Version 28.0: Summer '13

Salesforce Mobile SDK Development Guide

Salesforce.com Mobile Development

Last updated: July 9, 2013

© Copyright 2000-2013 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents
Table of Contents

Chapter 1: Introduction to Mobile Development...........ccouiiiiuiiiiiiiiiiniiinniiiniiiinnicneneeneeen, 1
TNtENAEA AUAIENCE.veceiieteteeeeeeteeee ettt ettt ettt e te et e teete et e teeteeat e seesseaseassesseasesssesseseessessenseessenseseessensateersensans 2
About Native, HTMLS5, and Hybrid Developmient........c.cvuvrieiriiieeiereiererereiererereieeneseseneses e eesesteseesesesesesesesesssssssssssssseens 2
Enough Talk; I Ready.....cooviiuiuiiiiiicciiecctr ettt ettt ettt ettt e nane 5
Development PrereqUiSItes. ... ueuiiiririeueecieieeeieteitese ettt e e st a bt e e se et e e s s neaeaes 5
Choosing Between Database.com and FOrce.com. ..o 6

SIEN UP £0r FOTCE.COML ..ttt ettt ettt anes 6

Sign Up £0r Database.COmLcuiiiiuiiiiiiiiiiiiiiiiccee ettt sttt 6
IMODIlE SIDK TNSTAllATION. 1cuvictierreitieeietieteetesteeteetestesteetestesstessesseesaessesseassessasseassassasssassassesssessassesssassessasssessesssessansensesssessenseesses 6
Mobile SDK NPM Packages.........cooueuiriiiiiiiiiiieiieeieietccte ettt 7
Mobile SDK GitHUD REPOSILOIY.....cvrviuiuiuiiirieiciiiiiririciccireeteeietre e e 7
Keeping Up With the IMobile SDK.......c.cciiiiiiiieee ettt 7
What's New N This REIEaSE......ccuiviicieiiiiitiitiieeieeeettetiet ettt ettt ete et et s e s e saeseete et e ssessesseseetesessassesseseesesensenseseeses 7
Chapter 2: Native i0S Development..........oueiviiiniiiniiiniiiniiiniriiriiriirciecnrenssesseesssesssessssessnes 8
TOS INAIVE QUICK STATT..1itiitiiiisiieieieiietestese et e e et et e e et etesteestesbessaestessessaassassasseassassansaassasseassessasseassassenseassassessaessensesssassans 9
Native 10S REQUITEIMEIIS.cviiiiiieiiiciieieee ettt a et st b e bt a e a s e b et a et s e s e bt neas 9
Installing and Uninstalling Salesforce Mobile SDK for 10S......ccociiiiiiiiiiiiecciree e eeaes 9
Creating a Native 10S APD 10 XCOE....ucuiiriririeriiriniricteittrtrteetei ettt sttt bttt s bt e et ettt ae bt e saesenenen 10
Running the Xcode Project Template ApPp.....coccciieeeeeeerereieieieininienesesesesesetseseseeseesesesesesesesesesesesesessssssssesssssenes 12
Developing a NatiVe 108 APP..ccv ettt ettt stesese st sae bt se st s st st s e b s et st st esesese et et seseatatseeseseneatasnsene 13
About Login and Passcodes. ..ot 13

ADbout Memory IMANaZemEnt. . . e ettt rereatt st ese ettt eaeseses et be et sttt s sttt st be sttt et se et seeeene 13
Overview of Application FLOW.......cccouvuiiiiiiiiiiiiiecc et e 13
APPDELEZAE ClASS...euvvrviuiiririeieiiiirtetetee sttt ettt be ettt a ettt b ettt ettt ettt bt e e e 14

ADOUL VIEW CONTIOLIETS. c..vitiitiiiiiieieiestietet et et et e s e este e eteessesteestessessaessessesssassassasssassasaassassesssassassensesssessenssessansens 15
ROOTVIEWCONTIOLET CLaSS....uviiiieiieiiieitieetieeie ettt eett et e e teete e be e teesteesteeesseeseeseaseesaesssesnseessaensaessaesssessseesseeseanseans 16

About Salesforce REST APIs......ciiiiiiicieieieciecietetett ettt ettt sttt ete et et e s esseseetestassassesseseesessassessessesestessensans 17
SUPPOItEd OPEIAtIONS.uiuiiuiiiiiiiiei ittt b e s e snenas 18

SFRESTAPT TN ACE. c.cuveuretiitiiteieteeteteet ettt ettt et ettt ete et e et e be s esseteetessessesseseesessassansessessetessessasseseesestessensans 20
SFRestDelegate Protocol.........c.cioiiiiiiiiiiiiiiiiiiicicre ettt e 20

Creating REST REQUESTS....cveuiiireririciiiciciceieieieieretetetetetee sttt sese bt sesesessseasaseseeseseseessasesscnns 21

Sending @ REST REQUEST.....cuciiiiiiiiuiiirinirieicttnirietcet ettt ettt se ettt bt ae bt a s senesenens 21
SFREStREGUEST CLaSS....ueueeiiiiiiieeiciciciireete ettt 22

Using SFRestRequest IMethods. ..ot 22

SFREStAPI (BLocks) CateZOIY....cucueueueueuerererereieiereriinenesesisisesesetseseateeeesesesesesesesesesesesesesssssnsseseseeestssacasasscsenens 23

SFRestAPI (QueryBuilder) CategOry....coveueueerinirieueueirinireeieueetsteteresttsesessesesestsssseseseseesssseseseneasssssesesescaens 24

1OS SamPle APPLCALIONS. .. .uiuriieteieiiireetcteiee ettt ettt a et a et s e se et a st e s se e e e e s e aeeeaene 26
Chapter 3: Native Android Development..........ccoueiviiiniiiniiiniiiiniiiniriiriirciecnecnecnscsnsesseesnnes 27
Android Native QUICK STart.....c.cciccieriiiieiteitesiectesteeeetestesteestessesstesessesseessassesseessassesssessessesssessessesssessessesssessessesssessessesssessanes 28

Table of Contents

Native Android REGUITEIMENTS.c.cuiuiiriiiciiiirireicee ettt et a e eaene 28
Installing and Uninstalling Salesforce Mobile SDK for Android........cccovueueueirnniereciinininiercieneneeieiecnesenieseeeeseseeseseneseseneene 28
Creating @ New Android ProJect.........cuciiiiiiiiecec ettt 30
Android Template APPLICAtION....c.ccceurueueueuiriririetereterteteteteitt sttt ettt sttt be ettt sttt be bttt saetesenenensaene 32
Setting Up Sample Projects in EClIPse......oueuiiiririiiiiiirecccrecct et et 33
ANAroid Project FILes.....c.cucoiviririiiiiiiieicct ettt ettt ettt ettt et e 33
Developing a Native ANdroid APp....ccoveeueueioirririeieiireeieeetere ettt a st ae e e s e neaene 33
The Create_NAtIVE SCIIPL....coirrirreueriiririeiereettrtrtetereetrt ettt eebesese st e e b bt ese et be ettt et be sttt st ebebentat e saeteseneatsssene 34
Android APPLiCAtiON STIUCTUIE.c.cuiirieueueiiiirtetereree ettt e e et a e s s se e se s s e enenene 34

INGIVE APT PACKAZES....cvvvevieiiririeiciiiirieiet ettt ettt ettt sttt ettt st b ettt st st b eenaene 36
OVerview Of INAIVE CLASSES.......cueuiiririeieieiiireeieieieeireete ettt et a et ee s senis 37
SalesforceSDKIMIAnager Class........c.ccveuiiiiiriiiniiiniieieietieereet ettt 38

KeyInterface INterface......cccovvuiiiiiiniiiiciirrecccee ettt s 39
AcCCOUNTWALCRET CLASS...vviuiuiiietciiirirtetetec ettt ettt ettt ettt sttt e s b et e eaene 39
PasscodeManager CIass........ccoivriueiirrieiciiireeeteete ettt et ene 40

EDCIYPLOL ClaSS ...ttt 41
SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity Classes.......c.cccevuvueueuceenne 41

UL ClLaSSES..c.veieiieeiiieiteet ettt ettt st sa st e e bt b et a et a e et n e ae s ens 41
ClientManager and RestClient Classes.......c.vvueueuiirriiieiiinirieiciceereie ettt sesenes 41

LOGINACHVIEY CLASS..euvvviuiuiireeiereiiirirteietetrtstee et ettt e et seaee s b bes e se et be et st et s et se st b seneeesesenencs 42

Other UL Classes....c.evueueuiiririeieiciiirirteieiet ettt ettt s st eeaesenenis 42
UpgradeManager CLass........coceiiriiriiiniiiieeeeieeeteee ettt sttt ee 42

UHIHEY CLASSES.....vvuieieeeieieiiieteietee ettt et et e e eenene 42

FOrcePIUGIN CLass......cueiiuiiiiiiriiiiciee ettt s 43

USING PaSSCOAES. ...ttt ettt et 43
Resource Handling.........co.oiiiiiii ettt 44

USING REST APIS.....coeuiiiiiieieiriririreninis ettt tesese e seasasa sttt ettt bbbt sen s ssaea e eeseseseatasecseaens 46
Android Template App: DEep DIVE......cucueuiviriririeiiiininieicctnneeet sttt ettt ettt eaene 49
TemPlateAPD CLass....c.cueuererririreririniririnic ettt et eser st sa ettt ettt et bebe bbbt esesesessasaeseseneaes 49

MaANACHVIEY CLaASS.cuttteveuiiririeieteittntrt ettt ettt sttt ettt st be bt esssa e se et e b bttt saeseseneaesenene 50
Template APP IVIANILEST.....vvviiririireie ittt ettt ettt bbbttt a s sa e eaeaen 51

Android Sample APPLCAIONS.c.coveeruruereuiirinieiereettrtrtetereae ettt bes ettt se sttt ae b s et e b bttt et et ebese sttt ebe s sttt e et beseat e eeene 52
Chapter 4: Introduction to Hybrid Development..........ccoccovvuiiiiniiiiiiiiiniiiininiiiniiinienecnneennns 53
10S Hybrid DeVEloPmMEnt.......ccuciiuiuiiiiiiiiiieieiriei ettt s b et a et e e et b et a et eee 54
10S Hybrid Sample APPLCALION.c.ioieirurieiiiiirireeicicitreetete ettt e et eeene 54
Android Hybrid DevelOPmEnt......ccceeurueueuiiriniriereiiirtrieietcettntsteeetee et seeseseseest et setse e s s e et steseseseessseesesestatssseesesenensssene 54
Hybrid Sample APPLICAtIONS........cucueuieirireeieteiiirirecicetir ettt e a et enene 54
JavaScript Files for Hybrid Applications........c.cceverueueueeririninieieintnenieseseeetntneeserestseseseeseseststsessesesesesssesesestassessssesesencssssesesens 55
Versioning and Javascript Library Compatibility........cccoeuiueuioiiniriiiiiiniiicciirente e e eeene 56
Managing Sessions in Hybrid Applications........c.cceererueuecrininiriereirnineerercetstseereseesereeresesestsesseseseseeseseesesesetseseesesesensssssene 58
Example: Serving the Appropriate Javascript LIDIAries. ... cocoeeueioiriiiiiinnniccceecet et 60
Chapter 5: HTIMLS Development..........cceeinieiniiinieiniiinirinininieeieiseimeessessemsessesssesssesses 62
HTMLS Development REGUITEIMENTS. ..c.c.cueuerererereueriiririreriisistieeeceteteeeesesesesesesesesesesesesesssssseseseseeststststasessesesesesesesesereseseses 63
Delivering HTIMLS5 Content With VISUaIfOrCe......c.cioriiueuiriniririeieiirineieiettstntereseestseeresesttsesaesesesetssssesesetsessssesesensssssene 63

Table of Contents

Accessing Salesforce Data: Controllers vs. APIs. ..ot 63
Chapter 6: Using SmartSync to Access Salesforce ObjJects........ccevnuiirireiiinruiinineiininneenineeennneecinneennne 66
ADout Backbone TechiiOlogy.ttt ettt se et se b s s s ettt aebesenenesesenes 67
Models and IModel CollECtiONS.coueuiiiuiirieiieiieiee ettt st a et e st s e a e ee 67
IMLOELS....ec ettt en e 67

MOAEL COLLECHIONS.veiiiieiiiteiceeiee ettt ettt et et b et a e s et e b et e bt s b e e s e nesaene e ene e enan 68

Using the SmartSync Data Framework in JAvASCIIPE.....c.cciiiiriiiiiiiriccccreece et 69
OfFlINe CaAChINE....cviiiiiiitiiie ettt et et s a e h s e b et s et saene e ene e ene e nan 71
Implementing Offline Caching......c.cooeiririiiiiiiicciireee et e 73

Using StoreCache For Offline Caching........ccociiiiiiiiiiiiiiiiiiiicicieeeeeetceee et 73
CONTICE DETECTION. .ttt et a bt e e n e se e eneaenenin 77
Mini-Tutorial: Conflict DEtECtion.coveveveureiririrueueeireririeietettrert ettt ettt sttt be sttt seeseseseessseene 79
Tutorial: Creating a SmartSync APPLICAtION.ccccueueueueueieterriririririr et eeeteeiererereresesereseseaseseseseses et es et esesesesesesesesesesenes 81
St UP YOUL PrOJECt vttt s 81

Edit the Application HTIVIL FIle......oviiiriniiiiiiceeceieeeietetetesetsesese s csee e sesesesesesesesesesesesessssasssenescnes 81

Create a SmartSync Model and @ ColleCtion.........c..civiiiiiiiiiiiiiieiiceiicieec ettt 84

Create @ TEmMPLAte......cceueuerereiiieieiiirrr ettt bt a et b bttt b bbbttt n s a e e eeaeaen 85

Add the SEarch VIEW.....c.cucciviririeieiiirieieic ettt ettt ettt ettt sttt b ettt bt e eane 85

Add the Search Result List VIEW....ocouiuiuiiiiriiiciiiriecci e enene 87

Add the Search Result List Iterm VIEW......ccovriiueueirininieieiiiririeiectentnerectne ettt et se et e eaene 88
ROULET ... 89
SMATtSYNC SAMPLE APPS..eveviuiriririiririiirirteteietrtre ettt ettt be bttt a s sttt be sttt se et ebe sttt et bentae st saebenentatteseserentana 92
User and Group Search SAMPLe..........ccuouiuiiiririiiciiieeectreeeeeee e et enene 95

User Search Sample.......coouiiiiiiiii ettt 97
Account EdItor Sample......ooo ittt 99
Chapter 7: Securely Storing Data Offline........cocccevvuiiiiiiiiniiiininiiinnniiiieinieneceecsneessnseesnne 108
Accessing SmartStore in Hybrid ApPpPS.....cccoo oot 109
Adding SmartStore to ANAroid APPS....c.coereueueirririeiceertnireieretr ettt ettt sttt ettt aenene 109
Offline Hybrid Development..........o.cucuiiiririiiiiireeeeiiereetceee ettt et neas 109
SINATESTOTE SOUPS....eviiitiiitiiieit ettt s a et e et e et b et b et a et e s e e e b e e b e e s e neneas 110
REZISTEIING & SOUP.....vvieiiirieicci ettt a et eenenens 110
Retrieving Data From @ SOUP.......cccciiiiiiiiiiiicc ettt 111
SMATt SQL QUETIES. c.vicuveieitieieiteettetestee et est e et etesteettetesteesaessassaessassasssassassasssassassesssassasseassessesesssassenssessassesssassensesssessansanss 114
WOTKING WIth CUISOTS.ctiiiiiiiiiiicece ettt b e n e n e 116
Manipulating DAta.......c.cccooiiiiicc et 116
Using the IMOCK SIMArtSLOre........c.ooiiuiiiiiiiiiiieec ettt sttt 118
NativeSqlAggregator Sample App: Using SmartStore in Native ADPpS......ccceeeererererererninenrnreneneniseeseeeeeseeseseseresesenenes 119
Chapter 8: Authentication, Security, and Identity in Mobile Apps.......cccevvuririrnniiiiniininnecninneccnsneennnne 122
OAULD TErMINOLOZY..c..etuiveveverereretereieiitreee sttt re bbbt s s se sttt et ettt s b bbb b b et eseaea e e e e seseataeatacacaes 123
Creating @ CONMNECTEd APP.. o cveiriririeieieiirtreeteeetrtrt ettt sttt ettt be ettt bttt e et bt e st bese et s et ebes et st st eseseneaentenenencn 123
COMNECTEA APPS.eiueririmimiiririeieicerirt ettt ettt ettt a bt e s e e st a s s et e e s e e eenenene e e e enenean 124
ADOUL PIIN SECUIILY ...ttt ettt ettt ettt ettt ettt ettt sttt e s b st esenene 124
OAuth2 Authentication FIOW.......coiiiiii ettt 125

iii

Table of Contents

OAuth 2.0 USer-Agent FLOW......ccoo ittt et 125

OAuth 2.0 Refresh ToKen FLOW....ccovouiiiiriiiiinncccneci ettt ettt be et be et s s s nencs 126

Scope Parameter VAIUES......c.ccoovviriiuiiiiiiicci ettt ettt 127

Using Identity URLS......ccoioiiiiiiiiiiiieereet ettt et n e 127

Setting @ Custom LOZIN SEIVET.....c.coioiiiiiiiiiiiiririeiccirre ettt et ae e 131

Revoking OAULh TOKENS....c.eu vttt ettt sttt bttt e bt e et veacs 132

Handling Refresh Token Revocation in Android Native APpPs.......eececeieeeeereiereererererererernensesnineseseseseseeescscsesces 132

Token Revocation EVEnts........c.ccciirriiueiinninieicciiriecicc ettt ettt nene 133

Token Revocation: Passive Handling........oocecevieieiieeeiiininiernnn e ccceteeiereneresesesesesesesessssssenenes 133

Token Revocation: Active Handling........cccovurueueerininirieeinininiieiciinnees ettt seseesesesseseseseessesene 134

Portal Authentication Using OAuth 2.0 and Force.com SItes..........ciiriiiininniiecirreeeeeneseeeereseeee e 134
Chapter 9: Migrating from the Previous Release........cccoccevvuiininiiininiiiiniiininiiinnniinnnieinnnecnnneenn, 136
Migrating Android APPLCATIONS ...c.c.eueveurererirerirereriricctteeeeeeeeietetereresetesesesesssesse st et ests e tatee e sesesesesesesesesesesessesssssssenes 137
Migrating 108 APPLICATIONS.....curuiririruereuiinirieteteittrt ettt bttt r bttt b sttt s e b sttt st et ebe sttt et beseatat st sseseseneaesnene 139
Chapter 10: Reference........oouuiiiuiiiiiiiiiiiiiiniiiiininiiciirccine s sssss s ssssssssssssnns 142
REST API RESOUICES. ...etuetruereuiininieieueittrtrteteuettstetesestatstseesesesetssesese sttt st e sesestatesesese st et st st sese sttt et eseneatstseeseseneatassesenens 143

TOS ATCHITECTUTC. ...ttt et e et ea st se e s meae e e enenenes 143
INQLIVE 108 ODJECTS. ..ttt sttt s s e bt a et sa e e s e en e es 144

ANAIOid ATCRITECTUTE. ...ttt ettt e s et e et e s s se e e e enene 145

JAVA C0dE. ittt bbbttt e bbbttt b bttt b e b e e nes 146

LDIALIES ..ttt ettt eaes 149

RESOUICES. ...ttt b et e s bt a et eene e 150
INA@Xuiinriiiiiiiieeeeecce bbb b e e b e b s e s b n e s an e nn e snne 154

iv

Chapter 1

Introduction to Mobile Development

In this chapter ...

* Intended Audience
* About Native, HTMLS5, and Hybrid

Development
* Enough Talk; I'm Ready
* Development Prerequisites
* Mobile SDK Installation
* Keeping Up With the Mobile SDK

Force.com has proven itself as an easy, straightforward, and highly productive
platform for cloud computing. Developers can define application components,
such as custom objects and fields, workflow rules, Visualforce pages, and Apex
classes and triggers, using point-and-click tools of the Web interface, and
assembling the components into killer apps. As a mobile developer, you might
be wondering how you can leverage the power of the Force.com platform to
create sophisticated apps.

The Mobile SDK seamlessly integrates with the Force.com cloud architecture
by providing:

« SmartSync Data Framework for accessing Salesforce data through JavaScript
« Secure offline storage

« Data syncing for hybrid apps

« Implementation of Force.com Connected App policy that works out of the
box

« OAuth credentials management, including persistence and refresh capabilities
« Wrappers for Salesforce REST APIs

« Libraries for building native iOS and Android applications

« Containers for building hybrid applications

#= Note:

Be sure to visit Salesforce Platform Mobile Services website regularly
for tutorials, blog postings, and other updates.

http://www2.developerforce.com/mobile/

Introduction to Mobile Development Intended Audience

Intended Audience

This guide is primarily for developers who are already familiar with mobile technology, OAuth2, and REST APIs, and who
probably have some Force.com experience. But if that doesn’t exactly describe you, don’t worry. We've tried to make this guide
usable by a wider audience. For example, you might be a Salesforce admin tasked with developing a new mobile app to support
your organization, or you might be a mobile developer who's entirely new to Force.com. If either of those descriptions fit you,
then you should be able to follow along just fine.

