

Table of Contents

About the Salesforce1 Mobile App Workbook...1

Tutorial 1: Initial Set Up..2
Step 1: Get a New DE Org...2
Step 2: Create an App...2
Step 3: Download the Salesforce1 Mobile App..2

Tutorial 2: Use the Mobile App...4
Step 1: Create Your First Post..4
Step 2: Create a Task..5
Step 3: Use the Today app..5
Step 4: Navigate to a Record...5
Step 5: Try a Record Action...8
Step 6: Add a Record to Your App...8
Step 7: Pin Frequently Used Searches...9

Tutorial 3: Optimize for the Mobile Display..11
Step 1: Create a Page Layout for a Mobile User Profile...11
Step 2: Display Key Fields Using Compact Layouts...13
Step 3: Add Mobile Cards to the Record Related Information Page..13
Step 4: Enable Notifications...14

Tutorial 4: Quickly Create Records Using Global Actions..15
Step 1: Create a Global Action...15
Step 2: Customize the Global Publisher Layout...15

Tutorial 5: Create Related Records with Object-Specific Actions...17
Step 1: Define an Object-Specific Action...17
Step 2: Choose Fields and Predefine Values...17
Step 3: Customize an Object-Specific Layout..18

Tutorial 6: Develop a Visualforce Page and Add it to the Navigation Menu...19
Prerequisites: Set Up Your Development Environment..19

Step 1: Install the Enhanced Warehouse Data Model..19
Step 2: Access the Mobile Browser App...19

Lesson 1: Create the FindNearby Apex Class...20
Step 1: Create the FindNearby Apex Class...20
Step 2: Create the getNearby Method...20
Step 3: Add Default Location Logic...21
Step 4: Run a Query and Return Results...21
Summary: Check Completed Code...21

Lesson 2: Create the Visualforce Page..22
Step 1: Bind the extension and Standard Controller to a Visualforce Page...22
Step 2: Add Static Resources to the Page..23

i

Table of Contents

Step 3: Place a Container div for Rendering the Map...23
Step 4: Add the initialize JavaScript function..23
Step 5: Add the createMap function...24
Step 6: Create Markers for Nearby Warehouses...25
Step 7: Check the Final Page..26

Lesson 3: Expose the Page in Salesforce1...28
Step 1: Create a Tab..28
Step 2: Add the Tab to Mobile Navigation...29
Step 3: Try Out the App...29

ii

Table of Contents

About the Salesforce1 Mobile App Workbook

While you can use the Salesforce platform to build virtually any kind of app, most apps share certain characteristics, such as:

• A database to model the information in the app

• A user interface to expose data and functionality to those logged into your app

• Business logic and workflow to carry out particular tasks under certain conditions

In addition, apps developed on the Salesforce Platform automatically support:

• A mobile app that is easy to use, customize, and further develop

• A public website to allow access to data and functionality

• A native social environment that allows you to interact with people or data

• Built-in security for protecting data and defining access across your organization

• Multiple APIs to integrate with external systems

• The ability to install or create packaged apps

This workbook shows you how to use, configure, and develop the Salesforce1 mobile app in a series of tutorials. Initially you
create a very simple app to track your learning progress, which is enough to show you the basics. If you following along to the
end of this tutorial, you’ll also install a Warehouse app that will help you learn more sophisticated examples with code.

1

About the Salesforce1 Mobile App Workbook

Tutorial 1: Initial Set Up
The first thing you need to do is set up your development and testing environment. Then you’ll set up your browser and mobile
device for testing.

Step 1: Get a New DE Org
If you already have a Developer Edition org, you might not need a new one. However, if you’ve previously done any tutorials
with the Warehouse app, the advanced section at the end of this workbook uses this app, and there might be a conflict when
installing the package. While you might be able to navigate around potential conflicts, it’s easier and faster to create a new
org. In addition, Developer Edition orgs created before the Winter ‘14 release don’t some necessary functionality.

1. In your browser, go to http://bit.ly/s1gettingstarted.
2. Fill in the fields about you and your company.
3. In the Email Address field, make sure to use a public address you can easily check from a Web browser right now.
4. Type a unique Username like firstname.lastname@s1workshop.com.
5. Read and then select the checkbox for the Master Subscription Agreement. and then click Submit Registration.
6. In a moment you’ll receive an email with a login link. Click the link and change your password.

Step 2: Create an App
To understand how to access custom apps in the Salesforce1 mobile app, you need to create an app. Use the App Quick Start
wizard to create an app that will help you track your learning progress.

1. On the Force.com Setup page, click the green Add App button.
2. Fill in the form as follows:

• For the App type Learn Salesforce1 .
• For the Label, type Lesson.
• For the Plural Label, type Lessons.

3. Click Create and once the wizard finishes, click Go To My App and then Start Tour, to get a quick overview of your
app's interface.

4. Click New to create a new Lesson. Name it Use Mobile App and then click Save.

Step 3: Download the Salesforce1 Mobile App
For final testing, you’ll also need to install the Salesforce1 mobile app on your device. If you’ve already downloaded the
Salesforce1 mobile app, you can skip this step.

Note: If you’re already using the Salesforce1 mobile app, you can skip this section. Note that you’ll have to log out
of the mobile app and log back in with the credentials of your new org.

1. Use your mobile device’s browser to go to www.salesforce.com/mobile, select the appropriate platform, and download
Salesforce1.

2. Open Salesforce1 from your mobile device.
3. Enter the login credentials from your new org and tap Log in to Salesforce.

2

Step 1: Get a New DE OrgTutorial 1: Initial Set Up

http://bit.ly/s1gettingstarted
Link%20Address

4. If this is the first time using the Salesforce1 mobile app, the phone prompts you to email a verification code. Tap the
button, check your email, and copy the verification code into the space provided.

5. Tap Verify my code and log me in., and then tap Allow so that the app can access to your data..

3

Step 3: Download the Salesforce1 Mobile AppTutorial 1: Initial Set Up

Tutorial 2: Use the Mobile App
When you create an app in Salesforce, you automatically create a mobile version of the app. Indeed, you could say that every
Salesforce developer is a mobile developer!

In this tutorial you access the mobile version of the app you just downloaded. Because the way you navigate apps, tabs, and
records is different for mobile, your first task is to go through a quick tour of the mobile app. Along the way you’ll find out
what the various parts of the mobile interface are called and how to add more functionality to them.

Note: For the following exercises, you need to use the downloaded mobile app on your phone. The mobile browser
app doesn’t support the phone, the Today app, and other required features.

Step 1: Create Your First Post
When you start up the Salesforce1 mobile app for the first time, you are prompted to create your first post.

