
Salesforce.com: Summer ’14

Salesforce Mobile Push Notifications
Implementation Guide

Last updated: May 6, 2014

© Copyright 2000–2014 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

Mobile Push Notifications Overview..1
Push Notification Registration and Flow..1
Check a User's Mobile Push Registrations..2

Steps for Implementing Mobile Push Notifications...3
Step 1. Developer Registration with Mobile OS Vendors..3
Step 2. Creating a Connected App...4

Create a Connected App for Android...4
Create a Connected App for Apple iOS...5

Step 3. Configure Your Mobile SDK App..6
Enabling Push Notifications in a Salesforce Mobile SDK Android App..7
Enable Push Notifications in a Salesforce Mobile SDK iOS App..7

Step 4. Using Apex Triggers to Send Push Notifications...8

Reference...11
PushNotification Class..11

PushNotification Constructors..12
PushNotification Methods..12

PushNotificationPayload Class...14
PushNotificationPayload Methods..14

Debug Log Events..17

Index...18

i

Table of Contents

Mobile Push Notifications Overview
Mobile push notifications allow Force.com mobile application developers to easily push notifications to their users’ mobile
devices when business events occur in the users’ organizations.

Salesforce push notifications leverage the connected app framework and support customer apps built in-house.

Business events in the user’s organization are trapped using Apex triggers that specify the notification message payload and
recipient users. The push notifications feature hands off notifications to services operated by the device OS vendors, such as
Apple or Google, for eventual delivery to user mobile devices.

Push Notification Registration and Flow
Check a User's Mobile Push Registrations

From a User page in your organization, an administrator can easily check which of the user’s devices are currently registered
for push notifications. Checking the registrations may help you troubleshoot push notification failures.

Push Notification Registration and Flow
Several entities are involved when sending a push notification:

• The OS vendor that delivers the notification to devices

• The Salesforce organization that sends the notification

• The mobile devices that receive and display the notification

Proper registration must happen with these different entities so that the push notification can be delivered.

This is an outline of the registration process for developers.

1. Register with the mobile OS vendor, such as Apple or Google, for push service.
2. Create a connected app in Salesforce to upload the push credentials, such as the iOS .p12 certificate or the Android token.
3. Enable the mobile client app to handle push notifications using the Salesforce Mobile SDK.
4. Write Apex triggers to send push notifications when certain events occur on Salesforce records.

The following figure illustrates the complete push notification flow for customers who develop their own mobile apps and
Apex triggers. The flow consists of the following sequence of events:

1. Developer registration with the OS vendor (Apple in this figure)
2. Connected app setup in Salesforce
3. Sending the push notification via the trigger from the Salesforce organization
4. Delivery of the push notification to mobile devices by the OS vendor

1

Push Notification Registration and FlowMobile Push Notifications Overview

Figure 1: Push Notification Flow for Customers

Salesforce sends the message to the users specified in the send call of the Apex Messaging.PushNotification class.

Check a User's Mobile Push Registrations
From a User page in your organization, an administrator can easily check which of the user’s devices are currently registered
for push notifications. Checking the registrations may help you troubleshoot push notification failures.

1. In Setup click Manage Users > Users.
2. Select a user’s name from the Full Name column.
3. Under User Detail, click View next to Mobile Push Registrations.

Note: If a device you expected doesn’t appear in the list, it doesn’t necessarily mean that the device isn’t properly
configured. Mobile push registrations are volatile and depend on the device state as well as the mobile app state.

2

Check a User's Mobile Push RegistrationsMobile Push Notifications Overview

Steps for Implementing Mobile Push Notifications
To implement mobile push notifications, you configure each of the participating technologies.

Step 1. Developer Registration with Mobile OS Vendors

This step asks the OS vendor to be prepared to handled Salesforce push notifications sent to your app. Developer registration
also provides some information you’ll need to finish configuring your Salesforce connected app.

Step 2. Creating a Connected App

Once you’ve registered your mobile client app with the mobile OS vendor, such as Apple or Google, for push capability, the
next step is to create a connected app in Salesforce.

Step 3. Configure Your Mobile SDK App

In your Mobile SDK app, implement push notification protocols required by Salesforce and the device OS provider.