If you're an admin setting up users for mobile devices, you're probably looking for the Salesforce Mobile Implementation

Guide.

About Native, HTML5, and Hybrid Development

Many factors play a part in your mobile strategy, such as your team’s development skills, required device functionality, the
importance of security, offline capability, interoperability, and so on. In the end, it’s not just a question of what your app will
do, but how you'll get it there. The Mobile SDK offers three ways to create mobile apps:

« Native apps are specific to a given mobile platform (1OS or Android) and use the development tools and language that
the respective platform supports (for example, Xcode and Objective-C with iOS, Eclipse and Java with Android). Native
apps look and perform best but require the most development effort.

« HTMLS apps use standard web technologies—typically HTMLS5, JavaScript and CSS—to deliver apps through a mobile
Web browser. This “write once, run anywhere” approach to mobile development creates cross-platform mobile applications
that work on multiple devices. While developers can create sophisticated apps with HTMLS5 and JavaScript alone, some
challenges remain, such as session management, secure offline storage, and access to native device functionality (such as
camera, calendar, notifications, and so on).

« Hybrid apps combine the ease of HI'MLS5 Web app development with the power of the native platform by wrapping a
Web app inside the Salesforce container. This combined approach produces an application that can leverage the device’s
native capabilities and be delivered through the app store. You can also create hybrid apps using Visualforce pages delivered
through the Salesforce hybrid container.

http://www.salesforce.com/us/developer/docs/mobileImplGuide/index.htm
http://www.salesforce.com/us/developer/docs/mobileImplGuide/index.htm

Introduction to Mobile Development About Native, HTML5, and Hybrid Development

Native o Hybrid

Advanced Ul interactions capability
Fastest performance
App store distribution

Web developer skills
Access to native platform
App store distribution

multiple
platforms

single
platform

HTMLS

Web developer skills
Instant updates
Unrestricted distribution

partial
capability

Native Apps

Native apps provide the best usability, the best features, and the best overall mobile experience. There are some things you get
only with native apps:

« Fast graphics API—the native platform gives you the fastest graphics, which might not be a big deal if you’re showing a
static screen with only a few elements, or a very big deal if you're using a lot of data and require a fast refresh.

+ Fluid animation—related to the fast graphics API is the ability to have fluid animation. This is especially important in
gaming, highly interactive reporting, or intensely computational algorithms for transforming photos and sounds.

+ Built-in components—The camera, address book, geolocation, and other features native to the device can be seamlessly
integrated into mobile apps. Another important built-in component is encrypted storage, but more about that later.

« Ease of use—The native platform is what people are accustomed to. When you add that familiarity to the native features
they expect, your app becomes that much easier to use.

Native apps are usually developed using an integrated development environment (IDE). IDEs provide tools for building,
debugging, project management, version control, and other tools professional developers need. You need these tools because
native apps are more difficult to develop. Likewise, the level of experience required is higher than in other development
scenarios. If you're a professional developer, you don’t have to be sold on proven APIs and frameworks, painless special effects
through established components, or the benefits of having all your code in one place.

Introduction to Mobile Development About Native, HTML5, and Hybrid Development

HTML5 Apps

An HTMLS mobile app is basically a web page, or series of web pages, that are designed to work on a small mobile device
screen. As such, HTMLS apps are device agnostic and can be opened with any modern mobile browser. Because your content
is on the web, it’s searchable, which can be a huge benefit for certain types of apps (shopping, for example).

If you’re new to mobile development, the technological bar is lower for Web apps; it’s easier to get started here than in native
or hybrid development. Unfortunately, every mobile device seems to have its own idea of what constitutes usable screen size
and resolution. This diversity imposes an additional burden of testing on different devices. Browser incompatibility is especially
common on Android devices, for example.

An important part of the "write once, run anywhere" HTML5 methodology is that distribution and support is much easier
than for native apps. Need to make a bug fix or add features? Done and deployed for all users. For a native app, there are
longer development and testing cycles, after which the consumer typically must log into a store and download a new version
to get the latest fix.

If HTMLS apps are easier to develop, easier to support, and can reach the widest range of devices, where do these apps lose
out?

« Secure offline storage — HTMLS5 browsers support offline databases and caching, but with no out-of-the-box encryption
support. You get all three features in Mobile SDK native applications.

« Security — In general, implementing even trivial security measures on a native platform can be complex tasks for a mobile
Web developer. It can also be painful for users. For example, a web app with authentication requires users to enter their
credentials every time the app restarts or returns from a background state.

« Native features — the camera, address book, and other native features are accessible on limited, if any, browser platforms.

« Nativelookand feel —HTMLS5 can only emulate the native look, while customers won’t be able to use familiar compound
gestures.

Hybrid Apps

Hybrid apps are built using HTMLS5 and JavaScript wrapped inside a thin container that provides access to native platform
features. For the most part, hybrid apps provide the best of both worlds, being almost as easy to develop as HTMLS5 apps with
all the functionality of native. In addition, hybrid apps can use the SmartSync Data Framework in JavaScript to model Salesforce
data, query and search it, edit it, securely cache it for offline use, and synchronize it with the Salesforce server.

You know that native apps are installed on the device, while HTMLS5 apps reside on a Web server, so you might be wondering
whether hybrid apps store their files on the device or on a server? You can implement a hybrid app locally or remotely.

Local

You can package HTML and JavaScript code inside the mobile application binary, in a structure similar to a native
application. In this scenario you use REST APIs and Ajax to move data back and forth between the device and the
cloud.

Server

Alternatively, you can implement the full web application from the server (with optional caching for better performance).
Your container app retrieves the full application from the server and displays it in a browser window.

Both types of hybrid development are covered in this guide.

Native, HTML5, and Hybrid Summary

The following table sums up how the three mobile development scenarios stack up.

Graphics Native APIs HTML, Canvas, SVG HTML, Canvas, SVG

Introduction to Mobile Development Enough Talk; I'm Ready

Performance Fastest Fast Fast

Look and feel Native Emulated Emulated

Distribution App store Web App store

Camera Yes Browser dependent Yes

Notifications Yes No Yes

Contacts, calendar Yes No Yes

Offline storage Secure file system Shared SQL Secure file system, shared SQL
Geolocation Yes Yes Yes

Swipe Yes Yes Yes

Pinch, spread Yes Yes Yes

Connectivity Online, offline Mostly online Online, offline
Development skills Objective C, Java HTMLS5, CSS, JavaScript ~ HTMLS5, CSS, JavaScript

Enough Talk; I'm Ready
If you'd rather read about the details later, there are Quick Start topics in this guide for each native development scenario.

. 10S Native Quick Start
« Android Native Quick Start

Development Prerequisites

It’s helpful to have some experience with Database.com or Force.com. You'll need either a Database.com account or a Force.com
Developer Edition organization.

This guide also assumes you are familiar with the following technologies and platforms:

« OAuth, login and passcode flows, and Salesforce connected apps. See Authentication, Security, and Identity in Mobile

Apps.

« To build iOS applications (hybrid or native), you'll need Mac OS X “Lion” or higher, iOS 6.0 or higher, and Xcode 4.5
or higher.

« To build Android applications (hybrid or native), you'll need the Java JDK 6, Eclipse, Android ADT plugin, and the
Android SDK.

« To build remote hybrid applications, you'll need an organization that has Visualforce.

« Most of our resources are on GitHub, a social coding community. You can access all of our files in our public repository,
but we think it’s a good idea to join. https://github.com/forcedotcom

https://github.com/forcedotcom

Introduction to Mobile Development Choosing Between Database.com and Force.com

Choosing Between Database.com and Force.com

You can build mobile applications that store data on a Database.com or Force.com organization. Hereafter, this guide assumes
you are using a Force.com Developer Edition that uses Force.com login end points such as login.salesforce. com.
However, you can simply substitute your Database.com credentials in the appropriate places.

. Note: If you choose to use Database.com, you can’t develop Visualforce—driven hybrid apps.

Sign Up for Force.com

In your browser go to developer. force.com/join.
Fill in the fields about you and your company.

In the Email Address field, make sure to use a public address you can easily check from a Web browser.

W=

Enter a unique Username. Note that this field is also in the form of an email address, but it does not have to be the same
as your email address, and in fact, it's usually better if they aren't the same. Your username is your login and your identity
on developer. force.com, and so you're often better served by choosing a username that describes the work you're
doing, such as develop@workbook.org, or that describes you, such as firstname@lastname.com.

5. Read and then select the checkbox for the Master Subscription Agreement.

S

Enter the Captcha words shown and click Submit Registration.

7. Ina moment you'll receive an email with a login link. Click the link and change your password.

Sign Up for Database.com

In your browser go to www.database. com.
Click Signup.
Fill in the fields about you and your company.

In the Email Address field, make sure to use a public address you can easily check from a Web browser.

MBI e

The Username field is also in the form of an email address, but it does not have to be the same as your actual email address,
or even an email that you use. It’s helpful to change the username to something that describes the use of the organization.
In this workbook we'll use admin-user@workbook.db.

Enter the Captcha words shown.

Read and then select the checkbox for the Master Subscription Agreement and supplemental terms.
Click Sign Up.

After signing up, you'll be sent an email with a link that you must click to verify your account. Click the link.

o ® N

10. Now supply a password, and a security question and answer.

Mobile SDK Installation

Salesforce Mobile SDK provides two installation paths. The path you choose depends on your development goals.

http://developer.force.com/join
http://www.database.com/

Introduction to Mobile Development Mobile SDK NPM Packages

Mobile SDK NPM Packages

Most developers, who want to use the SDK as a “black box” and create a mobile app quickly, prefer the Node Packaged Module
(NPM) installers. Salesforce provides two packages: forceios for the iOS Mobile SDK, and forcedroid for the Android version
of the Mobile SDK. These packages provide a static snapshot of an SDK release. In the case of iOS, the NPM installer package
provides binary modules rather than uncompiled source code. In the case of Android, the NPM installer package provides a

snapshot of the SDK source code rather than binaries. You use the NPM package both to install Mobile SDK and to create

new template projects.

NPM packages for the Salesforce Mobile SDK reside at https://www.npmjs.org.

Note: NPM packages do not support source control, so you can’t update your installation dynamically for new releases.
Instead, you install each release separately. To upgrade to new versions of the SDK, go to the npmjs.org website and
download the new package.

Mobile SDK GitHub Repository

More adventurous developers who want to delve into the SDK, keep up with the latest changes, and possibly contribute to
SDK development can clone the open source repository from GitHub. Using GitHub allows you to monitor source code in
public pre-release development branches. In this scenario, both iOS and Android apps include the SDK source code, which
is built along with your app.

You don’t need to sign up for GitHub to access the Mobile SDK, but we think it’s a good idea to be part of this social coding
community. https://github.com/forcedotcom

You can always find the latest Mobile SDK releases in our public repositories:

« https://github.com/forcedotcom/SalesforceMobileSDK-1i0S
« https://github.com/forcedotcom/SalesforceMobileSDK-Android

Keeping Up With the Mobile SDK

The Mobile SDK evolves rapidly, so you'll want to check the following regularly.

« You can always find the most current releases in the NPM registry or our Mobile SDK GitHub Repository
« Keep up to date with What’s New.
« The latest articles, blog posts, tutorials, and webinars are on http://www2.developerforce.com/mobile/resources.

« Join the conversation on our message boards at http://boards.developerforce.com/t5/Mobile/bd-p/mobile.

What’s New in This Release

For a summary of what’s new and changed in this release of the Salesforce Mobile SDK, visit the Mobile SDK Release Notes.

This page also provides a history of previous releases.

https://www.npmjs.org
https://github.com/forcedotcom
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-Android
https://npmjs.org
http://wiki.developerforce.com/page/Mobile_SDK_Release_Notes
http://www2.developerforce.com/mobile/resources
http://boards.developerforce.com/t5/Mobile/bd-p/mobile
http://wiki.developerforce.com/page/Mobile_SDK_Release_Notes

Chapter 2

Native iOS Development

In this chapter ...

* 10S Native Quick Start
* Native iOS Requirements

* Installing and Uninstalling Salesforce
Mobile SDK for iOS

* Creating a Native iOS App in Xcode
* Developing a Native iOS App
* i0S Sample Applications

Salesforce Mobile SDK delivers libraries and sample Xcode projects for developing
mobile apps on iOS.

Two main things that the iOS native SDK provides are:

« Automation of the OAuth2 login process, making it easy to integrate OAuth
with your app.

« Access to the REST API with infrastructure classes (including third-party
libraries such as RestKit) to make that access as easy as possible.

When you create a native app using the forceios application, your project starts
as a fully functioning native sample app. This simple app allows you to connect
to a Salesforce organization and run a simple query. It doesn’t do much, but it
lets you know things are working as designed.

Native iOS Development 1OS Native Quick Start

iOS Native Quick Start

Use the following procedure to get started quickly.

1. Make sure you meet all of the native iOS requirements.
2. Install the Mobile SDK for iOS. If you prefer, you can install the Mobile SDK for iOS from GitHub instead.
3. Run the template app.

Native iOS Requirements

. Xcode—4.5 is the minimum, but we recommend the latest version.
« 108 6.0 or higher.

« Mac OS X “Lion” or higher.

« Install the Mobile SDK.

« A Developer Edition organization with a connected app on page 124.

For important information on using various versions of XCode, see the Readme at
https://github.com/forcedotcom/SalesforceMobileSDK-1OS/blob/master/readme.md.

Installing and Uninstalling Salesforce Mobile SDK for iOS
For the fastest, easiest route to iOS development, use NPM to install Salesforce Mobile SDK for iOS.

1. Ifyou've already successfully installed Node.js and NPM, skip to step 4.
2. Install Node.js on your system. The Node.js installer automatically installs NPM.

a. Download Node.js from www.nodejs.org/download.

b. Run the downloaded installer to install Node.js and NPM. Accept all prompts asking for permission to install.

3. Atacommand prompt, type npm and press Return to make sure your installation was successful. If you don’t see a page
of usage information, revisit Step 2 to find out what’s missing.

4. Use the forceios package to install the Mobile SDK either globally (recommended) or locally.

a. To install Salesforce Mobile SDK in a global location, use the sudo command and append the “global” option, -g:
sudo npm install forceios -g

With the -g option, you can run npm install from any directory. The NPM utility installs the package under
/usr/local/lib/node modules, and links binary modules in /usr/local/bin. Most users need the sudo
option because they lack read-write permissions in /usr/local.

b. To install Salesforce Mobile SDK in a local folder, cd to that folder and use the NPM command without sudo or —g:

npm install forceios

https://github.com/forcedotcom/SalesforceMobileSDK-iOS/blob/master/readme.md
http://www.nodejs.org/download

Native i0OS Development Creating a Native iOS App in Xcode

This command installs Salesforce Mobile SDK in a node_modules folder under your current folder. It links binary
modules in . /node_modules/.bin/. In this scenario, you rarely use sudo because you typically install in a local
folder where you already have read-write permissions.

Uninstalling a Forceios Package Installation

Instructions for uninstalling the forceios package vary with whether you installed the package globally or locally. If you installed
the package globally, you can run the uninstall command from any folder. Be sure to use sudo and the —g option.

$ pwd
/Users/joeuser
$ sudo npm uninstall forceios -g

$

To uninstall a package that you installed locally, run the uninstall command from the folder where you installed the package.
For example:

S pwd

/Users/joeuser

cd <my projects/my sdk folder>
npm uninstall forceios

If you try to uninstall a local installation from the wrong directory, you'll get an error message similar to this:

npm WARN uninstall not installed in /Users/joeuser/node modules:
"my projects/my sdk folder/node modules/forceios"

(Optional) Clone the Salesforce Mobile SDK Source Code from GitHub

If you’re adventurous or just curious, you can also install the Salesforce i1OS SDK source code from its GitHub repository.
Doing so allows you to contribute to the open source and keep up with source code changes.

1. Clone the Mobile SDK iOS repository to your local file system by issuing the following command at the OS X Terminal
app: git clone git://github.com/forcedotcom/SalesforceMobileSDK-i0S.git

. Note: If you have the GitHub app for Mac OS X, click Clone in Mac. In your browser, navigate to the Mobile
SDK iOS GitHub repository: https://github.com/forcedotcom/SalesforceMobileSDK-10S.

2. In the OS X Terminal app, change to the directory where you installed the cloned repository. By default, this is the
SalesforceMobileSDK-iOS directory.

3. Run the install script from the command line: . /install.sh

Creating a Native iOS App in Xcode
To create a new app, you use forceios again on the command line. You have two options for configuring your app. You can:

- Configure your application options interactively as prompted by the forceios app, or

+ Specify your application options and values directly at the command line.

10

https://github.com/forcedotcom/SalesforceMobileSDK-iOS

Native iOS Development Creating a Native iOS App in Xcode

To enter application options interactively, type forceios create if you installed Mobile SDK globally, or
<forceios_path>/node modules/.bin/forceios create if you installed locally. The forceios utility prompts you for

each configuration value.
rwhitley-1tml:Downloads rwhitleys forceios create
Enter your application type (native, hybrid_remote, or hybrid_local): native
Enter your application name: MyNativeiOSApp
Enter your company identifier (com.mycompany): com.acme.goodapps
Enter your organization name (Acme, Inc.): GoodApps, Inc.
Enter the output directory for your app (defaults to the current directory):
Enter your Connected App ID (defaults to the sample app's ID):
Enter your Connected App Callback URI (defaults to the sample app's URI)
Creating app in /Users/rwhitley/Downloads/MyNativeiOSApp
Successfully created native app 'MyNativeiOSApp'

You can also specify your configuration directly by typing command line options. To see usage information, type forceios
without arguments. The list of available options displays:

$ forceios
Usage:
forceios create
--apptype=<Application Type> (native, hybrid remote, hybrid local)
-—appname=<Application Name>
--companyid=<Company Identifier> (com.myCompany.myApp)
--organization=<Organization Name> (Your company's/organization's name)
--startpage=<App Start Page> (The start page of your remote app. Only required for
hybrid remote)
[--outputdir=<Output directory> (Defaults to the current working directory)]
[-—appid=<Salesforce App Identifier> (The Consumer Key for your app. Defaults to the
sample app.)]
[--callbackuri=<Salesforce App Callback URL (The Callback URL for your app. Defaults
to the sample app.)]

Using this information, type forceios create, followed by your options and values. For example:

$ forceios create —--apptype="native" --appname="package-test"
—-—companyid="com.acme.mobile apps" --organization="Acme Widgets, Inc."
--outputdir="PackageTest" --packagename="com.test.my new app"

Here are more verbose descriptions of the parameters:

--apptype One of the following:

. “native”
+ “hybrid_remote” (server-side hybrid app using VisualForce)
+ “hybrid_local” (client-side hybrid app that doesn’t use

VisualForce)
--appname Name of your application
--companyid A unique identifier for your company. This value is

concatenated with the app name to create a unique app
identifier for publishing your app to the App Store. For
example, “com.myCompany.apps”.

11

Native iOS Development Running the Xcode Project Template App
--organization The formal name of your company. For example, “Acme

Widgets, Inc.”

--packagename Package identifier for your application. For example,
“com.acme.app”

--startpage (hybrid remote apps only) Server path to the remote start page.
For example: /apex/MyAppStartPage

--outputdir (Optional) Folder in which you want your project to be
created. If the folder doesn’t exist, the script creates it. Defaults
to the current working directory.

--appid (Optional) Your connected app’s Consumer Key. Defaults to
the consumer key of the sample app.

= Note: If you don’t specify the value here, you're
required to change it in the app before you publish
to the App Store.

--callbackuri (Optional) Your connected app’s Callback URL. Defaults to
the callback URL of the sample app.

= Note: If you don’t specify the value here, you're
required to change it in the app before you publish

= tothe App Store.

--usesmartstore=true (Optional) Include only if you want to use SmartStore for
offline data. Defaults to false if not specified.

After the app creation script finishes, you can open and run the project in Xcode. Select File > Open, navigate to the output
folder you specified, and open your app’s xcodeproj file. Apps created with the forceios template are ready to run “right
out of the box”. Click the Run button in the upper left corner to see your new app in action.

Running the Xcode Project Template App

The Xcode project template includes a sample application you can run right away.

1. Press Command-R and the default template app runs in the iOS simulator.

2. On startup, the application starts the OAuth authentication flow, which results in an authentication page. Enter your
credentials, and click Login.

3. Tap Allow when asked for permission

12

Native i0OS Development Developing a Native iOS App

You should now be able to compile and run the sample project. It’s a simple app that logs you into an org via OAuth2, issues
a select Name from Account SOQL query, and displays the result in a UITableView instance.

Developing a Native iOS App

The Salesforce Mobile SDK for native iOS provides the tools you need to build apps for Apple mobile devices. Features of
the SDK include:

« Classes and interfaces that make it easy to call the Salesforce REST API
« Fully implemented OAuth login and passcode protocols

« SmartStore library for securely managing user data offline

The native 10S SDK requires you to be proficient in Objective-C coding. You also need to be familiar with iOS application
development principles and frameworks. If you're a newbie, Start Developing iOS Apps Today is a good place to begin learning.
See Native iOS Requirements on page 9 for additional prerequisites.