1. Tap .

2. Tap the Photo icon and choose New Photo.
3. Snap a selfie (or choose a photo from your library) and then add a title like “First Post!”
4. Tap Done and then Share it.

Your posts shows up on your feed, so other people that follow you can keep up with what you’re doing. The photo itself is
stored as a file and can be attached to other Salesforce records as well.

4

Step 1: Create Your First PostTutorial 2: Use the Mobile App

Tell Me More....
The downloadable mobile app provides the best mobile experience. However, you can also access a fully supported version of
Salesforce1 from any mobile browser. Developer Edition orgs are already enabled for the mobile browser, but if you want to
enable this feature for your company’s or, you need to configure that setting in the full (non-mobile)Salesforce site:

1. From Setup click Mobile Administration > Salesforce1.
2. Select Enable the Salesforce mobile browser app.

Now, when you navigate to login.salesforce.com from your mobile browser, Salesforce will recognize that you’re working
from a mobile device and redirect you to the Salesforce1 mobile browser app.

Step 2: Create a Task
Mobile apps are all about being productive in micro moments, so you can start by creating a task for yourself.

1. In the bottom right corner, tap and the publisher opens. Tap New Task.
2. For the Subject enter Sync my calendar in the Today app.
3. Use the calendar control to set the Due Date to Today and then tap Submit.

When you created that task, you probably noticed some other actions you could take in the publisher. All of those actions are
global actions. Global actions aren’t associated with any other data, and can be thought of as quick things that you’ll follow up
with later. In Salesforce, you can create you own custom global actions and add them to the publisher.

Step 3: Use the Today app
The Today app integrates calendar events from your mobile device with your Salesforce tasks, contacts, and accounts.

1. Tap , and then tap the Today app.
2. Tap Get Started.
3. Choose which calendars you want Today to access, then tap Save.

Note: You may need to give Salesforce1 access to your calendars in your device’s privacy settings before continuing.
Once you’ve given Salesforce1 access to your calendars, return to the Today app and tap Get Started again.

4. Tap Tasks for Today and notice the task you created for yourself in the previous step. Close the task by tapping the check
box.

5. Tap the back arrow to go back to the Today app.

Step 4: Navigate to a Record
Just as in the full Salesforce site, the record view is where you’ll find most of the data you’re looking for. In the mobile app,
the record view is comprised of three pages. From left to right, these are the record feed page, the record detail page, and the
related information page.

1. Tap the navigation icon , then tap Contacts.
2. Enter Tim Barr and then tap Search..
3. Notice how informative the search preview is? These are called record preview cards. Your search might have returned

multiple preview cards, and so what’s on those cards should convey important information at a glance. You can customize
record preview cards by creating a compact layout.

5

Step 2: Create a TaskTutorial 2: Use the Mobile App

Link%20Address

4. Tap the preview card to open the record. The section at the top of the screen is called the record highlights area. Notice the
three fields under the record name, this is another place in which the compact layout is used. The first three fields of the
compact layout determine what is in the record highlights area.

5. Pull down to perform a refresh.
6. Swipe up to dismiss the highlights area and view the fields displayed on a record detail page. These fields are determined

by the page layout. As you can see, there are a lot of fields, and you can use the advanced page layout editor to modify all
your page layouts to be mobile-friendly. You can also create mobile-specific layouts and then assign them to users who
primarily use Salesforce from a mobile device.

6

Step 4: Navigate to a RecordTutorial 2: Use the Mobile App

7. Swipe left on a record detail page to get to the record related information page. (If you’re using a mouse, there are three small
buttons on top, click the one on the right.) Different objects will have different kinds of related information. Notice in the
following image that this account has Opportunities and Cases which are related to this account. In addition, this account
has Open Activities, Activity History, and Campaign History you can access with a touch. You can add more related
information here by editing the page layout and adding mobile cards.

8. Swipe twice to the right and you get to the feed. (Again, if you’re using a mouse, click the blue button on the left.)There’s
nothing to see here yet, so tap Follow in case something noteworthy happens with Tim.

9. On Tim Barr’s detail page, tap Edit and add a new Home Phone for him. Tap Save. (Also notice you can Delete and
Clone this record right from the detail page.)

7

Step 4: Navigate to a RecordTutorial 2: Use the Mobile App

Step 5: Try a Record Action
Some types of standard objects have built-in record actions. Before you get started creating your own actions, it’s useful to see
what the built-in actions can do.:

1. On Tim Barr’s detail page, notice the three record actions here. Tap the icon for Call , and notice the new Home Phone
number you added.

2. Try some of the other record actions by tapping Email , and Map .

3. Now tap and you’ll see the publisher actions associated with this record. Swipe left and you’ll see more actions. These
are object-specific actions, and they all have to do with Tim Barr. You can create your own publisher actions in Salesforce.
Once you add them to the page layout for an object, they'll show up in its publisher in Salesforce1.

4. Tap Log a Call, and then tap Subject. Choose Call as the type of interaction. .
5. In the Comments section, enter No answer and then tap Submit.

Note: Log a call actions are special kinds of publisher actions that record interactions with other people. After
you create this action, notice that this record is associated directly with Tim Barr. If you don’t see a Log a Call
action, you’re using a Developer Edition org that was created prior to Winter ‘14. To go any further in these
tutorials, you need to get a new Developer Edition organization.

Tell Me More....
Some of these actions, like Call will automatically be updated as more data is added to the record. You saw this already when
you created a new phone number. Anyone who accesses this record automatically gets the updates that you entered, and vice
versa.

Step 6: Add a Record to Your App
If you’ve used Salesforce before, you might be wondering where the Home tab is. Or where Salesforce apps, such as the Sales
app or your custom app, appear in the Salesforce1 mobile app. The short answer is, they don’t. Instead, the mobile app figures
out which records you look at most often. Rather than using the Force.com app menu to customize the tabs a user sees regularly,
the smart search items under the Recent section reorder themselves based on the user’s history of recent objects.

To see how this works, navigate to a lesson and create a new record.

1. Tap and scroll down and tap More (or Show More if you’re on the mobile browser version).

8

Step 5: Try a Record ActionTutorial 2: Use the Mobile App

2. Tap Lessons.
3. Tap New to create a lesson from the mobile device.
4. Name it Customize mobile layout, and then Save.

Tell Me More....
Each tab is represented through a menu item in the Recent section of the Salesforce1 navigation menu. Searches in the full
Salesforce site (not the mobile app) determine what shows up here. Since your app’s Lessons tab is new and you probably
haven’t searched for it, it doesn’t appear on the Recent section.