Step 4. Using Apex Triggers to Send Push Notifications

After registering with the mobile OS vendor for push notification service and creating a connected app, you can send push
notifications to a mobile client app using Apex triggers.

Step 1. Developer Registration with Mobile OS Vendors
This step asks the OS vendor to be prepared to handled Salesforce push notifications sent to your app. Developer registration
also provides some information you’ll need to finish configuring your Salesforce connected app.

To register your mobile client app, follow the process for your target mobile OS.

Android Registration
When developing an Android app that supports push notifications, remember these key points:

• You must be a member of the Android Developer Program.
• You can test GCM push services only on an Android device with either the Android Market app or Google Play Services

installed. Push notifications don’t work on an Android emulator.

Salesforce sends push notifications to Android apps through the Google Cloud Messaging for Android (GCM) framework.
See http://developer.android.com/google/gcm/index.html for an overview of this framework.

To begin, create a Google API project for your app. Your project must have the GCM for Android feature enabled. See
http://developer.android.com/google/gcm/gs.html for instructions on setting up your project.

The setup process for your Google API project creates a key for your app. Once you’ve finished the project configuration,
you’ll need to add the GCM key to your connected app settings.

Note: Push notification registration occurs at the end of the OAuth login flow. Therefore, an app does not receive
push notifications unless and until the user logs into a Salesforce org.

iOS Registration
When developing an iOS app that supports push notifications, remember these key points:

• You must be a member of the iOS Developer Program.
• You can test Apple push services only on an iOS physical device. Push notifications don’t work in the iOS simulator.
• There are no guarantees that all push notifications will reach the target device, even if the notification is accepted by Apple.

3

Step 1. Developer Registration with Mobile OS VendorsSteps for Implementing Mobile Push Notifications

http://developer.android.com/google/gcm/index.html
http://developer.android.com/google/gcm/gs.html

• Apple Push Notification Services setup requires the use of the OpenSSL command line utility provided in Mac OS X.

Before you can complete registration on the Salesforce side, you need to register with Apple Push Notification Services (APNS).

Registration with APNS requires the following items.

Certificate Signing Request (CSR) File
Generate this request using the Keychain Access feature in Mac OS X. You’ll also use OpenSSL to export the CSR
private key to a file for later use.

App ID from iOS Developer Program
In the iOS Developer Member Center, create an ID for your app, then use the CSR file to generate a certificate. Next,
use OpenSSL to combine this certificate with the private key file to create an appkey.p12 file. You’ll need this file
later to configure your connected app.

iOS Provisioning Profile
From the iOS Developer Member Center, create a new provisioning profile using your iOS app ID and developer
certificate. You then select the devices to include in the profile and download to create the provisioning profile. You can
then add the profile to Xcode. Install the profile on your test device using Xcode's Organizer.

When you’ve completed the configuration, sign and build your app in Xcode. Check the build logs to verify that the app is
using the correct provisioning profile. To view the content of your provisioning profile, run the following command at the
Terminal window: security cms -D -i <your profile>.mobileprovision

For detailed instructions see:

• Local and Push Notification Programming Guide at https://developer.apple.com/library/mac
• http://www.raywenderlich.com/32960/

Step 2. Creating a Connected App
Once you’ve registered your mobile client app with the mobile OS vendor, such as Apple or Google, for push capability, the
next step is to create a connected app in Salesforce.

The connected app enables you to provide the registration certificate or token of your mobile client app so that Salesforce can
send push notifications. Also, the connected app provides the unique API name that identifies the mobile app to send
notifications to.

Create a Connected App for Android
Create a Connected App for Apple iOS

Create a Connected App for Android
To create a connected app for Android:

1. From Setup, click Create > Apps.
2. In the Connected Apps section, click either Edit next to an existing connected app, or New to create a new connected

app.
3. If you’re creating a new connected app:

a. Enter a unique name for your connected app. The API name field is auto-filled.
b. Optionally, fill in other fields, such as a description for your connected app.
c. Enter a contact email address.
d. In the OAuth Settings section, select Enable OAuth Settings.