In a few Mobile SDK interfaces, you're required to override some methods and properties. SDK header (.h) files include
comments that indicate mandatory and optional overrides.

About Login and Passcodes

To access Salesforce objects from a Mobile SDK app, the user logs into an organization on a Salesforce server. When the login
flow begins, your app sends its connected app configuration to Salesforce. Salesforce responds by posting a login screen to the
mobile device.

Optionally, a Salesforce administrator can set the connected app to require a passcode after login. The Mobile SDK handles
presentation of the login and passcode screens, as well as authentication handshakes. Your app doesn’t have to do anything to
display these screens. However, you do need to understand the login flow and how OAuth tokens are handled. See About
PIN Security on page 124 and OAuth2 Authentication Flow on page 125.

About Memory Management

Beginning in Mobile SDK 2.0, native iOS apps use Automatic Reference Counting (ARC) to manage object memory. You
don’t have to allocate and then remember to deallocate your objects. See the Mac Developer Library at
https://developer.apple.com for ARC syntax, guidelines, and best practices.

Overview of Application Flow

When you create a project with the forceios application, your new app defines three classes: AppDelegate,
InitialViewController, and RootViewController. The AppDelegate objectloads InitialViewController
as the first view to show. After the authentication process completes, the AppDelegate object displays the view associated
with RootViewController as the entry point to your app.

The workflow demonstrated by the template app is merely an example. You can tailor your AppDelegate and supporting
classes to achieve your desired workflow. You can retrieve data through REST API calls and display it, launch other views,
perform services, and so on. Your app remains alive in memory until the user quits it, or until the device is rebooted.

13

http://developer.apple.com/library/ios/#referencelibrary/GettingStarted/RoadMapiOS/chapters/Introduction.html
https://developer.apple.com
https://developer.apple.com

Native iOS Development AppDelegate Class

Native iOS apps built with the Mobile SDK follow the same design as other i1OS apps. The main.m source file creates a
UIApplicationMain object that is the root object for the rest of the application. The UIApplicationMain constructor
creates an AppDelegate object that manages the application lifecycle.

main.m
Y
UlApplicationMain
Y
AppDelegate -
bl Salesforce Login, Oauth,
- Passcode Modules
Y
RootViewController

Can be Roof\iewController,
UlNavigationController, or a spacialized
controller

AppDelegate Class

The AppDelegate class is the true entry point for an iOS app. In Mobile SDK apps, AppDelegate implements the standard
iOS UIApplicationDelegate interface. The Mobile SDK template application for creating native iOS apps implements
most of the Salesforce-specific startup functionality for you.

To customize the AppDelegate template, populate the following static variables with information from your Force.com
Connected Application:

¢ RemoteAccessConsumerKey

static NSString * const RemoteAccessConsumerKey =
@"3MVGITIu66FKeHhINkB117xt7kR8czFcCTUhgoA8012Lt£1eYHOU4SqORSELtYFDUpgRWcoQ2.dBv_alDyubSxa";

« OAuthRedirectURI

static NSString * const OAuthRedirectURI = @"testsfdc:///mobilesdk/detect/oauth/done";

OAuth functionality resides in an independent module. This separation makes it possible for you to use Salesforce authentication
on demand. You can start the login process from within your AppDelegate implementation, or you can postpone login until
it’s actually required—for example, you can call OAuth from a sub-view.

Initialization

The following high-level overview shows how the AppDelegate initializes the template app. Keep in mind that you can
change any of these details to suit your needs.

1. When the [AppDelegate init] message runs, it:

14

Native i0OS Development About View Controllers

+ Initializes configuration items, such as Connected App identifiers, OAuth scopes, and so on.

« Adds notification observers that listen to SFAuthenticationManager, logoutInitiated,and loginHostChanged
notifications.

The logoutInitiated notification lets the app respond when a user logs out voluntarily or is logged out involuntarily
due to invalid credentials. The 1oginHostChanged notification lets the app respond when the user changes the login
host (for example, from Production to Sandbox). See the logoutInitiated: and loginHostChanged: handler
methods in the sample app.

« Initializes authentication "success" and "failure" blocks for the [SFAuthenticationManager
loginWithCompletion:failure:] message. These blocks determine what happens when the authentication
process completes.

2. application:didFinishLaunchingWithOptions:,a UIApplicationDelegate method, is called at app
startup. The template app uses this method to initialize the UIWindow property, display the initial view (see
initializeAppViewState), and initiate authentication. If authentication succeeds, the SFAuthenticationManager
executes initialLoginSuccessBlock (the “success” block).

3. initialLoginSuccessBlock calls setupRootViewController, which creates and displays the app’s
RootViewController.

You can customize any part of this process. At a minimum, change setupRootViewController to display your own
controller after authentication. You can also customize initializeAppViewState to display your own launch page, or the
InitialViewController to suit your needs. You can also move the authentication details to where they make the most
sense for your app. The Mobile SDK does not stipulate when—or if—actions must occur, but standard iOS conventions apply.
For example, self.window must have a rootViewController by the time
application:didFinishLaunchingWithOptions: Completes.

UlApplication Event Handlers

You can also use the application delegate class to implement UIApplication event handlers. Important event handlers that
you might consider implementing or customizing include:

application:didFinishLaunchingWithOptions:

First entry point when your app launches. Called only when the process first starts (not after a
backgrounding/foregrounding cycle).

applicationDidBecomeActive

Called every time the application is foregrounded. The iOS SDK provides no default parent behavior; if you use it, you

must implement it from the ground up.

For alist of all UIApplication event handlers, see “UlApplicationDelegate Protocol Reference” in the iOS Developer
Library.

About View Controllers

In addition to the views and view controllers discussed with the AppDelegate class, Mobile SDK exposes the
SFAuthorizingViewController class. This controller displays the login screen when necessary.

To customize the login screen display:

1. Opverride the SFAuthorizingViewController class to implement your custom display logic.

2. Setthe [SFAuthenticationManager sharedManager].authViewController property to an instance of your
customized class.

15

http://developer.apple.com/library/ios
http://developer.apple.com/library/ios

Native i0OS Development RootViewController Class

The most important view controller in your app is the one that manages the first view that displays, after login or—if login is
postponed—after launch. This controller is called your root view controller because it controls everything else that happens
in your app. The Mobile SDK for iOS project template provides a skeletal class named RootViewController that
demonstrates the minimal required implementation.

If your app needs additional view controllers, you're free to create them as you wish. The view controllers used in Mobile SDK
projects reveal some possible options. For example, the Mobile SDK iOS template project bases its root view class on the
UITableViewController interface, while the RestAPIExplorer sample project uses the UIViewController interface.
Your only technical limits are those imposed by 10S itself and the Objective-C language.

RootViewController Class

The RootViewController class exists only as part of the template project and projects generated from it. It implements
the SFRestDelegate protocol to set up a framework for your app’s interactions with the Salesforce REST API. Regardless
of how you define your root view controller, it must implement SFRestDelegate if you intend to use it to access Salesforce

data through the REST APIs.

RootViewController Design

As an element of a very basic app built with the Mobile SDK, the RootViewController class covers only the bare essentials.
Its two primary tasks are:

« Use Salesforce REST APIs to query Salesforce data
« Display the Salesforce data in a table

To do these things, the class inherits UITableViewController and implements the SFRestDelegate protocol. The
action begins with an override of the UIViewController:viewDidLoad method:

- (void)viewDidLoad

{
[super viewDidLoad];
self.title = @"Mobile SDK Sample App";

//Here we use a query that should work on either Force.com or Database.com

SFRestRequest *request = [[SFRestAPI sharedInstance] requestForQuery:@"SELECT Name FROM
User LIMIT 10"];

[[SFRestAPI sharedInstance] send:request delegate:self];

The iOS runtime calls viewDidLoad only once in the view’s life cycle, when the view is first loaded into memory. The
intention in this skeletal app is to load only one set of data into the app’s only defined view. If you plan to create other views,
you might need to perform the query somewhere else. For example, if you add a detail view that lets the user edit data shown
in the root view, you'll want to refresh the values shown in the root view when it reappears. In this case, you can perform the
query in a more appropriate method, such as viewiWillAppear.

After calling the superclass method, this code sets the title of the view, then issues a REST request in the form of an
asynchronous SOQL query. The query in this case is a simple SELECT statement that gets the Name property from each
User object and limits the number of rows returned to ten. Notice that the requestForQuery and send:delegate:
messages are sent to a singleton shared instance of the SFRestAPI class. Use this singleton object for all REST requests. This
object uses authenticated credentials from the singleton SFAccountManager object to form and send authenticated requests.

The Salesforce REST API responds by passing status messages and, hopefully, data to the delegate listed in the send message.
In this case, the delegate is the RootViewController object itself:

[[SFRestAPI sharedInstance] send:request delegate:self];

16

]
Native i0OS Development About Salesforce REST APIs

The RootViewController object canactas an SFRestAPI delegate because it implements the SFRestDelegate protocol.
This protocol declares four possible response callbacks:

+ request:didLoadResponse: — Your request was processed. The delegate receives the response in JSON format. This
is the only callback that indicates success.

+ request:didFailloadWithError: — Your request couldn’t be processed. The delegate receives an error message.

« requestDidCancelLoad — Your request was canceled by some external factor, such as administrator intervention, a
network glitch, or another unexpected event. The delegate receives no return value.

« requestDidTimeout — The Salesforce server failed to respond in time. The delegate receives no return value.

The response arrives in one of the callbacks you've implemented in RootViewController. Place your code for handling
Salesforce data in the request :didLoadResponse: callback. For example:

- (void) request: (SFRestRequest *)request
didLoadResponse: (id) jsonResponse {

NSArray *records = [JjsonResponse objectForKey:@"records"];
NSLog (@"request:didLoadResponse: #records: %d", records.count);
self.dataRows = records;

[self.tableView reloadDatal;

As the use of the 1d data type suggests, this code handles JSON responses in generic Objective-C terms. It addresses the
jsonResponse object as an instance of NSDictionary and treats its records as an NSArray object. Because

RootViewController implements UITableViewController, it’s simple to populate the table in the view with extracted
records.

A call to request:didFailloadWithError: results from one of the following conditions:

« Ifyou use invalid request parameters, you get a kSFRestErrorDomain error code. For example, if you pass nil to
requestForQuery:, or you try to update a non-existent object.

« Ifan OAuth access token expires, the framework tries to obtain a new access token and, if successful, retries the query. If
a request for a new access token or session ID fails, you get a kSFOAuthErrorDomain error code. For example, if the
access token expires, and the OAuth refresh token is invalid. This scenario rarely occurs.

« If the low-level HT'TP request fails, you get an RKRestKitErrorDomain error code. For example, if a Salesforce server
becomes temporarily inaccessible.

The other callbacks are self-describing, and don’t return an error code. You can choose to handle the result however you want:
display an error message, write to the log, retry the request, and so on.

About Salesforce REST APIs

Native app development with the Salesforce Mobile SDK centers around the use of Salesforce REST APIs. Salesforce makes
a wide range of object-based tasks available through URIs with REST parameters. Mobile SDK wraps these HTTP calls in
interfaces that handle most of the low-level work in formatting a request.

In Mobile SDK for iOS, all REST requests are performed asynchronously. You can choose between delegate and block versions
of the REST wrapper classes to adapt your requests to various scenarios. REST responses are formatted as NSArray or
NSDictionary objects for a successful request, or NSError if the request fails.

See the Force.com REST API Developer’s Guide for information on Salesforce REST response formats.

17

http://www.salesforce.com/us/developer/docs/api_rest/index.htm

Native iOS Development Developing a Native iOS App

Supported Operations

The iOS REST APIs support the standard object operations offered by Salesforce REST and SOAP APIs. Salesforce Mobile
SDK offers delegate and block versions of its REST request APIs. Delegate request methods are defined in the SFRestAPI
class, while block request methods are defined in the SFRestAPI (Blocks) category. Supported operations are:

Manual REST request send:delegate: sendRESTRequest : failBlock:completeBlock:

Executes a request that
you've built

SOQL query requestForQuery: performSOQLQuery: failBlock:completeBlock:

Executes the given
SOQL string and
returns the resulting
data set

SOSL search requestForSearch: performSOSLSearch: failBlock:completeBlock:

Executes the given
SOSL string and
returns the resulting
data set

Metadata requestForMetadataWithObjectType:
E * J ¥p performMetadataWithObjectType:failBlock:

Returns the object’s completeBlock:
metadata

Describe global requestForDescribeGlobal performDescribeGlobalWithFailBlock: completeBlock:

Returns a list of all
available objects in your
org and their metadata

18

Native iOS Development Developing a Native iOS App

Describe with object tForD ibeWithObjectType:
4 FEQUEeSLEOrUeSCribent Jectiype performDescribeWithObjectType:failBlock:

type completeBlock:

Returns a description
of a single object type

Retrieve
requestForRetrieveWithObjectType: performRetrieveWithObjectType:objectId:

Retrievesasingle objectId:fieldList: fieldList:failBlock:completeBlock:

record by object ID

Update
p requestForUpdateWithObjectType: performUpdateWithObjectType:objectId:

Updates o object sk objectId:fields: fields:failBlock:completeBlock:

the given map

Upsert
p requestForUpsertWithObjectType: performUpsertWithObjectType:externalIdField:

Updates OF NEEES am externalIdField:externalld::fields: externalld:fields:failBlock:completeBlock:
object from external

data, based on whether

the external ID

currently exists in the

external ID field

T F WithObjectType:fields:
Create requestForCreateWithObjectType: fields performCreateWithObjectType:fields:

Crreaties @ mevy Taesml i failBlock:completeBlock:

the specified object

Delete tForDeleteli thObjectType: dbjectId:
requestrorbeletent JectType:coje performDeleteWithObjectType:objectId:

Deletes the objcct of failBlock:completeBlock:
the given type with the

given ID

Versions requestForVersions
a * performRequestForVersionsWithFailBlock:
Returns Salesforce completeBlock:

version metadata

Resources requestForResources
q performRequestForResourcesWithFailBlock:

Returns available completeBlock:
resources for the
specified API version,

including resource

name and URI

19

Native i0OS Development Developing a Native iOS App

SFRestAPI Interface

SFRestAPI defines the native interface for creating and formatting Salesforce REST requests. It works by formatting and
sending your requests to the Salesforce service, then relaying asynchronous responses to your implementation of the
SFRestDelegate protocol.

SFRestAPI serves as a factory for SFRestRequest instances. It defines a group of methods that represent the request types
supported by the Salesforce REST API. Each SFRestAPI method corresponds to a single request type. Each of these methods
returns your request in the form of an SFRestRequest instance. You then use that return value to send your request to the

Salesforce server. The HT'TP coding layer is encapsulated, so you don’t have to worry about REST API syntax.
For a list of supported query factory methods, see Supported Operations on page 18

SFRestDelegate Protocol

When a class adopts the SFRestDelegate protocol, it intends to be a target for REST responses sent from the Salesforce
server. When you send a REST request to the server, you tell the shared SFRestAPT instance which object receives the
response. When the server sends the response, Mobile SDK routes the response to the appropriate protocol method on the
given object.

The sFRestDelegate protocol declares four possible responses:

+ request:didLoadResponse: — Your request was processed. The delegate receives the response in JSON format. This
is the only callback that indicates success.

+ request:didFailloadWithError: — Your request couldn’t be processed. The delegate receives an error message.

+ requestDidCancelLoad — Your request was canceled by some external factor, such as administrator intervention, a
network glitch, or another unexpected event. The delegate receives no return value.

+ requestDidTimeout — The Salesforce server failed to respond in time. The delegate receives no return value.
The response arrives in your implementation of one of these delegate methods. Because you don’t know which type of response
to expect, you must implement all of the methods.

request:didLoadResponse: Method

The request:didLoadResponse: method is the only protocol method that handles a success condition, so place your
code for handling Salesforce data in that method. For example:

- (void) request: (SFRestRequest *)request
didLoadResponse: (id) jsonResponse {

NSArray *records = [JjsonResponse objectForKey:@"records"];
NSLog (@"request:didLoadResponse: #records: %d", records.count);
self.dataRows = records;

[self.tableView reloadDatal;

At the server, all responses originate as JSON strings. Mobile SDK receives these raw responses and reformats them as iOS
SDK objects before passing them to the request : didLoadResponse: method. Thus, the jsonResponse payload arrives
as either an NSDictionary object or an NSArray object. The object type depends on the type of JSON data returned. If
the top level of the server response represents a JSON object, j sonResponse is an NSDictionary object. If the top level
represents a JSON array of other data, jsonResponse is an NSArray object.

20

Native i0OS Development Developing a Native iOS App

If your method cannot infer the data type from the request, use [NSObject isKindOfClass:] to determine the data type.
For example:

if ([jsonResponse isKindOfClass: [NSArray class]]) {
// Handle an NSArray here.

} else {
// Handle an NSDictionary here.

}

You can address the response as an NSDictionary object and extract its records into an NSArray object. To do so, send the
NSDictionary:objectForKey: message using the key “records”.

request:didFailLoadWithError: Method

A call to the request:didFailLoadWithError: callback results from one of the following conditions:

« Ifyou use invalid request parameters, you get a kSFRestErrorDomain error code. For example, you pass nil to
requestForQuery:, or you try to update a non-existent object.

« If'an OAuth access token expires, the framework tries to obtain a new access token and, if successful, retries the query. If
a request for a new access token or session ID fails, you get a kSFOAuthErrorDomain error code. For example, the access
token expires, and the OAuth refresh token is invalid. This scenario rarely occurs.

« If the low-level HTTP request fails, you get an RKRestKitErrorDomain error code. For example, a Salesforce server
becomes temporarily inaccessible.

requestDidCancelLoad and requestDidTimeout Methods

The requestbidCancelload and requestDidTimeout delegate methods are self-describing and don’t return an error
code. You can choose to handle the result however you want: display an error message, write to the log, retry the request, and
s0 on.

Creating REST Requests

Salesforce Mobile SDK for iOS natively supports many types of SOQL and SOSL REST requests. The SFRestAPT class
provides factory methods that handle most of the syntactical details for you. Mobile SDK also offers considerable flexibility
for how you create REST requests.

« For standard SOQL queries and SOSL searches, SFRestAPI methods create query strings based on minimal data input
and package them in an SFRestRequest object that can be sent to the Salesforce server.

« Ifyou are using a Salesforce REST API that isn’t based on SOQL or SOSL, SFRestRequest methods let you configure
the request itself to match the API format.

« The SFRestAPI (QueryBuilder) category provides methods that create free-form SOQL queries and SOSL search
strings so you don’t have to manually format the query or search string.

+ Request methods in the SFRestAPI (Blocks) category let you pass callback code as block methods, instead of using a
delegate object.

Sending a REST Request

Salesforce Mobile SDK for iOS natively supports many types of SOQL and SOSL REST requests. Luckily, the SFRestAPI
provides factory methods that handle most of the syntactical details for you.

At runtime, Mobile SDK creates a singleton instance of SFRestAPI. You use this instance to obtain an SFRestRequest
object and to send that object to the Salesforce server.

21

Native iOS Development Developing a Native iOS App

To send a REST request to the Salesforce server from an SFRestAPI delegate:

1. Build a SOQL, SOSL, or other REST request string.

For standard SOQL and SOSL queries, it’s most convenient and reliable to use the factory methods in the SFRestAPI
class. See Supported Operations.

2. Create an SFRestRequest object with your request string.

Message the SFRestAPI singleton with the request factory method that suits your needs. For example, this code uses
theSFRestAPI:requestForQuery: method, which prepares a SOQL query.

// Send a request factory message to the singleton SFRestAPI instance
SFRestRequest *request = [[SFRestAPI sharedInstance]
requestForQuery:Q@"SELECT Name FROM User LIMIT 10"];

3. Send the send:delegate: message to the shared SFRestAPI instance. Use your new SFRestRequest object as the
send: parameter. The second parameter designates an SFRestDelegate object to receive the server’s response. In the
following example, the class itself implements the SFRestDelegate protocol, so it sets delegate: to self.

// Use the singleton SFRestAPI instance to send the
// request, specifying this class as the delegate.
[[SFRestAPI sharedInstance] send:request delegate:self];

SFRestRequest Class

Salesforce Mobile SDK provides the SFRestRequest interface as a convenience class for apps. SFRestAPT provides request
methods that use your input to form a request. This request is packaged as an SFRestRequest instance and returned to your
app. In most cases you don’t manipulate the SFRestRequest object. Typically, you simply pass it unchanged to the
SFRestAPI:send:delegate: method.

Ifyou're sending a REST request that isn’t directly supported by the Mobile SDK—for example, if you want to use the Chatter
REST API—you can manually create and configure an SFRestRequest object.

Using SFRestRequest Methods

SFRestAPI tools support SOQL and SOSL statements natively: they understand the grammar and can format valid requests
based on minimal input from your app. However, Salesforce provides some product-specific REST APIs that have no
relationship to SOQL queries or SOSL searches. You can still use Mobile SDK resources to configure and send these requests.
This process is similar to sending a SOQL query request. The main difference is that you create and populate your
SFRestRequest object directly, instead of relying on SFRestAPI methods.