Step 7: Pin Frequently Used Searches
When you first toured the mobile app, you saw how apps and tabs don’t work the same as in the full Salesforce site. For
example, the content in the Recent section of the Salesforce1 mobile app’s navigation menu represents a set of recently
searched-for objects.

It would be nice if the Lessons tab showed up at the top of the recent items list, instead of tapping More every time you want
to find it. To influence the order of items in the Recent section you can pin the objects on the Search Results screen in the
full site. When you pin an object, it will stick to the top of the Recent section in the Salesforce1 mobile app.

1. In the full site, type Customize in the Search box and then click Search.

2. In the search results, scroll down, hover to the right of Lessons, and then click the pin icon.

9

Step 7: Pin Frequently Used SearchesTutorial 2: Use the Mobile App

3. Go back to your mobile app (you may need to refresh by pulling down) and notice that Lesson is now pinned to the top
of the Recent section.

Tell Me More....
Pinning a search term is an easy way to provide better productivity, but that’s really just the beginning. In this next section
you’ll see how to use page layouts, compact layouts, and mobile cards to optimize the experience for mobile users.

10

Step 7: Pin Frequently Used SearchesTutorial 2: Use the Mobile App

Tutorial 3: Optimize for the Mobile Display
A well-designed page layout can often be used by both desktop and mobile devices. However, some objects may still have so
many fields that viewing the details can be difficult on a mobile screen. Moreover, mobile users often have different jobs and
priorities than desktop users, and so it’s useful to create a mobile-specific page layout. A mobile-optimized layout can be
assigned to different user profiles, so that people who primarily use a phone are assigned the mobile layout, while desktop
users would be assigned the standard layout.

In this tutorial you learn how to do the following:

• Modify an existing page layout so that it’s optimized for a mobile device — If your users access your app from desktop and
mobile devices, then you might want to optimize your page layouts so that they work with various form factors. However,
if your users are entirely or mostly mobile, they might find a new mobile-specific layout is more productive.

• Create a compact layout specifically for mobile devices — Compact layouts determine the fields that show up in an object’s
record highlights area, and an object’s record preview cards (mobile cards that display as record items in list views). Compact
layouts are a great way to display a record's key fields at a glance.

• Add mobile cards to the related information page — Mobile cards can show lookup information or Visualforce pages.

• Enable notifications — Notifications are a great way to stay on top of what’s important to you. If you're using the Salesforce1
downloadable app, you’ll receive notifications when someone mentions you in a post, or when you receive an approval
request.

Note: There’s another kind of mobile layout called a global publisher layout, which determines where global actions
go. You’ll learn about that later after you create a global action.

Step 1: Create a Page Layout for a Mobile User Profile
For this step, imagine the regular working day of a mobile technician. The technician is either on site or in a vehicle, and so
a mobile phone is his primary means of accessing Salesforce. While working, the technician doesn’t need every last detail of
the businesses he visits, just the ones that are important to him.

1. On your mobile phone, tap , and then Accounts (you may need to tap More to find Account).
2. In the Search bar, type Burl and then tap Search.
3. Tap on the record preview card (the search result item) and take a look at the Burlington Textiles account detail page.
4. Scroll down and you’ll see there are a lot of fields, really too many for a mobile user to use efficiently. Time to fix all that.
5. In the full Salesforce site, navigate to an existing account by clicking the (+) tab and then Account.

6. In the View drop-down list, select All Accounts.
7. Click the Burlington Textiles account. Notice that there’s a lot of information on this tab, which is why it was a challenge

to navigate on a small screen.

11

Step 1: Create a Page Layout for a Mobile User ProfileTutorial 3: Optimize for the Mobile Display

8. Click Setup, click Customize > Accounts > Page Layouts and then click New.
9. Name the page layout Account Mobile Layout and then Save.
10. Add a few fields that are important to mobile users. Drag the Account Site, Shipping Address, and Phone fields onto the

Account Detail area of the page layout.
11. Click the Related Lists category and drag Cases and Contacts to the Related Lists section. Related lists show up on the

record related information page in Salesforce1. When a mobile user using this page layout navigates to an account’s related
information page, they’ll see preview cards containing brief information about the cases and contacts for that location.

12. Click Save and then No when asked if you want to override users’ customized related lists.
13. Now you need to assign the mobile-optimized page layout to your user profile. Click Page Layout Assignment and then

Edit Assignment.
14. Click System Administrator, which is your user profile.
15. In the Page Layout to Use drop-down list, select Account Mobile Layout and then Save.

Because you’re logged in as the System Administrator, when you access the Account object, you’ll do so through the
mobile-optimized layout.

1. Try it now by going to the mobile browser app and tap (click) Accounts in the sidebar.
2. Since you just accessed the Burlington Textiles account from the full Salesforce site, you should see that in the Recent

Accounts list. Tap that account.
3. Notice the fields you customized on the page layout, this is a lot easier to manage.
4. Swipe left to see the related information page and notice the Cases and Contacts you added.

12

Step 1: Create a Page Layout for a Mobile User ProfileTutorial 3: Optimize for the Mobile Display

Tell Me More....
Typically, after creating a page layout for mobile users, you’d add it to a mobile-user’s profile. To keep things simple (so that
you don’t have to log out and switch users to see the new layout), you simply added the page layout to your own System
Administrator profile instead.

Step 2: Display Key Fields Using Compact Layouts
In the previous tutorial you learned how page layouts can be used to optimize a layout for mobile users. However, page layouts
aren’t the only thing used to help customize how your data appears in a mobile environment. Salesforce1 uses compact layouts
to display a record's key fields at a glance. You don’t need to create compact layouts for Salesforce1, as the system will generate
a default compact layout for all standard and custom objects. However, just as you saw with page layouts, a custom compact
layout can help your mobile users be even more productive.

1. On your mobile phone, tap , and then Accounts.
2. In the Search bar, type Burl and then tap Search. You’ve seen this record preview card before, but what you might not

have known is that the fields shown here are determined by the compact layout.
3. Tap on the record preview card and take a look a the fields on the Burlington Textiles account detail page. The name and

the first three fields in the record highlights area are also determined by the compact layout.
4. Back in the full Salesforce site, click Setup > Customize > Accounts.
5. Click Create Compact Layouts and then New.
6. In the Label field, enter Account Compact Layout and then press the Tab key.
7. Try using some different fields by moving Account Name, Customer Priority, and SLA to the Selected list, and then

Save.
8. Now you need to set the compact layout as the primary. Click Compact Layout Assignment.
9. Click Edit Assignment and select the compact layout you just created and then Save.
10. Now go to the mobile browser tab and tap an Account record. Refresh the screen by pulling down, and you should see the

fields you defined in the record highlights section.