4

Step 2. Creating a Connected AppSteps for Implementing Mobile Push Notifications

https://developer.apple.com/library/mac
http://www.raywenderlich.com/32960/

e. Enter a callback URL.
f. Select OAuth scopes. At a minimum, select Access and manage your data (api) and Perform requests on your behalf

at any time (refresh_token).

4. Under Mobile App Settings, select Push Messaging Enabled.
5. For Supported Push Platform, select Android GCM.
6. For Key for Server Applications (API Key), enter the key you obtained during the developer registration with Google.

7. Click Save.
After saving a new connected app, you’ll get a consumer key. Mobile apps use this key as their connection token.

Create a Connected App for Apple iOS
1. From Setup, click Create > Apps.
2. In the Connected Apps section, click either Edit next to an existing connected app, or New to create a new connected

app.
3. If you’re creating a new connected app:

a. Enter a unique name for your connected app. The API name field is auto-filled.
b. Optionally, fill in other fields, such as a description for your connected app.
c. Enter a contact email address.
d. In the OAuth Settings section, select Enable OAuth Settings.
e. Enter a callback URL.
f. Select OAuth scopes. At a minimum, select Access and manage your data (api) and Perform requests on your behalf

at any time (refresh_token).

4. In the Mobile App Settings section, select Mobile and then Push Messaging Enabled.
5. For Supported Push Platform, select Apple.

When you select the Supported Push Platform option, the dialog expands to show additional settings.

6. Add the appkey.p12 file and its password to your connected app configuration under Mobile App Settings > Certificate
and Mobile App Settings > Certificate Password.

5

Create a Connected App for Apple iOSSteps for Implementing Mobile Push Notifications

Step 3. Configure Your Mobile SDK App
In your Mobile SDK app, implement push notification protocols required by Salesforce and the device OS provider.

Follow the instructions for your target mobile platform (Android or iOS). Salesforce Mobile SDK does not currently support
push notifications for hybrid apps.

Enabling Push Notifications in a Salesforce Mobile SDK Android App
Enable Push Notifications in a Salesforce Mobile SDK iOS App

Enabling Push Notifications in a Salesforce Mobile SDK Android
App

1. Add an entry for androidPushNotificationClientId.

a. In res/values/bootconfig.xml (for native apps):

<string name="androidPushNotificationClientId">1234567890</string>

b. In assets/www/bootconfig.json (for hybrid apps):

"androidPushNotificationClientId": "1234567890"

This example value represents the project number of the Google project that is authorized to send push notifications to
Android devices.

Behind the scenes, Mobile SDK automatically reads this value and uses it to register the device against the Salesforce
connected app. This validation allows Salesforce to send notifications to the connected app. At logout, Mobile SDK also
automatically unregisters the device for push notifications.

2. Create a class in your app that implements PushNotificationInterface. PushNotificationInterface is a
Mobile SDK Android interface for handling push notifications. PushNotificationInterface has a single method,
onPushMessageReceived(Bundle message).

public interface PushNotificationInterface {
public void onPushMessageReceived(Bundle message);

}

6

Step 3. Configure Your Mobile SDK AppSteps for Implementing Mobile Push Notifications

In this method you implement your custom functionality for displaying, or otherwise disposing of, push notifications.

3. In the onCreate() method of your Application subclass, call the
SalesforceSDKManager.setPushNotificationReceiver() method, passing in your implementation of
PushNotificationInterface. Call this method immediately after the SalesforceSDKManager.initNative()
call.

@Override
public void onCreate() {

super.onCreate();
SalesforceSDKManager.initNative(getApplicationContext(),

new KeyImpl(), MainActivity.class);
SalesforceSDKManager.getInstance().

setPushNotificationReceiver(myPushNotificationInterface);
}

Enable Push Notifications in a Salesforce Mobile SDK iOS App
Salesforce Mobile SDK for iOS provides the SFPushNotificationManager class to handle push registration. To use it,
import <SalesforceSDKCore/SFPushNotificationManager>. The SFPushNotificationManager class is available
as a runtime singleton:

[SFPushNotificationManager sharedInstance]

This class implements four registration methods:

- (void)registerForRemoteNotifications;
- (void)didRegisterForRemoteNotificationsWithDeviceToken:

(NSData*)deviceTokenData;
- (BOOL)registerForSalesforceNotifications; // for internal use
- (BOOL)unregisterSalesforceNotifications; // for internal use

Mobile SDK calls registerForSalesforceNotifications after login and unregisterSalesforceNotifications
at logout. You call the other two methods from your AppDelegate class.