To send a non-SOQL and non-SOSL REST request using the Mobile SDK:
1. Create an instance of SFRestRequest.
2. Set the properties you need on the SFRestRequest object.

3. Call send:delegate: on the singleton SFRestAPT instance, passing in the SFRestRequest object you created as the
first parameter.

The following example performs a GET operation to obtain all items in a specific Chatter feed.

SFRestRequest *request = [[SFRestRequest alloc] init];
[request setDelegate:self];
[request setEndpoint:kSFDefaultRestEndpoint];

22

Native iOS Development Developing a Native iOS App

[request setMethod:SFRestMethodGET] ;
[request setPath: [NSString stringWithFormat:@"/v26.0/chatter/feeds/record/%Q/feed-items",

recordId]];
[[SFRestAPI sharedInstance] send:request delegate:self];

4. Alternatively, you can create the same request using the requestWithMethod:path:queryParams class method.

SFRestRequest *request =
[SFRestRequest requestWithMethod:SFRestMethodGET
path: [NSString stringWithFormat:
@"/v26.0/chatter/feeds/record/%@/feed-items",
recordId]
queryParams:nil];
[[SFRestAPI sharedInstance] send:request delegate:self];

5. To perform a request with parameters, create a parameter string, and then use the SFJsonUtils:objectFromJSONString
static method to wrap it in an NSDictionary object. (If you prefer, you can create your NSDictionary object directly,
before the method call, instead of creating it inline.)

The following example performs a POST operation that adds a comment to a Chatter feed.

NSString *body = [NSString stringWithFormat:@"{\"body\" : {\"messageSegments\" :
[{ \"type\" : \"Text\", \"text\" : \"%@\"}
] } }"’

comment];

SFRestRequest *request =
[SFRestRequest requestWithMethod:SFRestMethodPOST
path: [NSString stringWithFormat:
@"/v26.0/chatter/feeds/record/%Q/feed-items",
recordId]
queryParams: (NSDictionary *) [SFJsonUtils objectFromJSONString:body]];
[[SFRestAPI sharedInstance] send:request delegate:self];

SFRestAPI (Blocks) Category

If you prefer, you can use blocks instead of a delegate to execute callback code. Salesforce Mobile SDK for native iOS provides
a block corollary for each SFRestAPI request method. These methods are defined in the SFRestAPI (Blocks) category.

Block request methods look a lot like delegate request methods. They all return a pointer to SFRestRequest, and they require
the same parameters. Block request methods differ from their delegate siblings in these ways:

1. Inaddition to copying the REST API parameters, each method requires two blocks: a fail block of type SFRestFailBlock,
and a complete block of type SFRestDictionaryResponseBlock or type SFRestArrayResponseBlock, depending
on the expected response data.

2. Block-based methods send your request for you, so you don’t need to call a separate send method. If your request fails, you
can use the SFRestRequest * return value to retry the request. To do this, use the
SFRestAPI:sendRESTRequest:failBlock:completeBlock: method.

Judicious use of blocks and delegates can help fine-tune your app’s readability and ease of maintenance. Prime conditions for
using blocks often correspond to those that mandate inline functions in C++ or anonymous functions in Java. However, this
observation is just a general suggestion. Ultimately, you need to make a judgement call based on research into your app’s
real-world behavior.

23

Native iOS Development Developing a Native iOS App

SFRestAPI (QueryBuilder) Category

If you're unsure of the correct syntax for a SOQL query or a SOSL search, you can get help from the SFRestAPI
(QueryBuilder) category methods. These methods build query strings from basic conditions that you specify, and return
the formatted string. You can pass the returned value to one of the following SFRestAPI methods.

e — (SFRestRequest *)requestForQuery: (NSString *)soql;
e — (SFRestRequest *)requestForSearch: (NSString *)sosl;

SFRestAPI (QueryBuilder) provides two static methods each for SOQL queries and SOSL searches: one takes minimal
parameters, while the other accepts a full list of options.

SOSL Methods
SOSL query builder methods are:

+ (NSString *) SOSLSearchWithSearchTerm: (NSString *)term
objectScope: (NSDictionary *)objectScope;

+ (NSString *) SOSLSearchWithSearchTerm: (NSString *)term
fieldScope: (NSString *)fieldScope
objectScope: (NSDictionary *)objectScope
limit: (NSInteger)limit;

Parameters for the SOSL search methods are:

« termis the search string. This string can be any arbitrary value. The method escapes any SOSL reserved characters before
processing the search.

« fieldScope indicates which fields to search. It’s either ni1 or one of the IN search group expressions: “IN ALL FIELDS”,
“IN EMAIL FIELDS”, “IN NAME FIELDS”, “IN PHONE FIELDS”, or “IN SIDEBAR FIELDS”. A nil value
defaults to “IN NAME FIELDS”. See Salesforce Object Search Language (SOSL).

+ objectScope specifies the objects to search. Acceptable values are:

0 nil—No scope restrictions. Searches all searchable objects.

0 AnNsDictionary object pointer—Corresponds to the SOSL RETURNING fieldspec. Each key is an sObject
name; each value is a string that contains a field list as well as optional WHERE, ORDER BY, and LIMIT clauses
for the key object.

Ifyou use an NSDictionary object, each value must contain at least a field list. For example, to represent the following
SOSL statement in a dictionary entry:

FIND {Widget Smith}
IN Name Fields
RETURNING Widget c¢ (name Where createddate = THIS FISCAL QUARTER)

set the key to “Widget__¢” and its value to “name WHERE createddate = “T'HIS_FISCAL_QUARTER”. For

example:

[SFRestAPI
SOSLSearchWithSearchTerm:@"all of these will be escaped:~{]"
objectScope: [NSDictionary
dictionaryWithObject:@"name WHERE
createddate="THIS FISCAL QUARTER"

forKey:@"Widget c"11;

24

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_Left.htm#StartTopic=Content/sforce_api_calls_sosl_in.htm

Native iOS Development Developing a Native iOS App

0 NSNull—No scope specified.

+ limit—If you want to limit the number of results returned, set this parameter to the maximum number of results you
want to receive.

SOQL Methods
SOQL QueryBuilder methods that construct SOQL strings are:

+ (NSString *) SOQLQueryWithFields: (NSArray *)fields
sObject: (NSString *)sObject

where: (NSString *)where

limit: (NSInteger)limit;

+ (NSString *) SOQLQueryWithFields: (NSArray *)fields
sObject: (NSString *)sObject
where: (NSString *)where
groupBy: (NSArray *)groupBy
having: (NSString *)having
orderBy: (NSArray *)orderBy
limit: (NSInteger)limit;

Parameters for the SOQL methods correspond to SOQL query syntax. All parameters except f£ields and sObject can be

settonil.
Parameter name Description
fields An array of field names to be queried.
sObject Name of the object to query.
where An expression specifying one or more query conditions.
groupBy An array of field names to use for grouping the resulting
records.
having An expression, usually using an aggregate function, for filtering
the grouped results. Used only with groupBy.
orderBy An array of fields name to use for ordering the resulting
records.
limit Maximum number of records you want returned.
See SOQL SELECT Syntax.
SOSL Sanitizing

The QueryBuilder category also provides a class method for cleaning SOSL search terms:

+ (NSString *) sanitizeSOSLSearchTerm: (NSString *)searchTerm;

25

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_select.htm

Native iOS Development iOS Sample Applications

This method escapes every SOSL reserved character in the input string, and returns the escaped version. For example:
NSString *soslClean = [SFRestAPI sanitizeSOSLSearchTerm:@"FIND {MyProspect}"];

This call returns “FIND \{MyProspect\}”.

The sanitizeSOSLSearchTerm: method is called in the implementation of the SOSL and SOQL QueryBuilder methods,
so you don’t need to call it on strings that you're passing to those methods. However, you can use it if, for instance, you're
building your own queries manually. SOSL reserved characters include:

\NP& LT O)A~" "

iOS Sample Applications

The app you created in Running the Xcode Project Template App is itself a sample application, but it only does one thing:
issue a SOQL query and return a result. The native iOS sample apps have a lot more functionality you can examine and work
into your own apps.

« The RestAPIExplorer sample app exercises all of the native REST API wrappers. It is in the Mobile SDK for iOS under
native/SampleApps/RestAPIExplorer.

« The NativeSqlAggregator sample app shows SQL aggregation examples as well as a native SmartStore implementation.
It resides in the Mobile SDK for iOS under native/SampleApps/NativeSqlAggregator.

26

Chapter 3

Native Android Development

In this chapter ...

* Android Native Quick Start
* Native Android Requirements

* Installing and Uninstalling Salesforce
Mobile SDK for Android

* Creating a New Android Project

* Setting Up Sample Projects in Eclipse
* Developing a Native Android App

* Android Sample Applications

Salesforce Mobile SDK delivers libraries and sample projects for developing

native mobile apps on Android.
The Android native SDK provides two main features:

Automation of the OAuth2 login process, making it easy to integrate the
process with your app.
Access to the Salesforce REST API, with utility classes that simplify that

aCCess.

The Android Salesforce Mobile SDK includes several sample native applications.

It also provides an ant target for quickly creating a new application.

27

Native Android Development Android Native Quick Start

Android Native Quick Start

Use the following procedure to get started quickly.

1. Make sure you meet all of the native Android requirements.
2. Install the Mobile SDK for Android.

3. At the command line, run an ant script to create a new Android project , and then run that template application from
the command line.

4. Set up your projects in Eclipse.

Native Android Requirements

. Java JDK 6.
« Apache Ant 1.8 or later.
« Android SDK, version 21 or later—http://developer.android.com/sdk/installing.html.

. Note: For best results, install all previous versions of the Android SDK as well as your target version.

« Eclipse 3.6 or later. See http://developer.android.com/sdk/requirements.html for other versions.

« Android ADT (Android Development Tools) plugin for Eclipse, version 21 or
later—http://developer.android.com/sdk/eclipse-adt.html#installing.

+ Inorder to run the application in the Emulator, you need to set up at least one Android Virtual Device (AVD) that targets
Platform 2.2 or above (we recommend 4.0 or above). To learn how to set up an AVD in Eclipse, follow the instructions
at http://developer.android.com/guide/developing/devices/managing-avds.html.

« A Developer Edition organization with a remote access application.

The SalesforceSDK project is built with the Android 3.0 (Honeycomb) library. The primary reason for this is that we want
to be able to make a conditional check at runtime for file system encryption capabilities. This check is bypassed on earlier
Android platforms; thus, you can still use the salesforcesdk. jar in earlier Android application versions, down to the
mininum-supported Android 2.2.

Installing and Uninstalling Salesforce Mobile SDK for Android
For the fastest, easiest route to Android development, use NPM to install Salesforce Mobile SDK for Android.

1. Ifyou've already successfully installed Node.js and npm, skip to Step 4.

2. Install Node.js and npm on your system.

a. a. Download Node.js from www.nodejs.org/download.

b. b. Run the downloaded installer to install Node.js and npm. Accept all prompts asking for permission to install.

28

http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/eclipse-adt.html#installing
http://developer.android.com/guide/developing/devices/managing-avds.html
http://www.nodejs.org/download

Native Android Development Installing and Uninstalling Salesforce Mobile SDK for Android

3. Atacommand prompt, type npm and press Return to make sure your installation was successful. If you don’t see a page
of usage information, revisit Step 2 to find out what’s missing.

4. Use the forcedroid package to install the Mobile SDK either globally (recommended) or locally.
a. To install Salesforce Mobile SDK in a global location, append the “global” option, -g, to the end of the command.

For non-Windows environments, use the sudo command:
sudo npm install forcedroid -g

On Windows:

npm install forcedroid -g

With the -g option, you run npm install from any directory. In non-Windows environments, the NPM utility
installs the package under /usr/local/lib/node modules, and links binary modulesin /usr/local/bin. Most
users need the sudo option because they lack read-write permissions in /usr/local. In Windows environments,
global packages are installed in $APPDATA%\npm\node modules, and binaries are linked in $APPDATA%\npm.

b. To install Salesforce Mobile SDK in a local directory, cd to that directory and use the NPM command without sudo
or the —g option:

npm install forcedroid

This command installs Salesforce Mobile SDK in a node modules directory under your current directory. It links
binary modules in . /node_modules/.bin/. In this scenario, you rarely use sudo because you typically install in a
local folder where you already have read-write permissions.

Uninstalling the Forcedroid Package

The instructions for uninstalling the forcedroid package vary with whether you installed the package globally or locally.

If you installed the package globally, you can run the uninstall command from any folder. Be sure to use the —g option.
On a Unix-based platform such as Mac OS X, use sudo as well.

$ pwd
/Users/joeuser
$ sudo npm uninstall forcedroid -g

$

If you installed the package locally, run the uninstall command from the folder where you installed the package. For
example:

cd <my projects/my sdk folder>
npm uninstall forcedroid

If you try to uninstall a local installation from the wrong directory, you'll get an error message similar to this:

npm WARN uninstall not installed in /Users/joeuser/node modules:
"my projects/my sdk folder/node modules/forcedroid"

29

Native Android Development Creating a New Android Project

(Optional) Clone the Salesforce Mobile SDK Source Code from GitHub

If you’re adventurous or just curious, you can choose to install the Salesforce Mobile SDK source code from its GitHub
repository. Doing so allows you to contribute to the open source and keep up with source code changes.

1. In your browser, navigate to the Mobile SDK Android GitHub repository:
https://github.com/forcedotcom/SalesforceMobileSDK-Android.

2. Clone the repository to your local file system by issuing the following command: git clone
git://github.com/forcedotcom/SalesforceMobileSDK-Android.git

3. Open a command prompt in the directory where you installed the cloned repository, and run the install script from the
command line: . /install.sh

. Note: Windows users: Run cscript install.vbs.

Create shell variables:

1. ANDROID SDK_DIR pointing to the Android SDK directory

2. SALESFORCE_SDK_DIR pointing to your clone of the Salesforce Mobile SDK repository, for example:
/home/jon/SalesforceMobileSDK-Android

3. NATIVE DIR pointing to $SALESFORCE SDK DIR/native

4. TARGET DIR pointing to a location you've defined to contain your Android project

= Note: These variables are for your own convenience. If you don’t set up these variables, make sure to replace
$ANDROTD SDK_DIR, $SALESFORCE SDK DIR, $NATIVE DIRand $TARGET DIR in the various code snippets
" in this guide with the actual paths.

Creating a New Android Project

To create a new app, you use forcedroid again on the command line. You have two options for configuring your app. You
can:

« Configure your application options interactively as prompted by the forcedroid app, or

« Specify your application options and values directly at the command line.

To enter application options interactively, type <forcedroid_path>/forcedroid create. The forcedroid utility prompts
you for each configuration option.

rwhitley-Ltml:Downloads rwhitleys: forcedroid create

Enter your application type (native, hybrid_remote, or hybrid_locall: native
Enter your application name: MyMativeAndroidApp

Enter the target directory of your app: /Users/rwhitley/Development/Androidipps
Enter the package name for your app (com.mycompany.my_appl: com.acme.goodapps
Do you want to use SmartStore in your app? [vessMNO] ('No' by default)
Adjusting SalesforceSDK library project reference in project.properties.
Renaming application class to MyNativeAndroidAppApp in source.

Renaming application to MyNativeAndroidApp in source.

Renaming package name to com.acme.goodapps in source.

Moving source files to proper package path.

Renaming the app class filename to MyNativeAndroidAppApp.java.

Your application project is ready in fUsers/rwhitley/Development/AndroidApps.

30

https://github.com/forcedotcom/SalesforceMobileSDK-Android

Native Android Development Creating a New Android Project

To specify your configuration directly with command line options, type forcedroid without arguments. The list of available
options displays:

$ node _modules/.bin/forcedroid
Usage:
forcedroid create
-—apptype=<Application Type> (native, hybrid remote, hybrid local)
—-—appname=<Application Name>
--targetdir=<Target App Folder>
--packagename=<App Package Identifier> (com.my company.my app)
-—apexpage=<Path to Apex start page> (/apex/MyPage — Only required/used for
'hybrid remote')
[-—usesmartstore=<Whether or not to use SmartStore> (--usesmartstore=true — false by
default)]

Using this information, type forcedroid create, followed by your options and values. For example:

$ node modules/.bin/forcedroid create --apptype="native" --appname="package-test"
--targetdir="PackageTest" --packagename="com.test.my new app"

Here are more verbose descriptions of the parameters:

--apptype One of the following:
. “native”
+ “hybrid_remote” (server-side hybrid app using VisualForce)
« “hybrid_local” (client-side hybrid app that doesn’t use

VisualForce)
--appname Name of your application
--targetdir Folder in which you want your project to be created. If the

folder doesn’t exist, the script creates it.

--packagename Package identifier for your application (for example,
“com.acme.app”)

--apexpage (hybrid remote apps only) Server path to the Apex start page.
For example: /apex/MyAppStartPage

--usesmartstore=true (Optional) Include only if you want to use SmartStore for
offline data. Defaults to false if not specified.

Building and Running Your App From the Command Line

After the command line returns to the command prompt, the forcedroid script prints instructions for running Android utilities
to configure and clean your project. Follow these instructions only if you want to build and run your app from the command
line.

31

Native Android Development Android Template Application

1. To build the new application, type the following commands at the command prompt:

cd <your project directory>
$ANDROID SDK DIR/tools/android update project -p .

where ANDROID SDK_DIR points to your Android SDK directory.

2. To run the application, start an emulator or plug in your device. Then, type the following command at the command
prompt:

ant installd

= Note: You can safely ignore the following warning:

Ll It seems that there are sub-projects. If you want to update them please use the
--subprojects parameter.

The Android project you created contains a simple application you can build and run.

Importing and Building Your App in Eclipse

The forcedroid script also prints instructions for running the new app in the Eclipse editor.

Launch Eclipse and select the —target dir directory as your workspace directory.

Select Window > Preferences, choose the Android section, and enter the Android SDK location.
Click OK.

Select File > Import and select General > Existing Projects into Workspace.

Click Next.

Specify the forcedroid/native directory as your root directory. Next to the list that displays, click Deselect All, then
browse the list and check the SalesforceSDK project.

NG S e

N

If you set —use_smartstore=true, check the SmartStore project as well.
8. Click Import.

9. Repeat Steps 4-8. In Step 6, choose your target directory as the root, then select only your new project.

When you've finished importing the projects, Eclipse automatically builds your workspace. This process can take several
minutes. When the status bar reports zero errors, you're ready to run the project.

1. In your Eclipse workspace, Control-click or right-click your project.
2. From the popup menu, choose Run As > Android Application.

Eclipse launches your app in the emulator or on your connected Android device.

Android Template Application

The native template app for Android allows you to login and do standard CRM tasks, such as queries and inserts.
To build the new application:

1. In a text editor, open $TARGET DIR/res/values/bootconfig.xml.
2. Enter your OAuth client ID and callback URL, and then save the file.

32

Native Android Development Setting Up Sample Projects in Eclipse

3. Open a command prompt and enter the following commands:

cd $TARGET DIR
SANDROID SDK DIR/tools/android update project -p . -t 1
ant clean debug

o Note: The -t <id> parameter specifies API level of the target Android version. Use android.bat list

targets to see the IDs for API versions installed on your system. See Native Android Requirements on page
28 for supported API levels.

4. If your emulator is not running, use the Android AVD Manager to start it. If you are using a real device, connect it.
5. Enter ant installd.

For an in-depth look at the native Android template app, see TemplateApp Class.

Setting Up Sample Projects in Eclipse
The repository you cloned has other sample apps you can run. To import those into Eclipse:

1. Launch Eclipse and select —target dir as your workspace directory.

2. Ifyou haven’t done so already, select Window > Preferences, choose the Android section, and enter the Android SDK
location. Click OK.

3. Select File > Import and select General > Existing Projects into Workspace.
4. Click Next.

5. Select forcedroid/native as your root directory and import the projects listed in Android Project Files.

Android Project Files

Inside the SNATIVE_DIR, you will find several projects:

SalesforceSDK—The SalesforceSDK, which provides support for OAuth2 and REST API calls
test/SalesforceSDKTest—Lests for the SalesforceSDK project

TemplateApp— l'emplate used when creating new native applications using SalesforceSDK
test/TemplateAppTest— Lests for the TemplateApp project
SampleApps/RestExplorer—App using SalesforceSDK to explore the REST API calls
SampleApps/NativeSqlAggregator —A native app that uses SmartStore

SN h W=

Developing a Native Android App

The native Android version of the Salesforce Mobile SDK empowers you to create rich mobile apps that directly use the
Android operating system on the host device. To create these apps, you need to understand Java and Android development
well enough to write code that uses Mobile SDK native classes.

33

Native Android Development The create_native Script

The create_native Script

The create native script creates the app folder you specify, then populates it with a project file, build file, manifest file
and resource files. Next, it copies the entire TemplateApp project to the new folder. It then updates the project properties,
file names, class names, and directory paths to match the new app’s configuration. As a result, your new project replicates all
the settings and components used by the TemplateApp project.

