developer.salesforce.com/cheatsheets 10132014