1. Register with Apple for push notifications by calling registerForRemoteNotifications. Place the call in the
application:didFinishLaunchingWithOptions: method.

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
self.window = [[UIWindow alloc]

initWithFrame:[UIScreen mainScreen].bounds];
[self initializeAppViewState];

//
// Register with APNS for push notifications. Note that,
// to receive push notifications from Salesforce, you
// also need to register for Salesforce notifications in the
// application:
// didRegisterForRemoteNotificationsWithDeviceToken:
// method (as demonstrated below.)
//
[[SFPushNotificationManager sharedInstance]

registerForRemoteNotifications];

[[SFAuthenticationManager sharedManager]

7

Enable Push Notifications in a Salesforce Mobile SDK iOS
App

Steps for Implementing Mobile Push Notifications

loginWithCompletion:self.initialLoginSuccessBlock
failure:self.initialLoginFailureBlock];

return YES;
}

If registration succeeds, Apple passes a device token to the
application:didRegisterForRemoteNotificationsWithDeviceToken: method of your AppDelegate class.

2. Forward the device token from Apple to SFPushNotificationManager by calling
didRegisterForRemoteNotificationsWithDeviceToken on the SFPushNotificationManager shared
instance.

- (void)application:(UIApplication*)application
didRegisterForRemoteNotificationsWithDeviceToken:

(NSData*)deviceToken
{

//
// Register your device token with
// the push notification manager
//
[[SFPushNotificationManager sharedInstance]

didRegisterForRemoteNotificationsWithDeviceToken:deviceToken];
}}

3. Register to receive Salesforce notifications through the connected app by calling
registerForSalesforceNotifications. Make this call only if the access token for the current session is valid.

- (void)application:(UIApplication*)application
didRegisterForRemoteNotificationsWithDeviceToken:

(NSData*)deviceToken
{

//
// Register your device token with the
// push notification manager
[[SFPushNotificationManager sharedInstance]

didRegisterForRemoteNotificationsWithDeviceToken:deviceToken];

if ([SFAccountManager sharedInstance].credentials.accessToken
!= nil){
[[SFPushNotificationManager sharedInstance]

registerForSalesforceNotifications];
}}

4. Add the following method to log an error if registration with Apple fails.

- (void)application:(UIApplication*)application
didFailToRegisterForRemoteNotificationsWithError:

(NSError*)error
{

NSLog(@"Failed to get token, error: %@", error);
}

Step 4. Using Apex Triggers to Send Push Notifications
After registering with the mobile OS vendor for push notification service and creating a connected app, you can send push
notifications to a mobile client app using Apex triggers.

8

Step 4. Using Apex Triggers to Send Push NotificationsSteps for Implementing Mobile Push Notifications

Push notification triggers use methods in the Apex Messaging.PushNotification and
Messaging.PushNotificationPayload classes. The connected app in the Salesforce organization represents the mobile
client app that will receive the notifications.

Important: To send push notifications to a connected app, Apex triggers must be added in the same organization in
which the connected app is created.

Sample Apex Trigger
This sample Apex trigger sends push notifications to the connected app named Test_App, which corresponds to a mobile
app on iOS mobile clients. The trigger fires after cases have been updated and sends the push notification to two users: the
case owner and the user who last modified the case.

trigger caseAlert on Case (after update) {

for(Case cs : Trigger.New)
{

// Instantiating a notification
Messaging.PushNotification msg =

new Messaging.PushNotification();

// Assembling the necessary payload parameters for Apple.
// Apple params are:
// (<alert text>,<alert sound>,<badge count>,
// <free-form data>)
// This example doesn't use badge count or free-form data.
// The number of notifications that haven't been acted
// upon by the intended recipient is best calculated
// at the time of the push. This timing helps
// ensure accuracy across multiple target devices.
Map<String, Object> payload =