If your new app supports SmartStore, the script also:

« Adds the SmartStore support library to the app directory.
+ References the SmartStore library in the new project’s properties.

« Changes the application class to extend SalesforceSDKManagerWithSmartStore rather than
SalesforceSDKManager.

Finally, the script posts an important message:
“Before you ship, make sure to plug in your oauth client id and callback url in:
${target.dir}/res/values/bootconfig.xml”

If you’re wondering where to get the OAuth client ID and callback URL, look in your connected app definition in your
Salesforce organization. The OAuth client ID is the connected app’s Consumer Key. The callback URL is the one you specified
when you created your connected app. You enter these keys in the res/values/bootconfig.xml file of your project,
which contains a few clearly named <string> nodes. Here’s an example bootconfig.xml file:

<?xml version="1.0" encoding="utf-8"7?>

<resources>
<string name="remoteAccessConsumerKey">3MVG92.uWdyphVj4bnolD7yulpCQsNgddW
tgRND3faxrv9uKnbj47H4RkwheHA21KY4cBusvDVpOM6gdGE8hp</string>
<string name="oauthRedirectURI">sfdc:///axm/detect/oauth/done</string>
<string-array name="oauthScopes">
<item>api</item>
</string-array>
</resources>

The create native script pre-populates oauthRedirectURI and remoteAccessConsumerKey strings with dummy
values. Replace those values with the strings from your connected app definition.

Android Application Structure

Typically, native Android apps that use the Mobile SDK require:

« An application entry point class that extends android.app.Application.
« At least one activity that extends android.app.Activity.

With the Mobile SDK, you:

« Create a stub class that extends android.app.Application.
« Implement onCreate () inyour Application stub class to call SalesforceSDKManager.initNative ().

. Extend salesforceActivity, SalesforceListActivity, or SalesforceExpandableListActivity. This
extension is optional but recommended.

34

Native Android Development Developing a Native Android App

The top-level SalesforceSDKManager class implements passcode functionality for apps that use passcodes, and fills in the
blanks for those that don’t. It also sets the stage for login, cleans up after logout, and provides a special event watcher that
informs your app when a system-level account is deleted. OAuth protocols are handled automatically with internal classes.

The SalesforceActivity, SalesforceListActivity, and SalesforceExpandablelListActivity classes offer
free handling of application pause and resume events and related passcode management. We recommend that you extend one
of these classes for all activities in your app—not just the main activity. If you use a different base class for an activity, you're
responsible for replicating the pause and resume protocols found in SalesforceActivity.

Within your activities, you interact with Salesforce objects by calling Salesforce REST APIs. The Mobile SDK provides the
com.salesforce.androidsdk.rest package to simplify the REST request and response flow.

You define and customize user interface layouts, image sizes, strings, and other resources in XIVIL files. Internally, the SDK
uses an R class instance to retrieve and manipulate your resources. However, the Mobile SDK makes its resources directly
accessible to client apps, so you don’t need to write code to manage these features.

35

Native Android Development Native API Packages

Application object

Login -

Login
succassful?

Yes

Passcode
enabled?

Mo

Max. 10 attempis.
Enter Passcode

Passcode
accepted? Mo

Yeas

Main Activity

Other Activities
{Optional)

Native APl Packages

Salesforce Mobile SDK groups native APIs into seven packages. Here’s a quick overview of these packages and points of
interest within them.

app Contains SalesforceSDKManager, the entry point class

for all Mobile SDK applications. This package also contains
app utility classes for internal use.

36

Native Android Development Overview of Native Classes

auth Internal use only. Handles login, OAuth authentication, and
HTTP access.
phonegap Internal classes used by hybrid applications to create a bridge

between native code and Javascript code. Includes plugins that
implement Mobile SDK Javascript libraries. If you want to
implement your own Javascript plugin within an SDK app,
extend ForcePlugin and implement the abstract execute ()
function. See ForcePlugin Class on page 43.

rest Provides classes for handling REST API activities. These
classes manage the communication with the Salesforce instance
and handle the HT'TP protocol for your REST requests. See
ClientManager and RestClient for information on
available synchronous and asynchronous methods for sending
requests.

security Internal classes that handle passcodes and encryption. If you
provide your own key, you can use the Encryptor class to
generate hashes. See Encryptor.

ui, ui.sfhybrid, ui.sfnative Mostly internal classes that define the Ul activities common
to all Mobile SDK apps. These packages include
SalesforceActivity, SalesforceListActivity,and
SalesforceExpandablelListActivity, which are
intended to serve individually as potential base classes for all
app activities.

util . o

Contains utility and test classes. These classes are mostly for

internal use, with some notable exceptions.

+ You can register an instance of the
TokenRevocationReceiver class to detect when an
OAuth access token has been revoked.

+ You can implement the EventObserver interface to
eavesdrop on any event type.

+ The EventsListenerQueue class is useful for
implementing your own tests.

. Browse the EventsObservable source code to see a list
of all supported event types.

Overview of Native Classes

This overview of the Mobile SDK native classes give you a look at pertinent details of each class and a sense of where to find
what you need.

37

Native Android Development Developing a Native Android App

SalesforceSDKManager Class

The SalesforceSDKManager class is the entry point for all native Android applications that use the Salesforce Mobile
SDK. It provides mechanisms for:

« Login and logout

« Passcodes

« Encryption and decryption of user data
« String conversions

« User agent access

« Application termination

« Application cleanup

initNative() Method

During startup, you initialize the singleton SalesforceSDKManager object by calling its static initNative () method.
This method takes four arguments:

An instance of Context that describes your application’s
context. In an Application extension class, you can satisfy
this parameter by passing a call to
getApplicationContext ().

applicationContext

An instance of your implementation of theKeyInterface
Mobile SDK interface. You are required to implement this
interface.

keyImplementation

The descriptor of the class that displays your main activity.

mainActivit
Y The main activity is the first activity that displays after login.

(Optional) The class descriptor of your custom

loginActivit
g Y LoginActivity class.

Here’s an example from the TemplateApp:
SalesforceSDKManager.initNative (getApplicationContext (), new KeyImpl (), MainActivity.class);

In this example, KeyImpl is the app’s implementation of KeyInterface. MainActivity subclasses SalesforceActivity
and is designated here as the first activity to be called after login.

logout() Method

The salesforceSDKManager.logout () method clears user data. For example, if you've introduced your own resources
that are user-specific, you don’t want them to persist into the next user session. SmartStore destroys user data and account
information automatically at logout.

Always call the superclass method somewhere in your method override, preferably after doing your own cleanup. Here’s a
pseudo-code example.

@Override
public void logout (Activity frontActivity) {

38

Native Android Development Developing a Native Android App

// Clean up all persistent and non-persistent app artifacts
// Call superclass after doing your own cleanup
super.logout (frontActivity) ;

getLoginActivityClass() Method
This method returns the descriptor for the login activity. The login activity defines the WebView through which the Salesforce

server delivers the login dialog.

getUserAgent() Methods

The Mobile SDK builds a user agent string to publish the app’s versioning information at runtime. This user agent takes the
following form.

SalesforceMobileSDK/<salesforceSDK version> android/<android OS version> appName/appVersion
<Native|Hybrid>

Here’s a real-world example.
SalesforceMobileSDK/2.0 android mobile/4.2 RestExplorer/1.0 Native

To retrieve the user agent at runtime, call the SalesforceSDKManager.getUserAgent () method.

isHybrid() Method

Imagine that your Mobile SDK app creates libraries that are designed to serve both native and hybrid clients. Internally, the
library code switches on the type of app that calls it, but you need some way to determine the app type at runtime. To determine
the type of the calling app in code, call the boolean SalesforceSDKManager.isHybrid () method. True means hybrid,
and false means native.

Keyinterface Interface

Keylnterface is a required interface that you implement and pass into the SalesforceSDKManager.initNative () method.

getKey() Method

You are required to return a Base64-encoded encryption key from the getKey () abstract method. Use the Encryptor.hash ()
and Encryptor.isBase64Encoded () helper methods to generate suitable keys. The Mobile SDK uses your key to encrypt
app data and account information.

AccountWatcher Class

AccountWatcher informs your app when the user’s account is removed through Settings. Without AccountWatcher, the
application gets no notification of these changes. It’s important to know when an account is removed so that its passcode and
data can be disposed of properly, and logout can begin.

AccountWatcher defines an internal interface, AccountRemoved, that each app must implement. SalesforceSDKManager
implements this interface to terminate the app’s current (front) activity and reset the passcode, if used, and encryption key.

39

Native Android Development Developing a Native Android App

PasscodeManager Class

The PasscodeManager class manages passcode encryption and displays the passcode page as required. It also reads mobile
policies and caches them locally. This class is used internally to handle all passcode-related activities with minimal coding on
your part. As a rule, apps call only these three PasscodeManager methods:

e public void onPause (Activity ctx)
« public boolean onResume (Activity ctx)

e public void recordUserInteraction ()
These methods must be called in any native activity class that

+ Isinan app that requires a passcode, and

« Doesnotextend SalesforceActivity, SalesforceListActivity,or SalesforceExpandableListActivity.

You get this implementation for free in any activity that extends SalesforceActivity, SalesforceListActivity, or
SalesforceExpandablelListActivity.

onPause() and onResume()

These methods handle the passcode dialog box when a user pauses and resumes the app. Call each of these methods in the
matching methods of your activity class. For example, SalesforceActivity.onPause () calls
PasscodeManager.onPause (), passing in its own class descriptor as the argument, before calling the superclass.

@Override

public void onPause () {
passcodeManager.onPause (this) ;
super.onPause () ;

Use the boolean return value of PasscodeManager . onResume () method as a condition for resuming other actions. In your
app’s onResume () implementation, be sure to call the superclass method before calling the PasscodeManager version. For
example:

@Override

public void onResume () {
super.onResume () ;
// Bring up passcode screen 1f needed
passcodeManager.onResume (this) ;

recordUserInteraction()

This method saves the time stamp of the most recent user interaction. Call PasscodeManager.recordUserInteraction ()
in the activity's onUserInteraction () method. For example:

@Override
public void onUserInteraction() {
passcodeManager.recordUserInteraction () ;

}

40

Native Android Development Developing a Native Android App

Encryptor class

The Encryptor helper class provides static helper methods for encrypting and decrypting strings using the hashes required
by the SDK. It’s important for native apps to remember that all keys used by the Mobile SDK must be Base64-encoded. No
other encryption patterns are accepted. Use the Encryptor class when creating hashes to ensure that you use the correct
encoding.

Most Encryptor methods are for internal use, but apps are free to use this utility as needed. For example, if an app implements
its own database, it can use Encryptor as a free encryption and decryption tool.

SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity Classes

SalesforceActivity, SalesforceListActivity, and SalesforceExpandablelListActivity are the skeletal
base classes for native SDK activities. They extend android.app.Activity, android.app.ListActivity, and
android.app.ExpandableListActivity, respectively.

Each of these classes provides a free implementation of PasscodeManager calls. When possible, it’s a good idea to extend
one of these classes for all of your app’s activities, even if your app doesn’t currently use passcodes.

For passcode-protected apps: If any of your activities don’t extend SalesforceActivity, SalesforcelistActivity,
or SalesforceExpandableListActivity, youll need to add a bit of passcode protocol to each of those activities. See
Using Passcodes on page 43

Each of these activity classes contain a single abstract method:
public abstract void onResume (RestClient client);

This method overloads the Activity.onResume () method, which is implemented by the class. The class method calls
your overload after it instantiates a RestClient instance. Use this method to cache the client that’s passed in, and then use
that client to perform your REST requests.

Ul Classes

Activities in the com.salesforce.androidsdk.ui package represent the Ul resources that are common to all Mobile
SDK apps. You can style, skin, theme, or otherwise customize these resources through XML. With the exceptions of
SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity, do not override
these activity classes with intentions of replacing the resources at runtime.

ClientManager and RestClient Classes

ClientManager works with the Android AccountManager class to manage user accounts. More importantly for apps, it
provides access to RestClient instances through two methods:

e getRestClient ()
« peekRestClient ()

The getRestClient () method asynchronously creates a RestClient instance for querying Salesforce data. Asynchronous
in this case means that this method is intended for use on Ul threads. The peekRestClient () method createsaRestClient
instance synchronously, for use in non-UI contexts.

Once you get the RestClient instance, you can use it to send REST API calls to Salesforce. Again, the method you call
depends on whether you're calling from a Ul context. The RestClient methods for sending HT'TP requests are:

41

Native Android Development Developing a Native Android App

+ sendAsync () —Call this method if you called ClientManager.getRestClient ()
« sendSync () —Call this method if you called ClientManager.peekRestClient ()

You can choose from three overloads of RestClient.sendSync (), depending on the degree of information you can provide
for the request.

LoginActivity Class

LoginActivity defines the login screen. The login workflow is worth describing because it explains two other classes in the
activity package. In the login activity, if you press the Menu button, you get three options: Clear Cookies, Reload, and Pick
Server. Pick Server launches an instance of the ServerPickerActivity class, which displays Production, Sandbox, and
Custom Server options. When a user chooses Custom Server, ServerPickerActivity launches an instance of the
CustomServerURLEditor class. This class displays a popover dialog that lets you type in the name of the custom server.

Other Ul Classes

Several other classes in the ui package are worth mentioning, although they don’t affect your native API development efforts.

The PasscodeActivity class provides the Ul for the passcode screen. It runs in one of three modes: Create, CreateConfirm,
and Check. Create mode is presented the first time a user attempts to log in. It prompts the user to create a passcode. After
the user submits the passcode, the screen returns in CreateConfirm mode, asking the user to confirm the new passcode.
Thereafter, that user sees the screen in Check mode, which simply requires the user to enter the passcode.

SalesforceR is a deprecated class. This class was required when the Mobile SDK was delivered in JAR format, to allow
developers to edit resources in the binary file. Now that the Mobile SDK is available as a library project, SalesforceR is not
needed. Instead, you can override resources in the SDK with your own.

SalesforceDroidGapActivity and SalesforceGapViewClient are used only in hybrid apps.

UpgradeManager Class

UpgradeManager provides a mechanism for silently upgrading the SDK version installed on a device. This class stores the

SDK version information in a shared preferences file on the device. To perform an upgrade, UpgradeManager queries the

current SalesforceSDKManager instance for its SDK version and compares its version to the device’s version information.
If an upgrade is necessary—for example, if there are changes to a database schema or to encryption patterns—UpgradeManager
can take the necessary steps to upgrade SDK components on the device. This class is intended for future use. Its implementation
in Mobile SDK 2.0 simply stores and compares the version string.

Utility Classes

Though most of the classes in the util package are for internal use, several of them can also benefit third-party developers.

EventsObservable See the source code for a list of all events that the Mobile SDK
for Android propagates.
EventsObserver Implement this interface to eavesdrop on any event. This

functionality is useful if you're doing something special when
certain types of events occur.

42

Native Android Development Using Passcodes

TokenRevocationReceiver This class handles what happens when an administrator
revokes a user’s refresh token. See Handling Refresh Token
Revocation in Android Native Apps on page 132.

UriFragmentParser You can directly call this static helper class. It parses a given
UR]I, breaks its parameters into a series of key/value pairs, and
returns them in a map.

ForcePlugin Class

All classes in thecom.salesforce.androidsdk.phonegap package are intended for hybrid app support. Most of these
classes implement Javascript plugins that access native code. The base class for these Mobile SDK plugins is ForcePlugin.
If you want to implement your own Javascript plugin in a Mobile SDK app, extend ForcePlugin, and implement the abstract
execute () function.

ForcePlugin extends CordovaPlugin, which works with the Javascript framework to let you create a Javascript module
that can call into native functions. PhoneGap provides the bridge on both sides: you create a native plugin with CordovaPlugin,
then you create a Javascript file that mirrors it. Cordova calls the plugin’s execute () function when a script calls one of the
plugin’s Javascript functions.

Using Passcodes

User data in Mobile SDK apps is secured by encryption. The administrator of your Salesforce org has the option of requiring
the user to enter a passcode for connected apps. In this case, your app uses that passcode as an encryption hash key. If the
Salesforce administrator doesn’t require a passcode, you're responsible for providing your own key.

Salesforce Mobile SDK does all the work of implementing the passcode workflow. It calls the passcode manager to obtain the
user input, and then combines the passcode with prefix and suffix strings into a hash for encrypting the user's data. It also
handles decrypting and re-encrypting data when the passcode changes. If an organization changes its passcode requirement,
the Mobile SDK detects the change at the next login and reacts accordingly. If you choose to use a passcode, your only
responsibility is to implement the SalesforceSDKManager.getKey () method. All your implementation has to do in this
case is return a Base64-encoded string that can be used as an encryption key.

Internally, passcodes are stored as Base64-encoded strings. The SDK uses the Encryptor class for creating hashes from
passcodes. You should also use this class to generate a hash when you provide a key instead of a passcode. Passcodes and keys
are used to encrypt and decrypt SmartStore data as well as oAuth tokens, user identification strings, and related security
information. To see exactly what security data is encrypted with passcodes, browse the C1ientManager.changePasscode ()
method.

Mobile policy defines certain passcode attributes, such as the length of the passcode and the timing of the passcode dialog.
Mobile policy files for connected apps live on the Salesforce server. If a user enters an incorrect passcode more than ten
consecutive times, the user is logged out. The Mobile SDK provides feedback when the user enters an incorrect passcode,
apprising the user of how many more attempts are allowed. Before the screen is locked, the PasscodeManager class stores
a reference to the front activity so that the same activity can be resumed if the screen is unlocked.

If you define activities that don’t extend SalesforceActivity, SalesforceListActivity, or
SalesforceExpandableListActivity in a passcode-protected app, be sure to call these three PasscodeManager
methods from each of those activity classes:

43

Native Android Development Resource Handling

e PasscodeManager.onPause ()
e PasscodeManager.onResume (Activity)

e PasscodeManager.recordUserInteraction ()

Call onPause () and onResume () from your activity's methods of the same name. Call recordUserInteraction ()
from your activity’s onUserInteraction () method. Pass your activity class descriptor to onResume () . These calls ensure
that your app enforces passcode security during these events. See PasscodeManager Class on page 40.

w® Note: The SalesforceActivity,SalesforceListActivity,and SalesforceExpandableListActivity

classes implement these mandatory methods for you for free. Whenever possible, base your activity classes on one of

=" these classes.

Resource Handling

Salesforce Mobile SDK resources are configured in XML files that reside in the native/SalesforceSDK/res folder. You
can customize many of these resources by making changes in this folder.

Resources in the /res folder are grouped into categories, including:

+ Drawables—Backgrounds, drop shadows, image resources such as PNG files
« Layouts—Screen configuration for any visible component, such as the passcode screen

+ Values—Strings, colors, and dimensions that are used by the SDK
Two additional resource types are mostly for internal use:

. Menus

- XML

Drawable, layout, and value resources are subcategorized into folders that correspond to a variety of form factors. These
categories handle different device types and screen resolutions. Each category is defined in its folder name, which allows the
resource file name to remain the same for all versions. For example, if the developer provides various sizes of an icon named
iconl.png, for example, the smart phone version goes in one folder, the low-end phone version goes in another folder, while
the tablet icon goes into a third folder. In each folder, the file name is iconl.png. The folder names use the same root but
with different suffixes.

The following table describes the folder names and suffixes.

drawable Generic versions of drawable resources
drawable-hdpi High resolution; for most smart phones
drawable-1ldpi Low resolution; for low-end feature phones
drawable-mdpi Medium resolution; for low-end smart phones
drawable-xlarge For tablet screens in landscape orientation
drawable-xlarge-port For tablet screens in portrait orientation
layout Generic versions of layouts

layout-land For landscape orientation

Native Android Development Developing a Native Android App

layout-xlarge For tablet screens
values Generic styles and values
values-xlarge For tablet screens

The compiler looks for a resource in the folder whose name matches the target device configuration. If the requested resource
isn’t in the expected folder (for example, if the target device is a tablet, but the compiler can’t find the requested icon in the

drawables-xlarge or drawables-xlarge-port folder) the compiler looks for the icon file in the generic drawable
folder.

Layouts

Layouts in the Mobile SDK describe the screen resources that all apps use. For example, layouts configure dialog boxes that
handle logins and passcodes.

The name of an XML node in a layout indicates the type of control it describes. For example, the following EditText node
from res/layout/sf passcode.xml describes a text edit control:

<EditText android:id="@+id/sf passcode text"
style="@style/SalesforceSDK.Passcode.Text.Entry"
android:inputType="textPassword" />

In this case, the EditText control uses an android:inputType attribute. Its value, “textPassword”, tells the operating
system to obfuscate the typed input.

The style attribute references a global style defined elsewhere in the resources. Instead of specifying style attributes in place,
you define styles defined in a central file, and then reference the attribute anywhere it’s needed. The value
@style/SalesforceSDK.Passcode.Text.Entry refers to an SDK-owned style defined in

res/values/sf styles.xml. Here’s the style definition.