Tell Me More....
• Compact layouts aren’t just for mobile. When accessing Salesforce from a desktop browser, compact layouts determine

which fields appear in a Chatter feed when you create a record using an action in the publisher.
• The record name and the first three fields you assign to your compact layout populate the record highlights section at the

top of each record view. The number of fields that are shown in a compact layout depends on the screen size of the device
you are using. You can add more fields to the compact layout, but typically only three will show up on a mobile phone.

• The fields you define on the compact layout also determine what users see in the record preview cards that are returned from
search results.

Step 3: Add Mobile Cards to the Record Related
Information Page

You’ve already seen the related information page when you toured the mobile app for the first time. You navigate to the related
information page by swiping left on the detail page for a record. You can add other kinds of related information using mobile
cards. There are two kinds of mobile cards, related lookup cards and Visualforce page cards.

In this step, you add a related lookup card to the Account object. Account already has a lookup field that’s automatically
generated, Last Modified By, so in the interest of brevity, you can use that standard field.

1. From Setup, open the page layout for Account by navigating to Customize > Account and click Page Layout.

13

Step 2: Display Key Fields Using Compact LayoutsTutorial 3: Optimize for the Mobile Display

2. Click the Edit link next to Account Mobile Layout.
3. In the Page Layout Editor, click the Expanded Lookups category.
4. Drag Last Modified By to the Mobile Cards section and then Save.
5. To test it out, go back to your mobile device and look at an account.
6. Swipe left to get to get to the related information page and you’ll see the mobile card you added.

Tell Me More....
• Once you’ve enabled a Visualforce page for mobile, you can use the page layout editor to add the pages to the Mobile Cards

section in the same way.
• Unlike compact layouts, mobile cards only appear in the Salesforce1 mobile interface.

Step 4: Enable Notifications
You probably receive alerts on your phone from apps, even when you aren’t using that app. These are push notifications. If
you're using the Salesforce1 downloadable app, you can enable push notifications and then receive updates when someone
mentions you in a post, or when you receive an approval request.

To enable notifications:

1. Switch over to your laptop and click Setup.
2. Click Mobile Administration > Notifications > Settings.
3. Select both Enable in-app notifications and Enable Push Notifications.
4. Click Save.

If you’re in the full Salesforce site, you receive notifications when someone posts to your profile or mentions you in a post. All
notifications, including push notifications, show up in the notification tray.

14

Step 4: Enable NotificationsTutorial 3: Optimize for the Mobile Display

Tutorial 4: Quickly Create Records Using Global
Actions

There are two kinds of publisher actions, global actions and object-specific actions. Global actions let users create records that
aren’t related to any other record. Object-specific actions are created in the context of another record, and are automatically
related to that record.

Another way to think of global actions are things that users want to do quickly, but not necessarily completely. For example,
imagine one of your users works at a trade show and meets new people all day long. She needs a way to quickly add someone
as a contact without navigating to a record or associating this person with any other information. That’s what a global action
is for, quick things that users can follow up with later. In fact, there’s a built-in global action for creating a New Contact.
There’s also a built-in object-specific action on the Account object. If you were to navigate to an account record and tap ,
you’d see there’s also a New Contact action there. If you create the new contact in the context of this account, the contact is
already associated with the account. The names of the actions are the same, but they behave differently when called from
different places.

You can include global actions on global publisher layouts, as well as page layouts for any supported object. In this tutorial
you add the global action to the global publisher layout.

Step 1: Create a Global Action
In this step you create a global action that creates new lesson directly from the feed.

1. In Setup, go to Create > Global Actions.

Notice there are a number of actions to choose from; you’ve seen some of these already in the mobile app.

2. Click New Action.
3. For Action Type, select Create a Record.
4. For Target Object select Lesson.
5. For Label, enter Add Lesson.
6. Click Save.

After saving, the action layout editor opens. Typically at this point you’d customize the fields that show up here, but there
aren’t many fields on this object, so it’s not necessary yet.

Tell Me More....
At the bottom of the action layout editor there’s a section for predefined values. If you predefine a required field, you don’t
need to show that field on the page. Predefining fields is also a great way to customize the mobile experience, and you’ll learn
about that in just a bit.

Step 2: Customize the Global Publisher Layout
Before the global action will show up either in the full Salesforce site, or in the Salesforce1 mobile app, you need to add it to
the global publisher layout.

1. In Setup, go to Customize > Chatter > Publisher Layouts.
2. Next to the Global Layout, click Edit.

15

Step 1: Create a Global ActionTutorial 4: Quickly Create Records Using Global Actions

3. In the editor, notice there are a number of items in the Publisher Actions area, such as Post, File, New Task, etc. Drag
the Add Lesson action into the left side of the Publisher Actions section, between Post and File.

4. There’s a warning about the number of actions in the publisher. You can remove some of the actions by dragging them up
to the palette. Click Save.

5. Now try it out by opening the mobile app. Refresh the app by pulling down, then tap , and then tap the Feed.

6. Tap and you’ll see the Add Lesson item in the publisher.

Tell Me More....
• Global actions show up in the publisher on pages to which the global publisher layout applies: in Chatter and in any layout

that hasn’t been overridden by a more specific publisher layout.
• If you’ve used page layouts before, you know that page layouts can be assigned to user profiles. The global layout is assigned

to all user profiles by default, so you don’t need to assign the layout to a profile in order to see the global action you created.
But it’s useful to know that if you have different users that need different global layouts, it’s easy to change right here by
clicking Publisher Layout Assignment.

16

Step 2: Customize the Global Publisher LayoutTutorial 4: Quickly Create Records Using Global Actions

Tutorial 5: Create Related Records with
Object-Specific Actions

Object-specific actions let users create records that are automatically associated with related records. This example uses the
Account and Case standard objects, which come in every Developer Edition org.

In this example, a mobile technician might want a way to create a new case while still on site with a customer. If you put a
record create action on the Account object with Case as the target object, the technicians can browse to the customer account
record on their mobile device, and log cases directly from there.

The overall steps for creating an object-specific action are the following:

1. Create the object-specific action.
2. Choose which fields users see. Predefine required field values where possible.
3. Add the action to one or more of that object’s page layouts.

Step 1: Define an Object-Specific Action
For this scenario, you create an invoice that’s associated with an existing account.

1. In Setup, go to Customize > Accounts > Buttons, Links and Actions and click New Action.
2. For Action Type, select Create a Record.
3. For Target Object, select Case.
4. For Label, enter Create a Case and then Save.

The action layout editor opens, which is where you can customize the fields assigned to the action.