Messaging.PushNotificationPayload.apple(
'Case ' + cs.CaseNumber + ' status changed to: '
+ cs.Status, '', null, null);

// Adding the assembled payload to the notification
msg.setPayload(payload);

// Getting recipient users
String userId1 = cs.OwnerId;
String userId2 = cs.LastModifiedById;

// Adding recipient users to list
Set<String> users = new Set<String>();
users.add(userId1);
users.add(userId2);

// Sending the notification to the specified app and users.
// Here we specify the API name of the connected app.
msg.send('Test_App', users);

}
}

Sample Android Payload
The trigger sample uses Messaging.PushNotificationPayload to create a payload for an iOS notification. Unlike iOS,
Android doesn’t have special attributes or requirements for the payload; it just needs to be in JSON format. In Apex, you

9

Step 4. Using Apex Triggers to Send Push NotificationsSteps for Implementing Mobile Push Notifications

create the Android payload as a MAP<String,ANY> object. The Messaging.PushNotification class handles conversion
to JSON. Here is a sample Android payload.

Map<String, Object> androidPayload = new Map<String, Object>();
androidPayload.put('number', 1);
androidPayload.put('name', 'test');

10

Step 4. Using Apex Triggers to Send Push NotificationsSteps for Implementing Mobile Push Notifications

PushNotification Class
PushNotification is used to configure push notifications and send them from an Apex trigger.

Namespace
Messaging

Example
This sample Apex trigger sends push notifications to the connected app named Test_App, which corresponds to a mobile
app on iOS mobile clients. The trigger fires after cases have been updated and sends the push notification to two users: the
case owner and the user who last modified the case.

trigger caseAlert on Case (after update) {

for(Case cs : Trigger.New)
{

// Instantiating a notification
Messaging.PushNotification msg =

new Messaging.PushNotification();

// Assembling the necessary payload parameters for Apple.
// Apple params are:
// (<alert text>,<alert sound>,<badge count>,
// <free-form data>)
// This example doesn't use badge count or free-form data.
// The number of notifications that haven't been acted
// upon by the intended recipient is best calculated
// at the time of the push. This timing helps
// ensure accuracy across multiple target devices.
Map<String, Object> payload =

Messaging.PushNotificationPayload.apple(
'Case ' + cs.CaseNumber + ' status changed to: '
+ cs.Status, '', null, null);

// Adding the assembled payload to the notification
msg.setPayload(payload);

// Getting recipient users
String userId1 = cs.OwnerId;
String userId2 = cs.LastModifiedById;

// Adding recipient users to list
Set<String> users = new Set<String>();
users.add(userId1);
users.add(userId2);

// Sending the notification to the specified app and users.
// Here we specify the API name of the connected app.
msg.send('Test_App', users);

}
}

REFERENCE

11

PushNotification Constructors
PushNotification Methods

PushNotification Constructors
The following are the constructors for PushNotification.

PushNotification()

Creates a new instance of the Messaging.PushNotification class.

PushNotification(Map<String, Object> payload)

Creates a new instance of the Messaging.PushNotification class using the specified payload parameters as key-value
pairs. When you use this constructor, you don’t need to call setPayload to set the payload.

PushNotification()
Creates a new instance of the Messaging.PushNotification class.

Signature

public PushNotification()

PushNotification(Map<String, Object> payload)
Creates a new instance of the Messaging.PushNotification class using the specified payload parameters as key-value
pairs. When you use this constructor, you don’t need to call setPayload to set the payload.

Signature

public PushNotification(Map<String, Object> payload)

Parameters

payload

Type:Map<String, Object>

The payload, expressed as a map of key-value pairs.

PushNotification Methods
The following are the methods for PushNotification. All are global methods.

send(String application, Set<String> users)

Sends a push notification message to the specified users.

setPayload(Map<String, Object> payload)

Sets the payload of the push notification message.

12

PushNotification ConstructorsReference

setTtl(Integer ttl)

Reserved for future use.

send(String application, Set<String> users)
Sends a push notification message to the specified users.