<style name="SalesforceSDK.Passcode.Text.Entry">
<item name="android:layout width">wrap content</item>
<item name="android:lines">1</item>
<item name="android:maxLength">10</item>
<item name="android:minWidth">@dimen/sf passcode text min width</item>
<item name="android:imeOptions">actionGo</item>
</style>

You can override any style attribute with a reference to one of your own styles. Rather than changing sf styles.xml,
define your styles in a different file, such as xyzcorp _styles.xml. Place your file in the res/values for generic device
styles, or the res/values-xlarge folder for tablet devices.

Values

The res/values and res/values-xlarge folders contain definitions of style components, such as dimens and colors, string resources,
and custom styles. File names in this folder indicate the type of resource or style component. To provide your own values,
create new files in the same folders using a file name prefix that reflects your own company or project. For example, if your
developer prefix is XYZ, you can override sf _styles.xml in a new file named XYZ styles.xml.

sf colors.xml Colors referenced by Mobile SDK styles

45

Native Android Development Using REST APIs

sf dimens.xml Dimensions referenced by Mobile SDK styles

sf strings.xml Strings referenced by Mobile SDK styles; error messages can be overridden
sf styles.xml Visual styles used by the Mobile SDK

strings.xml App-defined strings

You can override the values in strings.xml. However, if you used the create native script to create your app, strings
in strings.xml already reflect appropriate values.

Other Resources

Two other folders contain Mobile SDK resources.

+ res/menu defines menus used internally. If your app defines new menus, add them as resources here in new files.

+ res/xml includes one file that you must edit: servers.xml. In this file, change the default Production and Sandbox
servers to the login servers for your org. The other files in this folder are for internal use. The authenticator.xml file
configures the account authentication resource, and the config. xml file defines PhoneGap plugins for hybrid apps.

Using REST APIs

To query, describe, create, or update data from a Salesforce org, native apps call Salesforce REST APIs. Salesforce REST
APIs honor SOQL strings and can accept and return data in either JSON or XML format. REST APIs are fully documented
at REST API Developer’s Guide You can find links to related Salesforce development documentation at the Force.com
developer documentation website..

With Android native apps, you do only minimal coding to access Salesforce data through REST calls. The classes in the
com.salesforce.androidsdk.rest package initialize the communication channels and encapsulate low-level HTTP
plumbing. These classes include:

« ClientManager—~Serves as a factory for RestClient instances. It also handles account logins and handshakes with the
Salesforce server. Implemented by the Mobile SDK.

« RestClient—Handles protocol for sending REST API requests to the Salesforce server. Don’t directly create instances
of RestClient. Instead, call the ClientManager.getRestClient () method. Implemented by the Mobile SDK.

+ RestRequest—Formats REST API requests from the data your app provides. Also serves as a factory for instances of
itself. Don’t directly create instances of RestRequest. Instead, call an appropriate RestRequest static getter function
such as RestRequest.getRequestForCreate (). Implemented by the SDK.

+ RestResponse—Formats the response content in the requested format, returns the formatted response to your app, and
closes the content stream. The RestRequest class creates instances of RestResponse and returns them to your app
through your implementation of the RestClient.AsyncRequestCallback interface. Implemented by the SDK.

The RestRequest class natively handles the standard Salesforce data operations offered by the Salesforce REST and SOAP
APIs. Supported operations are:

46

http://www.salesforce.com/us/developer/docs/api_rest/api_rest.pdf
http://wiki.developerforce.com/page/Documentation
http://wiki.developerforce.com/page/Documentation

Native Android Development Developing a Native Android App

Versions None Returns Salesforce version metadata
Resources API version Returns available resources for the
specified API version, including resource
name and URI
Metadata API version, object type
DescribeGlobal API version Returns a list of all available objects in
your org and their metadata
Describe API version, object type Returns a description of a single object
type
Create API version, object type, map of field ~ Creates a new record in the specified
names to value objects object
Retrieve API version, object type, object ID, list Retrieves a record by object ID
of fields
Update API version, object type, object ID, map Updates an object with the given map
of field names to value objects
Upsert API version, object type, external ID ~ Updates or inserts an object from external
field, external ID, map of field names to data, based on whether the external ID
value objects currently exists in the external ID field
Delete API version, object type, object ID Deletes the object of the given type with
the given ID

To obtain an appropriate RestRequest instance, call the RestRequest static method that matches the operation you want
to perform. Here are the RestRequest static methods.

e getRequestForCreate()

¢ getRequestForDelete()

« getRequestForDescribe ()
« getRequestForDescribeGlobal ()
¢ getRequestForMetadata ()
¢ getRequestForQuery()

« getRequestForResources ()
« getRequestForRetrieve ()
¢ getRequestForSearch()

e getRequestForUpdate ()

e getRequestForUpsert ()

« getRequestForVersions ()

These methods return a RestRequest object which you pass to an instance of RestClient. The RestClient class provides
synchronous and asynchronous methods for sending requests: sendSync () and sendasync (). UsesendAsync () when
you're sending a request from a Ul thread. Use sendSync () only on non-UI threads, such as a service or a worker thread
spawned by an activity.

47

Native Android Development Developing a Native Android App

Here’s the basic procedure for using the REST classes on a Ul thread:
1. Create an instance of ClientManager.

a. Use the SalesforceSDKManager.getInstance () .getAccountType () method to obtain the value to pass as
the second argument of the ClientManager constructor.

b. For the LoginOptions parameter of the ClientManager constructor, call
SalesforceSDKManager.GetInstance () .getLoginOptions ().

2. Implement the ClientManager.RestClientCallback interface.

3. CallclientManager.getRestClient () to obtain a RestClient instance, passing it an instance of your
RestClientCallback implementation. This code from the native/SampleApps/RestExplorer sample app
implements and instantiates RestClientCallback inline:

String accountType = SalesforceSDKManager.getInstance () .getAccountType () ;
LoginOptions loginOptions = SalesforceSDKManager.getInstance () .getLoginOptions () ;

// Get a rest client
new ClientManager (this, accountType, loginOptions,

SalesforceSDKManager.getInstance () .shouldLogoutWhenTokenRevoked ()) .getRestClient (this,
new RestClientCallback() {
@Override
public void authenticatedRestClient (RestClient client) {
if (client == null) {
SalesforceSDKManager.getInstance () .logout (ExplorerActivity.this);
return;

}
// Cache the returned client
ExplorerActivity.this.client = client;

}
O

4. Call astatic RestRequest () getter method to obtain the appropriate RestRequest object for your needs. For example,
to get a description of a Salesforce object:

request = RestRequest.getRequestForDescribe (apiVersion, objectType) ;
5. Pass the RestRequest object you obtained in the previous step to RestClient.sendAsync () or
RestClient.sendSync (). If you're on a Ul thread and therefore calling sendAsync ():

a. Implement the ClientManager.AsyncRequestCallback interface.
b. Pass an instance of your implementation to the sendAsync () method.

c. Receive the formatted response through your ASyncRequestCallback.onSuccess () method.

The following code implements and instantiates ASyncRequestCallback inline:

private void sendFromUIThread (RestRequest restRequest) {
client.sendAsync (restRequest, new AsyncRequestCallback() {

private long start = System.nanoTime () ;

@Override

public void onSuccess (RestRequest request, RestResponse result) {
try

{
// Do something with the result

}
catch (Exception e) {
printException (e) ;

48

Native Android Development Android Template App: Deep Dive

}
EventsObservable.get () .notifyEvent (EventType.RenditionComplete) ;

}
@Override
public void onError (Exception exception)
{
printException (exception) ;
EventsObservable.get () .notifyEvent (EventType.RenditionComplete) ;
}
1)

If you're calling the sendSync () method from a service, use the same procedure with the following changes:

1. To obtain a RestClient instance call ClientManager.peekRestClient () instead of
ClientManager.getRestClient ().

2. Retrieve your formatted REST response from the sendSync () method’s return value.

Android Template App: Deep Dive

The TemplateApp sample project implements everything you need to create a basic Android app. Because it’s a “bare bones”
example, it also serves as the template that the Mobile SDK’s create_native ant script uses to set up new native Android
projects. You can gain a quick understanding of the native Android SDK by studying this project.

The TemplateApp project defines two classes, TemplateApp and MainActivity. The TemplateApp class extends
Application and calls SalesforceSDKManager.initNative () inits onCreate () override. The MainActivity
class subclasses the SalesforceActivity class. These two classes are all you need to create a running mobile app that
displays a login screen and a home screen.

Despite containing only about 200 lines of code, TemplateApp is more than just a “Hello World” example. In its main activity,
it retrieves Salesforce data through REST requests and displays the results on a mobile page. You can extend TemplateApp

by adding more activities, calling other components, and doing anything else that the Android operating system, the device,
and security restraints allow.

TemplateApp Class

Every native Android app requires an instance of android.app.Application. Here’s the entire class:

package com.salesforce.samples.templateapp;
import android.app.Application;

import com.salesforce.androidsdk.app.SalesforceSDKManager;

/**

* Application class for our application.

=)

public class TemplateApp extends Application {

@Override
public void onCreate () {

super.onCreate () ;

SalesforceSDKManager.initNative (getApplicationContext (), new KeyImpl (), MainActivity.class);

}
}

49

Native Android Development Developing a Native Android App

The TemplateApp class accomplishes two main tasks:

« Calls initNative () to initialize the app

+ Passes in the app’s implementation of KeyInterface

Most native Android apps can use similar code. For this small amount of work, your app gets free implementations of passcode
and login/logout mechanisms, plus a few other benefits. See SalesforceActivity, SalesforceListActivity, and
SalesforceExpandableListActivity Classes on page 41.

MainActivity Class

In Mobile SDK apps, the main activity begins immediately after the user logs in. Once the main activity is running, it can
launch other activities, which in turn can launch sub-activities. When the application exits, it does so by terminating the main
activity. All other activities terminate in a cascade from within the main activity.

The MainActivity class for the Template app extends
com.salesforce.androidsdk.ui.sfnative.SalesforceActivity. This superclass is the Mobile SDK's basic
abstract activity class.SalesforceActivity, gives you free implementations of mandatory passcode and login protocols. If
you use another base activity class instead, you're responsible for implementing those protocols. MainActivity initializes
the app's Ul and implements its UI buttons. The Ul includes a list view that can show the user's Salesforce Contacts or
Accounts. When the user clicks one of these buttons, the MainActivity object performs a couple of basic queries to populate
the view. For example, to fetch the user's Contacts from Salesforce, the onFetchContactsClick () message handler sends

a simple SOQL query:

public void onFetchContactsClick(View v) throws UnsupportedEncodingException {
sendRequest ("SELECT Name FROM Contact");
}

Internally, the private sendRequest () method formulates a server request using the RestRequest class and the given

SOQL string:

private void sendRequest (String soqgl) throws UnsupportedEncodingException
{
RestRequest restRequest = RestRequest.getRequestForQuery(getString(R.string.api version),
soql) ;
client.sendAsync (restRequest, new AsyncRequestCallback ()
{
@Override
public void onSuccess (RestRequest request,
RestResponse result) {
try {

listAdapter.clear() ;

JSONArray records = result.asJSONObject () .getJSONArray ("records") ;

for (int i = 0; i < records.length(); i++) {
listAdapter.add (records.getJSONObject (i) .getString ("Name")) ;
}

} catch (Exception e) {

onkError (e) ;

}

}
@Override
public void onError (Exception exception)
{
Toast.makeText (MainActivity.this,

MainActivity.this.getString(
SalesforceSDKManager.getInstance () .getSalesforceR() .stringGenericError (),
exception.toString()),

Toast.LENGTH LONG) .show () ;

50

Native Android Development Developing a Native Android App

1)
}

This method uses an instance of the com.salesforce.androidsdk.rest.RestClient class, client, to process its
SOQL query. The RestClient class relies on two helper classes—RestRequest and RestResponse—to send the query
and process its result. The sendRequest () method calls RestClient.sendAsync () to process the SOQL query
asynchronously.

To support the sendAsync () call, the sendRequest () method constructs an instance of
com.salesforce.androidsdk.rest.RestRequest, passing it the API version and the SOQL query string. The resulting
object is the first argument for sendAsync () . The second argument is a callback object. When sendAsync () has finished
running the query, it sends the results to this callback object. If the query is successful, the callback object uses the query
results to populate a Ul list control. If the query fails, the callback object displays a toast popup to display the error message.

Jawva Note:

In the call toRestClient.sendAsync () the code instantiates a new AsyncRequestCallback object as its second
argument. However, the AsyncRequestCallbackconstructor is followed by a code block that overrides a couple of
methods: onSuccess () and onError (). If that code looks strange to you, take a moment to see what's happening.
ASyncRequestCallbackis defined as an interface, so it has no implementation. In order to instantiate it, the code implements
the two ASyncRequestCallback methods inline to create an anonymous class object. This technique gives TemplateApp
an sendAsync () implementation of its own that can never be called from another object and doesn't litter the API landscape
with a group of specialized class names.

TemplateApp Manifest

A look at the AndroidManifest.xml file in the TemplateApp project reveals the components required for Mobile SDK
native Android apps. Required components include:

com.salesforce.androidsdk.auth.AuthenticatorService Service Validates the user’s
credentials against the
Salesforce OAuth module.

MainActivity Activity The first activity to be

called after login. The
name and the class are
defined in the project.

com.salesforce.androidsdk.ui.LoginActivity Activity Displays the Salesforce
login screen.

com.salesforce.androidsdk.ui.PasscodeActivity Activity Displays the passcode
screen. Used only if the
Salesforce administrator
requires a passcode for the
corresponding Connected
App. This requirement can
change at any time on the
server, but the Mobile

51

Native Android Development Android Sample Applications

SDK checks the policy
only during login.

com.salesforce.androidsdk.ui.ServerPickerActivity Activity Displays a list of Salesforce
login servers from which
the user can choose. This
activity also lets users add
custom servers.

com.salesforce.androidsdk.ui.ManageSpaceActivity Activity Displayed when the user
clicks on Manage Space in
the Settings app. Warns
the user that clearing user
data from Settings causes
the user to be logged out.

Because apps created by the create native script are based on the TemplateApp project, you don’t need to add these
components to the manifest. As with any Android app, you can add other components, such as custom activities or services,
using the Android Manifest editor in Eclipse.

In addition to component specifications, the manifest grants Android permissions to the app. Grants in TemplateApp include:

¢ android.permission.INTERNET

+ android.permission.MANAGE ACCOUNTS

+ android.permission.AUTHENTICATE ACCOUNTS
+ android.permission.GET_ ACCOUNTS

+ android.permission.USE CREDENTIALS

»+ android.permission.ACCESS NETWORK STATE

Most of these permissions provide access to Android user accounts. For details, search for manifest permissions in the Android
SDK documentation.

Android Sample Applications

RestExplorer is a sample app that demonstrates how to use the OAuth and REST API functions of the SalesforceSDK. It’s
also useful to investigate the various REST API actions from a Honeycomb tablet.

1. To run the application from your Eclipse workspace, right-click the RestExplorer project and choose Run As > Android
Application.
2. To run the tests, right-click the RestExplorerTest project and choose Run As > Android JUnit Test.

NativeSqlAggregator is a sample app that demonstrates SQL aggregation with SmartSQL. As such, it also demonstrates a
native implementation of SmartStore. To run the application from your Eclipse workspace, right-click the NativeSqlAggregator
project and choose Run As > Android Application.

52

Chapter 4

Introduction to Hybrid Development

In this chapter ...

* iOS Hybrid Development

* Android Hybrid Development

* JavaScript Files for Hybrid
Applications

* Versioning and Javascript Library
Compatibility

* Managing Sessions in Hybrid
Applications

* Example: Serving the Appropriate
Javascript Libraries

Hybrid apps combine the ease of HTIML5 Web app development with the power
and features of the native platform. They run within the Salesforce Mobile
Container

, a native layer that translates the app into device-specific code.

Hybrid apps depend on HTML and JavaScript files. These files can be stored

on the device or on the server.

Device—Hybrid apps developed with forcetk.mobilesdk wrap a Web

app inside the Salesforce Mobile Container. In this scenario, the JavaScript
and HTML files are stored on the device.
Server — Hybrid apps developed using Visualforce technology store their

HTML and JavaScript files on the Salesforce server and are delivered through
the Salesforce Mobile Container.

53

Introduction to Hybrid Development iOS Hybrid Development

iOS Hybrid Development

In order to develop hybrid applications, you'll need to meet some of the prerequisites for both the iOS native and the vanilla
HTMLS scenarios.

1. Make sure you meet the HTML5 Development

2. Follow the installation instructions for 10S.

iOS Hybrid Sample Application

The sample applications contained under the hybrid/Sampleapps folder are designed around the PhoneGap SDK.
PhoneGap is also known as Cordova. Salesforce Mobile SDK v. 1.4 and later include the Cordova libraries, so no separate
installation is required. You can find documentation for the Cordova SDK in the Getting Started Guide.

Inside the hybrid/SampleApps folder, you can find sample projects:

+ AccountEditor: Demonstrates how to use the SmartSync Data Framework to access Salesforce data.

« ContactExplorer: The ContactExplorer sample app uses PhoneGap (also known as Cordova) to retrieve local device
contacts. It also uses the forcetk.mobilesdk. js toolkit to implement REST transactions with the Salesforce REST
API. The app uses the OAuth2 support in Salesforce SDK to obtain OAuth credentials, then propagates those credentials
to forcetk.mobilesdk. js by sending a JavaScript event.

« VFConnector: The VFConnector sample app demonstrates how to wrap a Visualforce page in a native container. This
example assumes that your org has a Visualforce page called BasicVFTest. The app first obtains OAuth login credentials
using the Salesforce SDK OAuth2 support, then uses those credentials to set appropriate webview cookies for accessing
Visualforce pages.

« SmartStoreExplorer: Lets you explore SmartStore APls.

Android Hybrid Development

In order to develop hybrid applications, you'll need to meet some of the prerequisites for both the Android native and the
vanilla HTMLS5 scenarios.

1. Make sure you meet the HTMLS5 Development.
2. Follow the installation instructions for Android Native.

3. After installing Mobile SDK for Android, create a new hybrid app as described in Creating a New Android Project on
page 30. For the apptype parameter:

+ Use -—apptype="hybrid local” forahybrid app with all code in the local project. Put your HTML and JavaScript
filesin $ {target.dir}/assets/www/.

+ Use -——apptype="hybrid remote” for a hybrid app with code in a Visualforce app on the server

Hybrid Sample Applications

Inside the . /hybrid folder, you can find sample projects and related test applications:

54

http://www.phonegap.com/
http://www.phonegap.com/start

Introduction to Hybrid Development JavaScript Files for Hybrid Applications

+ AccountEditor: Demonstrates how to use the SmartSync Data Framework to access Salesforce data.

« SampleApps/ContactExplorer: The ContactExplorer sample app uses PhoneGap (also known as Cordova) to retrieve
local device contacts. It also uses the forcetk.mobilesdk. js toolkit to implement REST transactions with the Salesforce
REST API. The app uses the OAuth2 support in Salesforce SDK to obtain OAuth credentials, then propagates those

credentials to forcetk.mobilesdk.js by sending a javascript event.
« SampleApps/test/ContactExplorerTest: Tests for the ContactExplorer sample app.

« SampleApps/VFConnector: The VFConnector sample app demonstrates how to wrap a Visualforce page in a native
container. This example assumes that your org has a Visualforce page called BasicVFTest. The app first obtains OAuth
login credentials using the Salesforce SDK OAuth2 support, then uses those credentials to set appropriate webview cookies
for accessing Visualforce pages.

« SampleApps/test/VFConnectorTest: Test for the VFConnector sample app.
« SampleApps/SmartStoreExplorer: Lets you explore SmartStore APIs.
« SampleApps/test/SmartStoreExplorerTest: Tests for the SmartStoreExplorer sample app.

JavaScript Files for Hybrid Applications

In Salesforce Mobile SDK 2.0, we've refactored some JavaScript files and added new ones to support SmartSync. JavaScript
files reside in the forcedotcom/SalesforceMobileSDK-Shared repository on GitHub.

Refactored JavaScript Files

These files are now collected in the cordova. force. s file.

« SFHybridApp.js
e SalesforceOAuthPlugin.js

« SmartStorePlugin.js

New JavaScript Files
These files are new in Mobile SDK 2.0.

cordova.force.js Contains plugins for hybrid apps using the Cordova libraries

SmartSync.js The SmartSync Data Framework library

New External Dependencies

Mobile SDK 2.0 introduces new external dependencies.

jquery.js Popular HTML utility library
underscore.js SmartSync support
backbone.js SmartSync support

55

Introduction to Hybrid Development Versioning and Javascript Library Compatibility

Which JavaScript Files Do | Include?
Files that you include depend on the type of hybrid project. For each type described here, include all files in the list.
For basic hybrid apps:

e cordova.js

« cordova.force.js
To make REST API calls from a basic hybrid app:

e cordova.js
« cordova.force.js

e forcetk.mobilesdk.js
To use SmartSync in a hybrid app:

e Jjguery.js

« underscore.js

e backbone.js

e cordova.js

« cordova.force.js

o forcetk.mobilesdk.js

e SmartSync.js

Versioning and Javascript Library Compatibility

In hybrid applications, client Javascript code interacts with native code through Cordova (formerly PhoneGap) and
SalesforceSDK plugins. When you package your Javascript code with your mobile application, your testing assures that the
code works with native code. However, when the Javascript code comes from the server—for example, when the application
is written with VisualForce—harmful conflicts can occur. In such cases you must be careful to use Javascript libraries from the
version of PhoneGap or Cordova that matches the Mobile SDK version you're using.