5. Drag the Status field off the layout and back up into the palette and then Save.
6. You get a warning message about a required field. Click Yes, because you’ll fix that next.

Tell Me More....
You just dragged a required field off the page layout. The platform gives you a warning message, as well it should, because
users won’t be able to create a case from the mobile action! The reason for removing that field will become clear in the next
step, when you predefine that field’s value.

Step 2: Choose Fields and Predefine Values
Objects can have many fields, and so when a user creates a record for that object, it can result in a long list that results in a lot
of scrolling. So it’s important to choose which fields show up on the action layout. Additionally, you can predefine field values,
and then remove them from the action layout.

For this example using a mobile technician, they are already on site logging the case. Rather than require them to choose a
Status every time they create a case, you can predefine the field value. Then you can remove the required field from the action
layout. Whenever a Create Case action is used, the status will automatically be set.

1. In Setup, click Customize > Accounts > Buttons, Links, and Actions.
2. Click the Create a Case action you just created.
3. In the Predefined Values related list, click New.
4. From the Field Name drop-down list, select Status.

17

Step 1: Define an Object-Specific ActionTutorial 5: Create Related Records with Object-Specific
Actions

5. Set its value to Working and then Save.

Tell Me More....
Note that predefined values override default values. In the previous example, imagine that cases created on the full Salesforce
site are typically new, and so whenever a case is created there, the default value is set to “Open”. But when a new case is created
from a mobile device, it’s because there’s a mobile technician on site, and they are actually working on that case. New cases
logged from the mobile device overrides the default value and predefines it as “Working”. As you can see, not only do predefined
field values free up screen space, they can also be used to optimize for what people do when they are mobile.

Step 3: Customize an Object-Specific Layout
Before the action will show up either in the full Salesforce site, or in the Salesforce1 mobile app, it needs to be added to a page
layout.

1. In Setup, click Customize > Accounts, and then click Page Layouts.
2. Next to Account Mobile Layout, click Edit.

This is the layout you created earlier. Notice that the Publisher Actions section is empty, and there’s a message there telling
you that any actions on this layout are being inherited from the global publisher layout. You don’t want that, you want to
customize the actions on this layout to be pertinent to the work the mobile users need to do.

3. In the Publisher Actions section, click override the global publisher layout.
4. Click the Actions category in the palette, then drag Create a Case so that it’s the second item in the list.

Notice there’s also a New Case item in the palette. The New Case item is a default action assigned to the Account object,
but it’s not editable. You don’t want this default action, because you created a custom Create a Case action.

5. Click Save. The new Create a Case action will now show up in the feed on the Account detail page in the full Salesforce
site, and in the publisher for the Salesforce1 mobile app for all profiles with this layout.

6. Now test it on your mobile device by navigating to an account.

7. On the detail page for an account, tap and tap Create a Case.

You don’t see the required Status field for the case, but it’s there, and so is the association to this particular account.

Tell Me More....
When you create object-specific layouts, put the most important ones first. Keep in mind that the first six actions in the list
show up on the first page of the publisher in the Salesforce1 mobile app.

18

Step 3: Customize an Object-Specific LayoutTutorial 5: Create Related Records with Object-Specific
Actions

Tutorial 6: Develop a Visualforce Page and Add it to
the Navigation Menu

The previous lessons used the built-in features of the platform and relied on point-and-click development. From this point
on, you’ll be using a custom app and writing code. To get you started quickly, there’s a pre-built Warehouse app you can install.

In this tutorial, you give mobile technicians that work for the Acme Wireless organization a way to find nearby warehouses.
For example, if the technician is out on a call and needs a part, they can use this page to look for warehouses within a 20–mile
radius. For each warehouse, a map should display a pin along with the warehouse name, address, and phone number. You can
use your knowledge of Visualforce to extend the Salesforce1 app and give your mobile users the functionality they need.

Prerequisites: Set Up Your Development Environment
The following lessons all use a Warehouse app that is installed from a package. It’s a very simple data model, but just enough
to illustrate the basic concepts.

• The warehouse has a Merchandise object that represents computer hardware and peripherals: laptops, desktops, tablets,
monitors, that kind of thing.

• An invoice is used to keep track of how merchandise moves out of the warehouse. Each line item on the invoice has a
particular piece of merchandise, and the number of items ordered. The invoice rolls up all the prices and quantities for an
invoice total.

Step 1: Install the Enhanced Warehouse Data Model
To prepare your developer organization for the exercises in this book, you need to import the Warehouse data model. You
might be familiar with the Warehouse app if you’ve gone through the previous Hands-on Workshop, or from the tutorials in
the Force.com Workbook. The Warehouse app used here is an enhanced version that will help demonstrate what Salesforce1
mobile app can do.

1. In your browser go to http://bit.ly/warehouse_schema11
2. If you were already logged in, you will be redirected to the Package Installation Details page. Otherwise, log in with your

Developer Edition credentials.
3. Click Continue, Next, Next, and Install.
4. After the installation finishes, click the Force.com app menu and select Warehouse.
5. Click the Data tab and then click the Create Data button.

The package contains a pre-built Visualforce page, as well as some supporting resources. You’ll learn about those right after
your development and testing environments are set up.

Step 2: Access the Mobile Browser App
When developing Visualforce pages for the Salesforce1 mobile app, you can’t do the familiar
https://<instance>/apex/<page> hack on the URL to view the page: you must view the pages in the mobile app. The
best way to test your pages is with the installed app, because it provides the most realistic experience. However, since it’s a
pain to grab your phone every time you want to see a change, you can open a new browser tab and use the one.app mobile
browser version.

1. In your browser, open a new tab.

19

Prerequisites: Set Up Your Development EnvironmentTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

http://bit.ly/warehouse_schema11

2. Copy and paste your Salesforce instance into the address bar of the new tab, and add /one/one.app to the end. For
example, if your Salesforce instance has an URL of https://na4.salesforce.com, use
https://na4.salesforce.com/one/one.app.

You should now see the mobile browser version of Saleforce1. As you go through the exercises in this workbook, you can
develop in one tab and then test in the other!

Note: The one/one.app version is great for development, but you should always test on the actual devices and
browsers that you intend to support.

Lesson 1: Create the FindNearby Apex Class
You can use Apex either as a standalone controller or as extension to existing controller logic. In this case, you use a Standard
Controller for the main logic and extend with an Apex class. A Standard Controller is a feature of the platform that provides
baseline functionality like create, read, update and delete without having to add additional code.

Step 1: Create the FindNearby Apex Class
First you need to define the class itself and give it a constructor method. This method will be called when the class is initialized
by the Standard Controller, which will pass in a reference to itself.