Signature

public void send(String application, Set<String> users)

Parameters

application

Type: String

The connected app API name. This corresponds to the mobile client app the notification should be sent to.

users

Type: Set

A set of user IDs that correspond to the users the notification should be sent to.

Example

See the Push Notification Example.

setPayload(Map<String, Object> payload)
Sets the payload of the push notification message.

Signature

public void setPayload(Map<String, Object> payload)

Parameters

payload

Type: Map<String, Object>

The payload, expressed as a map of key-value pairs.

Payload parameters can be different for each mobile OS vendor. For more information on Apple’s payload parameters,
search for “Apple Push Notification Service” at https://developer.apple.com/library/mac/documentation/.

To create the payload for an Apple device, see the PushNotificationPayload Class.

Example

See the Push Notification Example.

13

PushNotification MethodsReference

https://developer.apple.com/library/mac/documentation

setTtl(Integer ttl)
Reserved for future use.

Signature

public void setTtl(Integer ttl)

Parameters

ttl

Type: Integer

Reserved for future use.

PushNotificationPayload Class
Contains methods to create the notification message payload for an Apple device.

Namespace
Messaging

Usage
Apple has specific requirements for the notification payload. and this class has helper methods to create the payload. For more
information on Apple’s payload parameters, search for “Apple Push Notification Service” at
https://developer.apple.com/library/mac/documentation/.

Example
See the Push Notification Example.

PushNotificationPayload Methods

PushNotificationPayload Methods
The following are the methods for PushNotificationPayload. All are global static methods.

apple(String alert, String sound, Integer badgeCount, Map<String, Object> userData)

Helper method that creates a valid Apple payload from the specified arguments.

apple(String alertBody, String actionLocKey, String locKey, String[] locArgs, String launchImage, String sound, Integer
badgeCount, Map<String, Object> userData)

Helper method that creates a valid Apple payload from the specified arguments.

apple(String alert, String sound, Integer badgeCount, Map<String,
Object> userData)

Helper method that creates a valid Apple payload from the specified arguments.

14

PushNotificationPayload ClassReference

https://developer.apple.com/library/mac/documentation/

Signature

public static Map<String, Object> apple(String alert, String sound, Integer badgeCount,
Map<String, Object> userData)

Parameters

alert

Type: String

Notification message to be sent to the mobile client.

sound

Type: String

Name of a sound file to be played as an alert. This sound file should be in the mobile application bundle.

badgeCount

Type: Integer

Number to display as the badge of the application icon.

userData

Type: Map<String, Object>

Map of key-value pairs that contains any additional data used to provide context for the notification. For example, it can
contain IDs of the records that caused the notification to be sent. The mobile client app can use these IDs to display
these records.

Return Value

Type:Map<String, Object>

Returns a formatted payload that includes all of the specified arguments.

Usage
To generate a valid payload, you must provide a value for at least one of the following parameters: alert, sound, badgeCount.

Example

See the Push Notification Example.

apple(String alertBody, String actionLocKey, String locKey, String[]
locArgs, String launchImage, String sound, Integer badgeCount,
Map<String, Object> userData)

Helper method that creates a valid Apple payload from the specified arguments.

Signature

public static Map<String, Object> apple(String alertBody, String actionLocKey, String locKey,
String[] locArgs, String launchImage, String sound, Integer badgeCount, Map<String, Object>
userData)

15

PushNotificationPayload MethodsReference

Parameters

alertBody

Type: String

Text of the alert message.

actionLocKey

Type: String

If a value is specified for the actionLocKey argument, an alert with two buttons is displayed. The value is a key to get
a localized string in a Localizable.strings file to use for the right button’s title.

locKey

Type: String

Key to an alert-message string in a Localizable.strings file for the current localization.

locArgs

Type: List<String>

Variable string values to appear in place of the format specifiers in locKey.

launchImage

Type: String

File name of an image file in the application bundle.

sound

Type: String

Name of a sound file to be played as an alert. This sound file should be in the mobile application bundle.

badgeCount

Type: Integer

Number to display as the badge of the application icon.

userData

Type: Map<String, Object>

Map of key-value pairs that contains any additional data used to provide context for the notification. For example, it can
contain IDs of the records that caused the notification to be sent. The mobile client app can use these IDs to display
these records.