For example, suppose you shipped an application with Mobile SDK 1.2, which uses PhoneGap 1.2. Later, you ship an update
that uses Mobile SDK 1.3. The 1.3 version of the Mobile SDK uses Cordova 1.8.1 rather than PhoneGap 1.2. You must
make sure that the Javascript code in your updated application accesses native components only through the Cordova 1.8.1
and Mobile SDK 1.3 versions of the Javascript libraries. Using mismatched Javascript libraries can crash your application.

You can’t force your customers to upgrade their clients, so how can you prevent crashes? First, identify the version of the client.
Then, you can either deny access to the application if the client is outdated (for example, with a "Please update to the latest
version” warning), or, preferably, serve compatible Javascript libraries.

The following table correlates Cordova and PhoneGap versions to Mobile SDK versions.

1.2 PhoneGap 1.2
1.3 Cordova 1.8.1
1.4 Cordova 2.2
1.5 Cordova 2.3

56

Introduction to Hybrid Development Versioning and Javascript Library Compatibility

2.0 Cordova 2.3

Using the User Agent to Find the Mobile SDK Version

Fortunately, you can look up the Mobile SDK version in the user agent. The user agent starts with
SalesforceMobileSDK/<version>. Once you obtain the user agent, you can parse the returned string to find the Mobile
SDK version.

You can obtain the user agent on the server with the following Apex code:
userAgent = ApexPages.currentPage () .getHeaders () .get ('User-Agent');
On the client, you can do the same in Javascript using the navigator object:

userAgent = navigator.userAgent;

Detecting the Mobile SDK Version with the sdkinfo Plugin

In Javascript, you can also retrieve the Mobile SDK version and other information by using the sdkinfo plugin. This plugin,
which is defined in the cordova. force. js file, offers one method:

getInfo (callback)

This method returns an associative array that provides the following information:

sdkVersion Version of the Salesforce Mobile SDK used to build to the
container. For example: “1.4”.

appName Name of the hybrid application.
appVersion Version of the hybrid application.
forcePluginsAvailable Array containing the names of Salesforce plugins installed in

the container. For example: "com.salesforce.oauth",
"com.salesforce.smartstore", and so on.

The following code retrieves the information stored in the sdkinfo plugin and displays it in alert boxes.

var sdkinfo = cordova.require ("salesforce/plugin/sdkinfo");
sdkinfo.getInfo (new function (info) {
alert ("sdkVersion->" + info.sdkVersion) ;
alert ("appName->" + info.appName) ;
alert ("appVersion->" + info.appVersion);
alert ("forcePluginsAvailable->" + JSON.stringify(info.forcePluginsAvailable)) ;

See Also:
Example: Serving the Appropriate Javascript Libraries

57

Introduction to Hybrid Development Managing Sessions in Hybrid Applications

Managing Sessions in Hybrid Applications

Mobile users expect their apps to just work. To help iron out common difficulties that plague many mobile apps, the Mobile
SDK uses native containers for hybrid applications. These containers provide seamless authentication and session management
by abstracting the complexity of web session management. However, as popular mobile app architectures evolve, this “one size
fits all” approach proves to be too limiting in some cases. For example, if a mobile app uses JavaScript remoting in Visualforce,
Salesforce cookies can be lost if the user lets the session expire. These cookies can be retrieved only when the user manually
logs back in.

Mobile SDK 1.4 begins to transition hybrid apps away from predefined, proactive session management to more flexible,
reactive session management. Rather than letting the hybrid container automatically control the session, developers can
participate in the management by responding to session events. This change gives developers more control over managing
sessions in the Salesforce Touch Platform.

To switch to reactive management, adjust your session management settings according to your app’s architecture. This table
summarizes the behaviors and recommended approaches for common architectures.

REST API Background session refresh Refresh from JavaScript No change for
torcetk.mobilesdk.js. For other
frameworks, add refresh code.

JavaScript Remoting in Restart app Refresh session and CSRF Catch timeout, then either

Visualforce token from JavaScript reload page or load a new
iFrame.

JQuery Mobile Restart app Reload page Catch timeout, then reload
page.

These sections provide detailed coding steps for each architecture.

REST APIs (Including Apex2REST)

If you're writing or upgrading a hybrid app that leverages REST APIs, detect an expired session and request a new access
token at the time the REST call is made. We encourage authors of apps based on this framework to leverage API wrapping
libraries, such as forcetk.mobilesdk.js, to manage session retention.

The following code, from index.html in the ContactExplorer sample application, demonstrates the recommended technique.
When the application first loads, call getAuthCredentials () on the Salesforce OAuth plugin, passing the handle to your
refresh function (in this case, salesforceSessionRefreshed.) The OAuth plugin function calls your refresh function,
passing it the session and refresh tokens. Use these returned values to initialize forcetk.mobilesdk.

« From the onDeviceReady () function:

cordova.require ("salesforce/plugin/oauth") .getAuthCredentials (salesforceSessionRefreshed,
getAuthCredentialsError) ;

58

Introduction to Hybrid Development Managing Sessions in Hybrid Applications

« salesforceSessionRefreshed () function:

function salesforceSessionRefreshed (credsData) {
forcetkClient = new forcetk.Client (credsData.clientId, credsData.loginUrl);
forcetkClient.setSessionToken (credsData.accessToken, apiVersion,
credsData.instanceUrl) ;
forcetkClient.setRefreshToken (credsData.refreshToken) ;
forcetkClient.setUserAgentString (credsData.userAgent) ;

For the complete code, see the ContactExplorer sample application
(salesforceMobileSDK-Android\hybrid\SampleApps\ContactExplorer).

JavaScript Remoting in Visualforce

For mobile apps that use JavaScript remoting to access Visualforce pages, incorporate the session refresh code into the method
parameter list. In JavaScript, use the Visualforce remote call to check the session state and adjust accordingly.

<Controller>.<Method> (

<params>,
function (result, event) {
if (hasSessionExpired(event)) {

// Reload will try to redirect to login page, container will intercept
// the redirect and refresh the session before reloading the origin page
window.location.reload() ;

} else {
// Everything is OK. You can go ahead and use the result.

by
{escape: true}
)i

This example defines hasSessionExpired () as:

function hasSessionExpired(event) {
return (event.type == "exception" && event.message.indexOf ("Logged in?") != -1);

}

Advanced developers: Reloading the entire page might not provide the optimal user experience. If you want to avoid reloading
the entire page, you'll need to:

1. Refresh the access token
2. Refresh the Visualforce domain cookies
3. Finally, refresh the CSRF token

In hasSessionExpired (), instead of fully reloading the page as follows:
window.location.reload();
Do something like this:

// Refresh oauth token
cordova.require ("salesforce/plugin/oauth") .authenticate (
function (creds) {
// Reload hidden iframe that points to a blank page to
// to refresh Visualforce domain cookies
var iframe = document.getElementById("blankIframeId");
iframe.src = src;

// Refresh CSRF cookie

59

Introduction to Hybrid Development Example: Serving the Appropriate Javascript Libraries

<provider>.refresh (function () {
<Retry call for a seamless user experience>;

}):
}o

function (error) {
console.log ("Refresh failed");
}
)i

JQuery Mobile

JQueryMobile makes Ajax calls to transfer data for rendering a page. If a session expires, a 302 error is masked by the framework.
To recover, incorporate the following code to force a page refresh.

$ (document) .on ('pageloadfailed', function (e, data) {
console.log('page load failed');
if (data.xhr.status == 0) {
// reloading the VF page to initiate authentication
window.location.reload() ;

}
)i

Example: Serving the Appropriate Javascript Libraries

To provide the correct version of Javascript libraries, create a separate bundle for each Salesforce Mobile SDK version you use.
Then, provide Apex code on the server that downloads the required version.

1. For each Salesforce Mobile SDK version that your application supports, do the following.

a. Create a ZIP file containing the Javascript libraries from the intended SDK version.
b. Upload the ZIP file to your org as a static resource.

For example, if you ship a client that uses Salesforce Mobile SDK v. 1.3, add these files to your ZIP file:

¢ cordova.force.js
¢ SalesforceOAuthPlugin.js
e bootconfig.js

+ cordova-1.8.1.7js, which you should rename as cordova.js

= Note: Inyour bundle, it’s permissible to rename the Cordova Javascript library as cordova. s (or PhoneGap. js
if you're packaging a version that uses a PhoneGap-x. x. js library.)

2. Create an Apex controller that determines which bundle to use. In your controller code, parse the user agent string to find
which version the client is using.

a. Inyour org, from Setup, click Develop > Apex Class.

b. Create a new Apex controller named SDKLibController with the following definition.

public class SDKLibController ({
public String getSDKLib () {
String userAgent = ApexPages.currentPage () .getHeaders () .get ('User-Agent');

if (userAgent.contains ('SalesforceMobileSDK/1.3')) {

60

Introduction to Hybrid Development Example: Serving the Appropriate Javascript Libraries

return 'sdklibl3';
}

// Add additional if statements for other SalesforceSDK versions
// for which you provide library bundles.

}
}

3. Create a Visualforce page for each library in the bundle, and use that page to redirect the client to that library.
For example, for the SalesforceOAuthPlugin library:

a. In your org, from Setup, click Develop > Pages.
b. Create a new page called “SalesforceOAuthPlugin” with the following definition.

<apex:page controller="SDKLibController" action="{!URLFor ($Resource[SDKLib],
'SalesforceOAuthPlugin.js"') }">
</apex:page>

c. Reference the VisualForce page in a <script> tag in your HTML code. Be sure to point to the page you created in
step 3b. For example:

<script type="text/javascript" src="/apex/SalesforceOAuthPlugin" />

8 Note: Provide a separate <script> tag for each library in your bundle.

61

Chapter 5

HTML5 Development

In this chapter ...

* HTMLS Development Requirements
¢ Delivering HTMLS5 Content With
Visualforce

* Accessing Salesforce Data:

Controllers vs. APIs

HTMLS lets you create lightweight mobile interfaces without installing software
on the target device. Any mobile, touch or desktop device can access these mobile
interfaces.

You can create an HTMLS5 application that leverages the Force.com platform
by:
« Using Visualforce to deliver the HTML content

« Using JavaScript remoting to invoke Apex controllers for fetching records
from Force.com

62

HTMLS5 Development HTMLS5 Development Requirements

HTML5 Development Requirements

+ You'll need a Force.com organization.

« Some knowledge of Apex and Visualforce is necessary.

. Note: This type of development uses Visualforce. You can’t use Database.com.

Delivering HTML5 Content With Visualforce

Traditionally, you use Visualforce to create custom websites for the desktop environment. When combined with HTMLS,
however, Visualforce becomes a viable delivery mechanism for mobile web apps. These apps can leverage third-party Ul widget
libraries such as Sencha, or templating frameworks such as Angular]S and Backbone.js, that bind to data inside Salesforce.

To set up an HTMLS5 Apex page, change the docType attribute to “html-5.07, and use other settings similar to these:

<apex:page docType="html-5.0" sidebar="false" showHeader="false" standardStylesheets="false"
cache="true" >

</apex:page>

This code sets up an Apex page that can contain HTMLS5 content, but, of course, it produces an empty page. With the use
of static resources and third-party libraries, you can add HTML and JavaScript code to build a fully interactive mobile app.

Accessing Salesforce Data: Controllers vs. APIs

In an HTMLS5 app, you can access Salesforce data two ways:

« By using JavaScript remoting to invoke your Apex controller

« By accessing the Salesforce API with forcetk.js

Using JavaScript Remoting to Invoke Your Apex Controller

Like apex:actionFunction, JavaScript remoting lets you invoke methods in your Apex controller through JavaScript code
hosted on your Visualforce page.

JavaScript remoting offers several advantages.

« It offers greater flexilibity and better performance than apex:actionFunction.

« It supports parameters and return types in the Apex controller method, with automatic mapping between Apex and
JavaScript types.

« It uses an asynchronous processing model with callbacks.

« Unlike apex:actionFunction, the AJAX request does not include the view state for the Visualforce page. This results
in a faster round trip.

Compared to apex:actionFunction, however, JavaScript Remoting requires you to write more code.

63

http://www.salesforce.com/us/developer/docs/pages/Content/pages_compref_actionFunction.htm
http://www.salesforce.com/us/developer/docs/pages/Content/pages_js_remoting.htm

HTMLS5 Development Accessing Salesforce Data: Controllers vs. APIs

The following example inserts JavaScript code in a <script> tag on the Visualforce page. This code calls the invokeAction ()
method on the Visualforce remoting manager object. It passes invokeAction () the metadata needed to call a function
named getItemId () on the Apex controller object objName. Because invokeAction () runs asynchronously, the code
also defines a callback function to process the value returned from get ItemId (). In the Apex controller, the @RemoteAction
annotation exposes the getItemId () function to external JavaScript code.

//Visualforce page code
<script type="text/javascript">
Visualforce.remoting.Manager.invokeAction (
'{!$SRemoteAction.MyController.getItemId}"',
objName,
function (result, event) {
//process response here

by

{escape: true}
)7
<script>

//Apex Controller code

@RemoteAction
global static String getItemId(String objectName) { ... }

See this Dreamforce 2012 session for a more detailed comparison between the JavaScript remoting and actionFunction.
See http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_classes_annotation_RemoteAction.htm to read
more about @RemoteAction annotations.

Accessing the Salesforce APl with Forcetk and JQuery

When you call Salesforce REST APIs from Visualforce, you're calling to a different domain. This separation violates same-origin
browser policy, which causes the browser to refuse the connection. The forcetk JavaScript library works around same-origin
policy restrictions by using the AJAX Proxy to give full access to the REST API. Since the AJAX proxy is present on all
Visualforce hosts with an endpoint of the form https://<abc>.nal.visual.force.com/services/proxy, your Visualforce-hosted
JavaScript can invoke it by passing the desired resource URL in an HT'TP header.

To use the proxy service:

1. Sendyourrequestto https://<domain>/services/proxy, where <domain> is the domain of your current Visualforce
page.
2. Use the following HTTP headers:

SalesforceProxy-Endpoint
URL of the request endpoint

SalesforceProxy-SID

Current user session ID
For tips on accessing this proxy through JavaScript, see AJAX Proxy.

The following code sample uses the jQuery Mobile library for the user interface. To run this code, your Visualforce page must
include jQuery and the forcetk toolkit. To add these resources:

1. Create an archive file, such as a ZIP file, that contains app . js, forcetk.js, jquery. js, and any other static resources
your project requires.
2. In Salesforce, upload the archive file via Your Name > App Setup > Develop > Static Resources.

After obtaining an instance of the jQuery Mobile library, the sample code creates a forcetk client object and initializes it with
a session ID. It then calls the asynchronous forcetk query () method to process a SOQL query. The query callback function

64

http://www.youtube.com/watch?feature=player_embedded&v=ckkChgcM9VQ
http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_classes_annotation_RemoteAction.htm
http://www.salesforce.com/us/developer/docs/ajax/Content/sforce_api_ajax_queryresultiterator.htm#ajax_proxy
https://abc.na1.visual.force.com/services/proxy
http://www.salesforce.com/us/developer/docs/ajax/Content/sforce_api_ajax_queryresultiterator.htm#ajax_proxy

HTMLS5 Development Accessing Salesforce Data: Controllers vs. APIs

uses jQuery Mobile to display the first Name field returned by the query as HTML in an object with ID “accountname.” At
the end of the Apex page, the HTMLS5 content defines the accountname element as a simple tag.

<apex:page>
<apex:includeScript value="{!URLFOR ($Resource.static, 'jquery.js')}" />
<apex:includeScript value="{!URLFOR ($Resource.static, 'forcetk.js")}" />
<script type="text/javascript">

// Get a reference to jQuery that we can work with

$j = jQuery.noConflict () ;

// Get an instance of the REST API client and set the session ID
var client = new forcetk.Client();
client.setSessionToken('{!$Api.Session ID}');

client.query ("SELECT Name FROM Account LIMIT 1", function (response) {
$j ('"#accountname') .html (response.records[0] .Name) ;
1)
</script>
<p>The first account I see is .</p>
</apex:page>

#= Note:

.~ + Using the REST API—even from a Visualforce page—consumes API calls.

« SalesforceAPI calls made through a Mobile SDK container or through a Cordova webview do not require proxy

services. Cordova webviews disable same-origin policy, so you can make API calls directly. This exemption applies
to all Mobile SDK hybrid and native apps.

Additional Options

You can use the SmartSync Data Framework in HTIMLS5 apps. Just include the required JavaScript libraries as static resources.
Take advantage of the model and routing features. Offline access is disabled for this use case. See Using SmartSync to Access
Salesforce Objects on page 66.

Salesforce Developer Marketing provides developer mobile packs that can help you get a quick start with HTMLS5 apps.

Offline Limitations

Read these articles for tips on using HTML5 with Force.com in offline situations.

« http://blogs.developerforce.com/developer-relations/2011/06/using-html5-offline-with-forcecom.html
« http://blogs.developerforce.com/developer-relations/2013/03/using-javascript-with-force-com.html

65

http://www2.developerforce.com/mobile/services/mobile-packs
http://blogs.developerforce.com/developer-relations/2011/06/using-html5-offline-with-forcecom.html
http://blogs.developerforce.com/developer-relations/2013/03/using-javascript-with-force-com.html

Chapter 6

Using SmartSync to Access Salesforce Objects

In this chapter ...

* About Backbone Technology
* Models and Model Collections

* Using the SmartSync Data
Framework in JavaScript

* Offline Caching

* Conflict Detection

* Tutorial: Creating a SmartSync
Application

* SmartSync Sample Apps

The SmartSync Data Framework is a Mobile SDK library that represents

Salesforce objects as JavaScript objects. Using SmartSync in a hybrid app, you
can create models of Salesforce objects and manipulate the underlying records
just by changing the model data. If you perform a SOQL or SOSL query, you

receive the resulting records in a model collection rather than as a JSON string.

Underlying the SmartSync technology is the backbone . s open-source
JavaScript library. Backbone . j s defines an extensible mechanism for modeling
data. To understand the basic technology behind the SmartSync Data Framework,
browse the examples and documentation at backbonejs.org.

Three sample hybrid applications demonstrate SmartSync.

« Account Editor (AccountEditor.html)
« User Search (UserSearch.html)
« User and Group Search (UserAndGroupSearch.html)

You can find these sample apps in the
./hybrid/SampleApps/AccountEditor/assets/www folder.

66

http://www.backbonejs.org

Using SmartSync to Access Salesforce Objects About Backbone Technology

About Backbone Technology

The SmartSync library, SmartSync. js, provides extensions to the open-source Backbone JavaScript library. The Backbone
library defines key building blocks for structuring your web application:

« Models with key-value binding and custom events, for modeling your information
+ Collections with a rich API of enumerable functions, for containing your data sets
« Views with declarative event handling, for displaying information in your models

« A router for controlling navigation between views

Salesforce SmartSync Data Framework extends the Model and Collection core Backbone objects to connect them to the

Salesforce REST API. SmartSync also provides optional offline support through SmartStore, the secure storage component
of the Mobile SDK.

To learn more about Backbone, see http://backbonejs.org/ and http://backbonetutorials.com/. You can also search online for
“backbone javascript” to find a wealth of tutorials and videos.

Models and Model Collections
Two types of objects make up the SmartSync Data Framework:

. Models
« Model collections

Definitions for these objects extend classes defined in backbone. js, a popular third-party JavaScript framework. For
background information, see http://backbonetutorials.com.

Models

Models on the client represent server records. In SmartSync, model objects are instances of Force . SObject, a subclass of
the Backbone .Model class. SObject extends Model to work with Salesforce APIs and, optionally, with SmartStore.

You can perform the following CRUD operations on SObject model objects:

« Create

« Destroy
. Fetch

. Save

. Get/set attributes

In addition, model objects are observable: Views and controllers can receive notifications when the objects change.

Properties
Force.SObject adds the following properties to Backbone .Model:

sobjectType

Required. The name of the Salesforce object that this model represents. This value can refer to either a standard object
or a custom object.

67

http://backbonejs.org/
http://backbonetutorials.com/
http://backbonetutorials.com

Using SmartSync to Access Salesforce Objects Model Collections

fieldlist
Required. Names of fields to fetch, save, or destroy.

cacheMode

Offline behavior.

mergeMode

Contflict handling behavior.

cache

For updatable offline storage of records. The SmartSync Data Framework comes bundled with Force.StoreCache, a
cache implementation that is backed by SmartStore.

cacheForOriginals

Contains original copies of records fetched from server to support conflict detection.

Examples

You can assign values for model properties in several ways:

« As properties on a Force . SObject instance.

« As methods on a Force.SObject sub-class. These methods take a parameter that specifies the desired CRUD action
(“create”, “read”, “update”, or “delete”).