1. Go to Setup > Develop > Apex Classes and click New.
2. In the Editor enter the following code

global with sharing class FindNearby {

public FindNearby(ApexPages.StandardSetController controller) { }

}

3. Click Quick Save.

Step 2: Create the getNearby Method
You need to add some logic which will perform the distance query itself. To do this, you annotate this as a RemoteAction
method, which will make the functionality easily exposed to JavaScript within Visualforce.

1. In the code editor, under the constructor method, before the bracket that closes the class add the following:

@RemoteAction
// Find warehouses nearest a geolocation
global static List<Warehouse__c> getNearby(String lat, String lon) {

}

20

Lesson 1: Create the FindNearby Apex ClassTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

2. Click Quick Save.

Note: When you save the file, you get an error: "Error: Compile Error: Non-void method might not return a value
or might have statement after a return statement. at line 6 column 68". You can ignore this message for now, it will
go away after Step 4.

Step 3: Add Default Location Logic
If for some reason the latitude or longitude aren’t sent to the method, you want to provide a default location. Add a check for
incoming lat and lon variables and give them the values if the query was for San Francisco: FindNearbyWarehousesPage
uses the Google Maps JavaScript API v3 to plot the nearby warehouses on a map. The map is resized based on the records
returned by the SOQL query and then each record is plotted as a marker on the map.

1. Within the getNearby method (about line 9), add the following:

// If geolocation isn't set, use San Francisco
if(lat == null || lon == null || lat.equals('') || lon.equals('')) {

lat = '37.77493';
lon = '-122.419416';
}

2. Click Quick Save.

Step 4: Run a Query and Return Results
We have a stub for our method and given it a default set of values for lat and long, now we should call the database itself to
see if there is anything nearby. We will dynamically put the query together based on our information and then use the geolocation
feature of SOQL to be able to find results:

1. Under the default values if statement (about line 15), add the following:

// SOQL query to get the nearest warehouses
String queryString =

'SELECT Id, Name, Location__Longitude__s, Location__Latitude__s, ' +
'Street_Address__c, Phone__c, City__c ' +

'FROM Warehouse__c ' +
'WHERE DISTANCE(Location__c, GEOLOCATION('+lat+','+lon+'), \'mi\') < 20 ' +
'ORDER BY DISTANCE(Location__c, GEOLOCATION('+lat+','+lon+'), \'mi\') ' +
'LIMIT 10';

// Run and return the query results
return(database.Query(queryString));

2. Click Quick Save.

Summary: Check Completed Code
Your completed class should look like the following:

global with sharing class FindNearby {

public FindNearby(ApexPages.StandardSetController controller) { }

21

Step 3: Add Default Location LogicTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

@RemoteAction
// Find warehouses nearest a geolocation
global static List<Warehouse__c> getNearby(String lat, String lon) {

// If geolocation isn't set, use San Francisco
if(lat == null || lon == null || lat.equals('') || lon.equals('')) {

lat = '37.77493';
lon = '-122.419416';

}

// SOQL query to get the nearest warehouses
String queryString =

'SELECT Id, Name, Location__Longitude__s, Location__Latitude__s, ' +
'Street_Address__c, Phone__c, City__c ' +

'FROM Warehouse__c ' +
'WHERE DISTANCE(Location__c, GEOLOCATION('+lat+','+lon+'), \'mi\') < 20 ' +
'ORDER BY DISTANCE(Location__c, GEOLOCATION('+lat+','+lon+'), \'mi\') ' +
'LIMIT 10';

// Run and return the query results
return(database.Query(queryString));

}
}

Lesson 2: Create the Visualforce Page
You now have an Apex extension that will return Warehouses that are close to an existing latitude and longitude. Now you
need an interface for the user to call that query and display results. There a many ways you could build this UI, but to make
a mobile-friendly and dynamic page you are going to use the Google Maps API. The JavaScript required to access the API
and render maps has already been included in the Enhanced Warehouse as a static resource.

Step 1: Bind the extension and Standard Controller to a
Visualforce Page

The first thing you need to do is create a blank page and then associate it with the server-side controller logic. As noted in the
previous step, this will be a Standard Controller and an extension to perform the geolocation search.

1. From Setup, click Develop > Pages.
2. Click New.
3. For the Label and Name enter FindNearbyWarehousesPage.
4. Select the checkbox for Available for Salesforce mobile apps.
5. In the code editor, enter:

<apex:page sidebar="false" showheader="false" standardController="Warehouse__c"
recordSetVar="warehouses" extensions="FindNearby">

</apex:page>

6. Click Quick Save.

22

Lesson 2: Create the Visualforce PageTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

Step 2: Add Static Resources to the Page
You defined the core page element, but before you start writing any JavaScript you will need to have a reference to libraries
you will use. These are stored as static resources in the system and can be associated with the page using the includeScript
component. This component will make sure that the JavaScript is included in the rendered HTML’s header properly. You
are also going to add a small amount of CSS to the page in order to show the map in the correct dimensions.

1. Inside the page component (around line 3), enter the following code:
2. In the code editor, enter:

<!-- Include in Google's Maps API via JavaScript static resource -->
<apex:includeScript value="{!$Resource.googleMapsAPI}" />

<!-- Set this API key to fix JavaScript errors in production -->

<!--http://salesforcesolutions.blogspot.com/2013/01/integration-of-salesforcecom-and-google.html-->

<!--<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY&sensor=false">
</script>-->

<!-- Setup the map to take up the whole window -->
<style>

html, body { height: 100%; }
.page-map, .ui-content, #map-canvas { width: 100%; height:100%; padding: 0; }
#map-canvas { height: min-height: 100%; }

</style>

3. Click Quick Save.

Step 3: Place a Container div for Rendering the Map
You are about ready to write the JavaScript to show the map, but the map will need an HTML div to render the graphics.
Add that towards the end of the page:

1. Before the end page tag (around line 20), enter the following code:

<!-- All content is rendered by the Google Maps code -->
<!-- This minimal HTML justs provide a target for GMaps to write to -->
<body style="font-family: Arial; border: 0 none;"
<div id="map-canvas"</div>
</body>

2. Click Quick Save.

Step 4: Add the initialize JavaScript function
Now our page is ready for some JavaScript to make it work. We will start with a function that we’re going to use when the
page loads. This function will be responsible for calling the Apex method that we created earlier and get the list of warehouses
to display.