Return Value

Type: Map<String, Object>

Returns a formatted payload that includes all of the specified arguments.

Usage
To generate a valid payload, you must provide a value for at least one of the following parameters: alert, sound, badgeCount.

16

PushNotificationPayload MethodsReference

Debug Log Events
The mobile push notification service logs events that are useful to understand when you are monitoring an Apex debug log.

Events
This table lists events that are logged, what fields or other information get logged with each event, as well as what combination
of log level and category cause an event to be logged.

For more information on log levels and categories, as well as how to use the Developer Console or monitor a debug log, see
the Force.com Apex Code Developer's Guide.

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

ERRORApex CodeApp namespace, app name.

This event occurs when Apex code is trying
to send a notification to an app that doesn't
exist in the org, or is not push-enabled.

PUSH_NOTIFICATION_INVALID_APP

ERRORApex CodeApp namespace, app name.

This event indicates that the certificate is
invalid. For example, it’s expired.

PUSH_NOTIFICATION_INVALID_CERTIFICATE

ERRORApex CodeApp namespace, app name, service type
(Apple or Android GCM), user ID, device,
payload (substring), payload length.

This event occurs when a notification
payload is too long.

PUSH_NOTIFICATION_INVALID_NOTIFICATION

DEBUGApex CodeApp namespace, app name.

This event occurs when none of the users
we're trying to send notifications to have
devices registered.

PUSH_NOTIFICATION_NO_DEVICES

INFOApex CodeThis event occurs when push notifications
are not enabled in your org.

PUSH_NOTIFICATION_NOT_ENABLED

DEBUGApex CodeApp namespace, app name, service type
(Apple or Android GCM), user ID, device,
payload (substring)

This event records that a notification was
accepted for sending. We don't guarantee
delivery of the notification.

PUSH_NOTIFICATION_SENT

17

Debug Log EventsReference

http://www.salesforce.com/us/developer/docs/apexcode/index_Left.htm#StartTopic=Content/code_setting_debug_log_levels.htm

Index

A

Apex
debug logs 17

C

classes
PushNotification 11

Classes
PushNotificationPayload 14

D

Debug logs 17

M

Mobile Push Notification Service
check user device registrations 2
configuring a Mobile SDK app 6
Connected App Creation 4

Mobile Push Notification Service (continued)
Connected App Creation for Android 4
Connected App Creation for Apple iOS 5
developer registration with OS vendors 3
enabling a Mobile SDK Android client app 6
enabling a Mobile SDK iOS client app 7
registration and Flow 1
steps for implementing 3
using Apex Triggers 8

mobile push notifications
PushNotification class 11

P

push notifications
overview 1
PushNotification class 11

PushNotification
classes 11

PushNotificationPayload
classes 14

18

Index

	Mobile Push Notifications Overview
	Push Notification Registration and Flow
	Check a User's Mobile Push Registrations

	Steps for Implementing Mobile Push Notifications
	Step 1. Developer Registration with Mobile OS Vendors
	Step 2. Creating a Connected App
	Create a Connected App for Android
	Create a Connected App for Apple iOS

	Step 3. Configure Your Mobile SDK App
	Enabling Push Notifications in a Salesforce Mobile SDK Android App
	Enable Push Notifications in a Salesforce Mobile SDK iOS App

	Step 4. Using Apex Triggers to Send Push Notifications

	Reference
	PushNotification Class
	PushNotification Constructors
	PushNotification()
	PushNotification(Map<String, Object> payload)

	PushNotification Methods
	send(String application, Set<String> users)
	setPayload(Map<String, Object> payload)
	setTtl(Integer ttl)

	PushNotificationPayload Class
	PushNotificationPayload Methods
	apple(String alert, String sound, Integer badgeCount, Map<String, Object> userData)
	apple(String alertBody, String actionLocKey, String locKey, String[] locArgs, String launchImage, String sound, Integer badgeCount, Map<String, Object> userData)

	Debug Log Events

	Index