23

Step 2: Add Static Resources to the PageTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

1. Under the style tag (around line 19), add the following code:

<script>
function initialize() {

var lat, lon;

// Get the position of the user via device geolocation
if (navigator.geolocation) {

navigator.geolocation.getCurrentPosition(function(position){
lat = position.coords.latitude;
lon = position.coords.longitude;

// Use Visualforce JavaScript Remoting to query for nearby warehouses
Visualforce.remoting.Manager.invokeAction('{!$RemoteAction.FindNearby.getNearby}',

lat, lon,
function(result, event){

if (event.status) {
console.log(result);
createMap(lat, lon, result);

} else if (event.type === 'exception') {
//exception case code
} else {

}
},
{escape: true}

);
});

} else {
// Set default values for map if the device doesn't have geo

/** San Francisco **/
lat = 37.77493;
lon = -122.419416;

var result = [];
createMap(lat, lon, result);

}

}

</script>

2. Click Quick Save.

Step 5: Add the createMap function
Now we have some values of nearby Warehouses, the interface should be able to generate the map from Google. You can see
in the code from the previous step that there are a few references to a createMap function. Since we don’t have that right, the
page won’t work. Let us go ahead and add that.

1. Before the end script tag (around line 55), add the following code:

function createMap(lat, lon, warehouses){
// Get the map div, and center the map at the proper geolocation
var currentPosition = new google.maps.LatLng(lat,lon);
var mapDiv = document.getElementById('map-canvas');
var map = new google.maps.Map(mapDiv, {

center: currentPosition,
zoom: 13,
mapTypeId: google.maps.MapTypeId.ROADMAP

});

24

Step 5: Add the createMap functionTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

// Set a marker for the current location
var positionMarker = new google.maps.Marker({

map: map,
position: currentPosition,
icon: 'http://maps.google.com/mapfiles/ms/micons/green.png'

});

// Keep track of the map boundary that holds all markers
var mapBoundary = new google.maps.LatLngBounds();
mapBoundary.extend(currentPosition);

// Set markers on the map from the @RemoteAction results
var warehouse;
for(var i=0; i<warehouses.length;i++){

warehouse = warehouses[i];
console.log(warehouses[i]);
setupMarker();

}

// Resize map to neatly fit all of the markers
map.fitBounds(mapBoundary);

}

2. Click Quick Save.

Step 6: Create Markers for Nearby Warehouses
The page is nearly complete. Our JavaScript is calling into Apex, getting a list of nearby warehouses, and then using Google
to create a map of our current location. Now we just need to map the results to actual markers we can place on the map. Once
again, we see a reference towards the end of the last code snippet which refers to a setupMarker function being called while
iterating through our found warehouses. Here is the code for that function.

1. Under the fitBounds function call and before the end bracket (around line 88), add the following:

function setupMarker(){
var warehouseNavUrl;

// Determine if we are in Salesforce1 and set navigation link appropriately

try{
if(sforce.one){

warehouseNavUrl =
'javascript:sforce.one.navigateToSObject(\'' + warehouse.Id

+ '\')';
}

} catch(err) {
console.log(err);
warehouseNavUrl = '\\' + warehouse.Id;

}

var warehouseDetails =
'' +
warehouse.Name + '
' +
warehouse.Street_Address__c + '
' +
warehouse.City__c + '
' +
warehouse.Phone__c;

// Create the callout that will pop up on the marker
var infowindow = new google.maps.InfoWindow({

25

Step 6: Create Markers for Nearby WarehousesTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

content: warehouseDetails
});

// Place the marker on the map
var marker = new google.maps.Marker({

map: map,
position: new google.maps.LatLng(

warehouse.Location__Latitude__s,
warehouse.Location__Longitude__s)

});
mapBoundary.extend(marker.getPosition());

// Add the action to open up the panel when it's marker is clicked

google.maps.event.addListener(marker, 'click', function(){
infowindow.open(map, marker);

});
}

2. Now add the following code below that method so that the JavaScript will run when the page loads:

// Fire the initialize function when the window loads
google.maps.event.addDomListener(window, 'load', initialize);

3. Click Quick Save.

Step 7: Check the Final Page
You should be able to test the page now by going to your instance URL in your browser(for example,
https://na15.salesforce.com/) and appending /apex/FindNearbyWarehousesPage. The final page is a lot of
JavaScript and a small bit of HTML. Here is the entire page if you are not seeing a Google Map in the final version:

<apex:page sidebar="false" showheader="false" standardController="Warehouse__c"
recordSetVar="warehouses" extensions="FindNearby">

<!-- Include in Google's Maps API via JavaScript static resource -->
<apex:includeScript value="{!$Resource.googleMapsAPI}" />

<!-- Set this API key to fix JavaScript errors in production -->

<!--http://salesforcesolutions.blogspot.com/2013/01/integration-of-salesforcecom-and-google.html-->

<!--<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY&sensor=false">
</script>-->

<!-- Setup the map to take up the whole window -->
<style>

html, body { height: 100%; }
.page-map, .ui-content, #map-canvas { width: 100%; height:100%; padding: 0; }
#map-canvas { height: min-height: 100%; }

</style>

<script>
function initialize() {

var lat, lon;

// If we can, get the position of the user via device geolocation
if (navigator.geolocation) {

navigator.geolocation.getCurrentPosition(function(position){
lat = position.coords.latitude;
lon = position.coords.longitude;

26

Step 7: Check the Final PageTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

// Use Visualforce JavaScript Remoting to query for nearby warehouses

Visualforce.remoting.Manager.invokeAction('{!$RemoteAction.FindNearby.getNearby}', lat,
lon,

function(result, event){
if (event.status) {

console.log(result);
createMap(lat, lon, result);

} else if (event.type === 'exception') {
//exception case code

} else {

}
},
{escape: true}

);
});

} else {
// Set default values for map if the device doesn't have geolocation

capabilities
/** San Francisco **/
lat = 37.77493;
lon = -122.419416;

var result = [];
createMap(lat, lon, result);

}

}

function createMap(lat, lon, warehouses){
// Get the map div, and center the map at the proper geolocation
var currentPosition = new google.maps.LatLng(lat,lon);
var mapDiv = document.getElementById('map-canvas');
var map = new google.maps.Map(mapDiv, {

center: currentPosition,
zoom: 13,
mapTypeId: google.maps.MapTypeId.ROADMAP

});

// Set a marker for the current location
var positionMarker = new google.maps.Marker({

map: map,
position: currentPosition,
icon: 'http://maps.google.com/mapfiles/ms/micons/green.png'

});

// Keep track of the map boundary that holds all markers
var mapBoundary = new google.maps.LatLngBounds();
mapBoundary.extend(currentPosition);

// Set markers on the map from the @RemoteAction results
var warehouse;
for(var i=0; i<warehouses.length;i++){

warehouse = warehouses[i];
console.log(warehouses[i]);
setupMarker();

}

// Resize map to neatly fit all of the markers
map.fitBounds(mapBoundary);

function setupMarker(){
var warehouseNavUrl;

// Determine if we are in Salesforce1 and set navigation link appropriately

27

Step 7: Check the Final PageTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

try{
if(sforce.one){

warehouseNavUrl =
'javascript:sforce.one.navigateToSObject(\'' + warehouse.Id +

'\')';
}

} catch(err) {
console.log(err);
warehouseNavUrl = '\\' + warehouse.Id;

}

var warehouseDetails =
'' +
warehouse.Name + '
' +
warehouse.Street_Address__c + '
' +
warehouse.City__c + '
' +
warehouse.Phone__c;

// Create the callout that will pop up on the marker
var infowindow = new google.maps.InfoWindow({

content: warehouseDetails
});

// Place the marker on the map
var marker = new google.maps.Marker({

map: map,
position: new google.maps.LatLng(

warehouse.Location__Latitude__s,
warehouse.Location__Longitude__s)

});
mapBoundary.extend(marker.getPosition());

// Add the action to open up the panel when it's marker is clicked
google.maps.event.addListener(marker, 'click', function(){

infowindow.open(map, marker);
});

}
}

// Fire the initialize function when the window loads
google.maps.event.addDomListener(window, 'load', initialize);

</script>

<!-- All content is rendered by the Google Maps code -->
<!-- This minimal HTML justs provide a target for GMaps to write to -->
<body style="font-family: Arial; border: 0 none;">

<div id="map-canvas"></div>
</body>

</apex:page>

Lesson 3: Expose the Page in Salesforce1
Now that the page is complete, you can add it to the mobile app. In order to do that, you first need to create a tab and then
you can add the tab to the mobile navigation menu.

Step 1: Create a Tab
Start by creating a tab.

1. From Setup, click Create > Tabs.

28

Lesson 3: Expose the Page in Salesforce1Tutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

2. In the Visualforce Tabs section, click New.
3. In the Visualforce Page drop-down list, select FindNearbyWarehousesPage.
4. In the Tab Label field, enter Find Nearby Warehouses.

The label field is what users see both on the full site and the mobile app. With that in mind, keep your labels no longer
than this.

5. Click into the Tab Style field, and select the Globe style.

The icon for this style appears as the icon for the page in the Salesforce1 mobile app’s navigation menu.

6. Click Next, and Next again.
7. Deselect the Include Tab checkbox so that the tab isn’t included in any of the apps in the full site. You only want this tab

to appear when users are viewing it on their mobile device.
8. Click Save.

Now that you’ve created the Visualforce page and the tab, you’re ready to add the new tab to the navigation menu.

Step 2: Add the Tab to Mobile Navigation
In this step you add the tab as a navigation menu item in the Salesforce1 mobile app. The menu item will instantly become
available to mobile app users that have access to it.

1. From Setup, click Mobile Administration > Mobile Navigation.
2. Move Find Nearby Warehouses to the Selected list and then Save.

Step 3: Try Out the App
Now you can search nearby warehouses on your device.

1. Open the Salesforce1 app on your mobile device. Refresh the app by pulling down.

2. Tap to access the navigation menu. You should see Find Nearby Warehouses under the Apps section.

Note:

• If you’re using the one/one.app browser version, you may need to refresh the browser to see the page in the
navigation menu.

• If you’re using the installed mobile app, you may need to log out and log in again to see the change.

3. Tap Find Nearby Warehouses.

29

Step 2: Add the Tab to Mobile NavigationTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

4. Click OK when you see a prompt that asks to use your current location. A map that contains all the nearby warehouse
locations within 20 miles appears.

Note: If you don’t receive a prompt, this may be related to your device settings. If that’s the case, the geographical
area should default to San Francisco.

30

Step 3: Try Out the AppTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

The warehouses in the package sample data are all located in the San Francisco area. If you’re testing this from another location,
be sure to add a warehouse located within 20 miles. That’s it! You can see how easy it is to make standard pages and tabs
available to your mobile users. For more information about development guidelines for Visualforce pages, see Visualforce
Guidelines and Best Practices.
https://developer.salesforce.com/docs/atlas.en-us.salesforce1.meta/salesforce1/vf_dev_best_practices.htm

31

Step 3: Try Out the AppTutorial 6: Develop a Visualforce Page and Add it to the
Navigation Menu

	SF-Workbook-S1_cover
	s1_mobile_app_workbook_v3-2
	About the Salesforce1 Mobile App Workbook
	Tutorial 1: Initial Set Up
	Step 1: Get a New DE Org
	Step 2: Create an App
	Step 3: Download the Salesforce1 Mobile App

	Tutorial 2: Use the Mobile App
	Step 1: Create Your First Post
	Step 2: Create a Task
	Step 3: Use the Today app
	Step 4: Navigate to a Record
	Step 5: Try a Record Action
	Step 6: Add a Record to Your App
	Step 7: Pin Frequently Used Searches

	Tutorial 3: Optimize for the Mobile Display
	Step 1: Create a Page Layout for a Mobile User Profile
	Step 2: Display Key Fields Using Compact Layouts
	Step 3: Add Mobile Cards to the Record Related Information Page
	Step 4: Enable Notifications

	Tutorial 4: Quickly Create Records Using Global Actions
	Step 1: Create a Global Action
	Step 2: Customize the Global Publisher Layout

	Tutorial 5: Create Related Records with Object-Specific Actions
	Step 1: Define an Object-Specific Action
	Step 2: Choose Fields and Predefine Values
	Step 3: Customize an Object-Specific Layout

	Tutorial 6: Develop a Visualforce Page and Add it to the Navigation Menu
	Prerequisites: Set Up Your Development Environment
	Step 1: Install the Enhanced Warehouse Data Model
	Step 2: Access the Mobile Browser App

	Lesson 1: Create the FindNearby Apex Class
	Step 1: Create the FindNearby Apex Class
	Step 2: Create the getNearby Method
	Step 3: Add Default Location Logic
	Step 4: Run a Query and Return Results
	Summary: Check Completed Code

	Lesson 2: Create the Visualforce Page
	Step 1: Bind the extension and Standard Controller to a Visualforce Page
	Step 2: Add Static Resources to the Page
	Step 3: Place a Container div for Rendering the Map
	Step 4: Add the initialize JavaScript function
	Step 5: Add the createMap function
	Step 6: Create Markers for Nearby Warehouses
	Step 7: Check the Final Page

	Lesson 3: Expose the Page in Salesforce1
	Step 1: Create a Tab
	Step 2: Add the Tab to Mobile Navigation
	Step 3: Try Out the App