« In the options parameter of the fetch (), save (), or destroy () function call.
In the options p ter of the fetch () (), or destroy () funct 11

For example, these code snippets are equivalent.

// As properties on a Force.SObject instance
acc = new Force.SObject ({Id:"<some id>"});
acc.sobjectType = "account";

acc.fieldlist = ["Id", "Name"];

acc.fetch();

// As methods on a Force.SObject sub-class
Account = Force.SObject.extend ({

sobjectType: "account",

fieldlist: function (method) { return ["Id", "Name"];}
1)

Acc = new Account ({Id:"<some id>"});
acc.fetch();

// In the options parameter of fetch ()

acc = new Force.SObject ({Id:"<some id>"});
acc.sobjectType = "account";
acc.fetch({fieldlist:["Id", "Name"]):;

Model Collections

Model collections in the SmartSync Data Framework are containers for query results. Query results stored in a model collection
can come from the server via SOQL, SOSL, or MRU queries. Optionally, they can also come from the cache via SmartSQL
(if the cache is SmartStore), or another query mechanism if you use an alternate cache.

Model collection objects are instances of Force.SObjectCollection, a subclass of the Backbone.Collection class.
SObjectCollection extends Collection to work with Salesforce APIs and, optionally, with SmartStore.

68

Using SmartSync to Access Salesforce Objects Using the SmartSync Data Framework in JavaScript

Properties

Force.SObjectCollection adds the following properties to Backbone.Collection:

config

Required. Defines the records the collection can hold (using SOQL, SOSL, MRU or SmartSQL).

cache

For updatable offline storage of records. The SmartSync Data Framework comes bundled with Force.StoreCache, a
cache implementation that’s backed by SmartStore.

cacheForOriginals

Contains original copies of records fetched from server to support conflict detection.

Examples

You can assign values for model collection properties in several ways:

« As properties on a Force . SObject instance
« As methods on a Force.SObject sub-class

« In the options parameter of the fetch (), save (), or destroy () function call

For example, these code snippets are equivalent.

// As properties on a Force.SObject instance
list = new Force.SObjectCollection ({config:<valid config>});
list.fetch();

// As methods on a Force.SObject sub-class
MyCollection = Force.SObjectCollection.extend ({
config: function() { return <valid config>; }

)i
list = new MyCollection() ;
list.fetch();

// In the options parameter of fetch()
list = new Force.SObjectCollection();
list.fetch({config:valid config});

Using the SmartSync Data Framework in JavaScript
To use SmartSync in a hybrid app, include:

« jquery-x.x.x.min.js (use version of file in external/shared/jquery/)

. underscore—x.x.x.min.js(usevemhnlofﬁk:hlexternal/shared/backbone/)
+ backbone-x.x.x.min.js (use version of file in external/shared/backbone/)

e cordova.js

« cordova.force.js

e forcetk.mobilesdk.js

e SmartSync.js

69

Using SmartSync to Access Salesforce Objects Using the SmartSync Data Framework in JavaScript

Implementing a Model Object

To begin using SmartSync objects, define a model object to represent each SObject that you want to manipulate. The
SObjects can be standard Salesforce objects or custom objects. For example, this code creates a model of the Account object
that sets the two required properties—sobjectType and fieldlist—and defines a cacheMode () function.

app.models.Account = Force.SObject.extend ({
sobjectType: "Account",
fieldlist: ["Id", "Name", "Industry", "Phone"],

cacheMode: function (method) {
if (app.offlineTracker.get ("offlineStatus") == "offline") ({
return "cache-only";

}

else {
return (method == "read" ? "cache-first" : "server-first");

}
)i

Notice that the app . models.Account model object extends Force . SObject, which is defined in SmartSync. js. Also,
the cacheMode () function queries a local of f1ineTracker object for the device's offline status. You can use the Cordova
library to determine offline status at any particular moment.

SmartSync can perform a fetch or a save operation on the model. It uses the app’s cacheMode value to determine whether to

perform an operation on the server or in the cache. Your cacheMode member can either be a simple string property or a
function returning a string.

Implementing a Model Collection

The model collection for this sample app extends Force . SObjectCollection.

// The AccountCollection Model

app.models.AccountCollection = Force.SObjectCollection.extend ({
model: app.models.Account,
fieldlist: ["Id", "Name", "Industry", "Phone"],

setCriteria: function (key) {
this.key = key;
b

config: function() {
// Offline: do a cache query
if (app.offlineTracker.get ("offlineStatus") == "offline") ({
return {type:"cache", cacheQuery:{queryType:"like",
indexPath:"Name", likeKey: this.key+"%",
order:"ascending"}};
}
// Online
else {
// First time: do a MRU query
if (this.key == null) ({
return {type:"mru", sobjectType:"Account",
fieldlist: this.fieldlist};
}
// Other times: do a SOQL query

else {
var sogl = "SELECT " + this.fieldlist.join(",")
+ " FROM Account"
+ " WHERE Name like '" + this.key + "$'";

return {type:"soqgl", query:soqgl};

70

Using SmartSync to Access Salesforce Objects Offline Caching

}
b)) 8

This model collection uses an optional key that is the name of the account to be fetched from the collection. It also defines a
config () function that determines what information is fetched. If the device is offline, the config () function builds a
cache query statement. Otherwise, if no key is specified, it queries the most recently used record ("mru"). If the key is specified
and the device is online, it builds a standard SOQL query that pulls records for which the name matches the key. The fetch
operation on the Force.SObjectCollection prototype transparently uses the returned configuration to automatically fill
the model collection with query records.

See querySpec for information on formatting a cache query.

o Note: These code examples are part of the Account Editor sample app. See Account Editor Sample for a sample
description.

Offline Caching

To provide offline support, your app must be able to cache its models and collections. SmartSync provides a configurable
mechanism that gives you full control over caching operations.

Default Cache and Custom Cache Implementations

For its default cache, the SmartSync library defines StoreCache, a cache implementation that uses SmartStore. Both StoreCache
and SmartStore are optional components for SmartSync apps. If your application runs in a browser instead of the Mobile SDK
container, or if you don't want to use SmartStore, you must provide an alternate cache implementation. SmartSync requires
cache objects to support these operations:

. retrieve
. save
. save all
« remove
. find

SmartSync Caching Workflow

The SmartSync model performs all interactions with the cache and the Salesforce server on behalf of your app. Your app gets
and sets attributes on model objects. During save operations, the model uses these attribute settings to determine whether to
write changes to the cache or server, and how to merge new data with existing data. If anything changes in the underlying
data or in the model itself, the model sends event notifications. Similarly, if you request a fetch, the model fetches the data
and presents it to your app in a model collection.

71

Using SmartSync to Access Salesforce Objects Offline Caching

|

notify get / set

v

Model

fetch

SmartSync updates data in the cache transparently during CRUD operations. You can control the transparency level through
optional flags. Cached objects maintain "dirty" attributes that indicate whether they've been created, updated, or deleted locally.

Cache Modes

When you use a cache, you can specify a mode for each CRUD operation. Supported modes are:

“cache-only” Force.CACHE MODE.CACHE ONLY .
— = Read from, or write to, the

cache. Do not perform the
operation on the server.

“server-only” Force.CACHE MODE.SERVER ONLY .
- - Read from, or write to, the

server. Do not perform the
operation on the cache.

“cache-first” Force.CACHE MODE.CACHE FIRST .
— — For FETCH operations

only. Fetch the record from
the cache. If the cache
doesn't contain the record,
fetch it from the server and
then update the cache.

72

Using SmartSync to Access Salesforce Objects Implementing Offline Caching

“server-first” Force.CACHE MODE.SERVER FIRST .
- - Perform the operation on the
(default)
server, then update the
cache.

To query the cache directly, use a cache query. SmartStore provides query APIs as well as its own query language, Smart SQL.
See Retrieving Data From a Soup.

Implementing Offline Caching

To support offline caching, SmartSync requires you to supply your own implementations of a few tasks:

« Tracking offline status and specifying the appropriate cache control flag for CRUD operations, as shown in the
app.models.Account example.

« Collecting records that were edited locally and saving their changes to the server when the device is back online. The

following example uses a SmartStore cache query to retrieve locally changed records, then calls the SyncPage function to
render the results in HTML.

sync: function() {
var that = this;
var localAccounts = new app.models.AccountCollection();
localAccounts. fetch ({
config: {type:"cache", cacheQuery: {queryType:"exact",
indexPath:" local ", matchKey:true}},

success: function_(data) {
that.slidePage (new app.views.SyncPage ({model: data}).render());
}

});

}

app.views.SyncPage = Backbone.View.extend ({
template: .template ($("#sync-page").html()),

render: function (eventName) {

$(this.el) .html (this.template (_ .extend(
{countLocallyModified: this.model.length},
this.model.toJSON())));

this.listView = new app.views.AccountListView({el: $("ul",
this.el), model: this.model}l);

this.listView.render () ;

return this;

by

Using StoreCache For Offline Caching

The SmartSync. js library implements a cache named StoreCache that stores its data in SmartStore. Although SmartSync
uses StoreCache as its default cache, StoreCache is a stand-alone component. Even if you don’t use SmartSync, you can still
leverage StoreCache for SmartStore operations.

73

Using SmartSync to Access Salesforce Objects Offline Caching

= Note: Although StoreCache is intended for use with SmartSync, you can use any cache mechanism with SmartSync
that meets the requirements described in Offline Caching.

| g

Construction and Initialization

StoreCache objects work internally with SmartStore soups. To create a StoreCache object backed by the soup soupName, use
the following constructor:

new Force.StoreCache (soupName [, additionalIndexSpecs, keyField])

soupName

Required. The name of the underlying SmartStore soup.

additionallndexSpecs

Fields to include in the cache index in addition to default index fields. See Registering a Soup for formatting instructions.

keyField
Name of field containing the record ID. If not specified, StoreCache expects to find the ID in a field named "Id."

Soup items in a StoreCache object include four additional boolean fields for tracking offline edits:

+ locally created
e locally updated
+ locally deleted
« local (setto true if any of the previous three are true)

These fields are for internal use but can also be used by apps. StoreCache indexes each soup on the ~ local field and its
ID field. You can use the additionalIndexSpecs parameter to specify additional fields to include in the index.

To register the underlying soup, call init () on the StoreCache object. This function returns a jQuery promise that resolves
once soup registration is complete.

StoreCache Methods
init()

Registers the underlying SmartStore soup. Returns a jQuery promise that resolves when soup registration is complete.
retrieve(key [, fieldlist])

Returns a jQuery promise that resolves to the record with key in the keyField returned by the SmartStore. The promise
resolves to null when no record is found or when the found record does not include all the fields in the fieldlist parameter.

key
The key value of the record to be retrieved.

fieldlist
(Optional) A JavaScript array of required fields. For example:

["fieldl","field2","field3"]

74

Using SmartSync to Access Salesforce Objects Offline Caching

save(record [, noMerge])

Returns a jQuery promise that resolves to the saved record once the SmartStore upsert completes. If noMerge is not
specified or is false, the passed record is merged with the server record with the same key, if one exists.

record

The record to be saved, formatted as:
{<field namel>:"<field valuel>"[,<field name2>:"<field value2>",...]}
For example:

{Id:"007", Name:"JamesBond", Mission:"TopSecret"}

noMerge

(Optional) Boolean value indicating whether the passed record is to be merged with the matching server record.
Defaults to false.

saveAll(records [, noMerge])

Identical to save (), except that records is an array of records to be saved. Returns a jQuery promise that resolves to
the saved records.

records

An array of records. Each item in the array is formatted as demonstrated for the save () function.

noMerge

(Optional) Boolean value indicating whether the passed record is to be merged with the matching server record.
Defaults to false.

remove(key)

Returns a jQuery promise that resolves when the record with the given key has been removed from the SmartStore.
key
Key value of the record to be removed.

find(querySpec)

Returns a jQuery promise that resolves once the query has been run against the SmartStore. The resolved value is an
object with the following fields:

records All fetched records

hasMore Function to check if more records can be retrieved
getMore Function to fetch more records

closeCursor Function to close the open cursor and disable further fetch

75

Using SmartSync to Access Salesforce Objects Offline Caching

querySpec

A specification based on SmartStore query function calls, formatted as:
{queryType: "like" | "exact" | "range" | "smart"[, query type params]}

where query type params match the format of the related SmartStore query function call. See Retrieving Data
From a Soup on page 111.

Here are some examples:

{queryType:"exact", indexPath:"<indexed field to match on>",
matchKey:<value to match>, order:"ascending"|"descending",
pageSize:<entries per page>}

{queryType:"range", indexPath:"<indexed field to match on>",
beginKey:<start of Range>, endKey:<end of range>, order:"ascending"|"descending",
pageSize:<entries per page>}

{queryType:"1like", indexPath:"<indexed field to match on>",
likeKey:"<value to match>", order:"ascending"|"descending",
pageSize:<entries per page>}

{queryType:"smart", smartSql:"<smart sqgl query>", order:"ascending"|"descending",
pageSize:<entries per page>}

Examples

The following example shows how to create, initialize, and use a StoreCache object.

var cache = new Force.StoreCache ("agents", [{path:"Mission", type:"string"} 1);
// initialization of the cache / underlying soup
cache.init ()
.then (function () {
// saving a record to the cache
return cache.save ({Id:"007", Name:"JamesBond", Mission:"TopSecret"});
})
.then (function (savedRecord) {
// retrieving a record from the cache
return cache.retrieve ("007") ;
})
.then (function (retrievedRecord) {
// searching for records in the cache
return cache.find ({queryType:"1like", indexPath:"Mission", likeKey:"Top%",
order:"ascending", pageSize:1});
})
.then (function (result) {
// removing a record from the cache
return cache.remove ("007") ;

)i

The next example shows how to use the saveall () function and the results of the £ind () function.

// initialization
var cache = new Force.StoreCache ("agents", [{path:"Name", type:"string"}, {path:"Mission",
type:"string"} 1);
cache.init ()
.then (function () {
// saving some records
return cache.saveAll ([{Id:"007", Name:"JamesBond"}, {Id:"008", Name:"Agent008"}, {Id:"009",

76

Using SmartSync to Access Salesforce Objects Conflict Detection

Name:"JamesOther"}]) ;
})
.then (function () {
// doing an exact query
return cache.find({queryType:"exact", indexPath:"Name", matchKey:"Agent008",
order:"ascending", pageSize:1});
})
.then (function (result) {
alert ("Agent mission is:" + result.records[0]["Mission"];
1)

Conflict Detection

Model objects support optional conflict detection to prevent unwanted data loss when the object is saved to the server. You
can use conflict detection with any save operation, regardless of whether the device is returning from an offline state.

To support conflict detection, you specify a secondary cache to contain the original values fetched from the server. SmartSync
keeps this cache for later reference. When you save or delete, you specify a merge mode. The following table summarizes the
supported modes. To understand the mode descriptions, consider "theirs" to be the current server record, "yours" the current
local record, and "base” the record that was originally fetched from the server.

“overwrite” Force.MERGE MODE.OVERWRITE

Wirite "yours" to the server,
without comparing to
"theirs" or "base”. (This is
the same as not using
conflict detection.)

3 ”»
merge-accept-yours. Force.MERGE MODE.MERGE ACCEPT YOURS .
8 Pty - - - Merge "theirs" and "yours".

If the same field is changed
both locally and remotely,
the local value is kept.

“merge-fail-if-conflict” Force.MERGE MODE.MERGE FAIL IF CONFLICT W . om " "
— = =" = Merge "theirs" and "yours".

If the same field is changed
both locally and remotely,

the operation fails.

« - . el
merge-fail-if-changed” Force .MERGE MODE.MERGE FAIL IF CHANGED .
&e - - - = Merge "theirs" and "yours".

If any field is changed
remotely, the operation

fails.

If a save or delete operation fails, you receive a report object with the following fields:

77

Using SmartSync to Access Salesforce Objects Conflict Detection

base Originally fetched attributes

theirs Latest server attributes

yours Locally modified attributes

remoteChanges List of fields changed between base and theirs

localChanges List of fields changed between base and yours

conflictingChanges List of fields changed both in theirs and yours, with different
values

Diagrams can help clarify how merge modes operate.

MERGE_MODE.OVERWRITE

In the MERGE MODE . OVERWRITE diagram, the client changes A and B, and the server changes B and C. Changes to B conflict,
whereas changes to A and C do not. However, the save operation blindly writes all the client’s values to the server, overwriting
any changes on the server.

MERGE_ACCEPT_YOURS

In the MERGE MODE.MERGE ACCEPT YOURS diagram, the client changes A and B, and the server changes B and C. Client
changes (A and B) overwrites corresponding fields on the server, regardless of whether conflicts exist. However, fields that
the client leaves unchanged (C) do not overwrite corresponding server values.

mergeblode: Force MERGE_MODEMERGE_ACCERT_YOURS

MERGE_FAIL_IF_CONFLICT (Fails)

In the first MERGE_MODE .MERGE _FAIL IF CONFLICT diagram, both the client and the server change B. These conflicting
changes cause the save operation to fail.

78

Using SmartSync to Access Salesforce Objects Mini-Tutorial: Conflict Detection

MERGE_FAIL_IF_CONFLICT (Succeeds)

In the second MERGE_MODE .MERGE_FAIL IF CONFLICT diagram, the client changed A, and the server changed B. These
changes don’t conflict, so the save operation succeeds.

Mini-Tutorial: Conflict Detection

The following mini-tutorial demonstrates how merge modes affect save operations under various circumstances. It takes the
form of an extended example within an HTML context.

1. Set up the necessary caches:

var cache = new Force.StoreCache (soupName) ;

var cacheForOriginals = new Force.StoreCache (soupNameForOriginals) ;

var Account = Force.SObject.extend({sobjectType:"Account", fieldlist:["Id", "Name",
"Industry"], cache:cache, cacheForOriginals:cacheForOriginals});

2. Get an existing account:

var account = new Account ({Id:<some actual account id>});
account.fetch () ;

3. Let's assume that the account has Name:"Acme" and Industry:"Software". Change the name to “Acme2.”
Account.set ("Name", "Acme2");

4. Save to the server without specifying a merge mode, so that the default "overwrite" merge mode is used:
account.save (null) ;

The account’s Name is now "Acme2" and its Industry is "Software" Let's assume that Industry changes on the server to
" M "
Electronics.

79

Using SmartSync to Access Salesforce Objects Conflict Detection

5. Change the account Name again:
Account.set ("Name", "Acme3");

You now have a change in the cache (Name) and a change on the server (Industry).

6. Save again, using "merge-fail-if-changed" merge mode.

account.save (null, {mergeMode: "merge-fail-if-changed", error: function (err) {
// err will be a map of the form {base:.., theirs:.., yours:.., remoteChanges: ["Industry"],
localChanges: ["Name"], conflictingChanges:[]}

)

The error callback is called because the server record has changed.

7. Save again, using "merge-fail-if-conflict" merge mode. This merge succeeds because no conflict exists between the change
on the server and the change on the client.

account.save (null, {mergeMode: "merge-fail-if-conflict"});

The account’s Name is now "Acme3" (yours) and its Industry is "Electronics" (theirs). Let's assume that, meanwhile, Name
on the server changes to "NewAcme" and Industry changes to "Services."

8. Change the account Name again:

Account.set ("Name", "Acmed");

9. Save again, using "merge-fail-if-changed" merge mode. The error callback is called because the server record has changed.

account.save (null, {mergeMode: "merge-fail-if-changed", error: function (err) {
// err will be a map of the form {base:.., theirs:.., yours:.., remoteChanges: ["Name",
"Industry"], localChanges:["Name"], conflictingChanges: ["Name"]}

}):
10. Save again, using "merge-fail-if-conflict" merge mode:

account.save (null, {mergeMode: "merge-fail-if-changed", error: function (err) {
// err will be a map of the form {base:.., theirs:.., yours:.., remoteChanges:["Name",
"Industry"], localChanges:["Name"], conflictingChanges: ["Name"]}

})i

The error callback is called because both the server and the cache change the Name field, resulting in a conflict:

11. Save again, using "merge-accept-yours" merge mode. This merge succeeds because your merge mode tells the save ()
function which Name value to accept. Also, since you haven’t changed Industry, that field doesn’t conflict.

account.save (null, {mergeMode: "merge-accept-yours"});

Name is “Acme4” (yours) and Industry is “Services” (theirs), both in the cache and on the server.

80

Using SmartSync to Access Salesforce Objects Tutorial: Creating a SmartSync Application

Tutorial: Creating a SmartSync Application

This tutorial demonstrates how to create a local hybrid app that uses the SmartSync Data Framework. It recreates the User
Search sample application that ships with Mobile SDK 2.0. User Search lets you search for User records in a Salesforce

organization and see basic details about them.
This sample uses the following web technologies:

« Backbone.js
« Ratchet

. HTMLS5

« JavaScript

Set Up Your Project

First, make sure you've installed Salesforce Mobile SDK using the NPM installer. For iOS instructions, see Installing and
Uninstalling Salesforce Mobile SDK for iOS on page 9. For Android instructions, see Installing and Uninstalling Salesforce
Mobile SDK for Android on page 28.

Also, download the ratchet.css file from http://maker.github.io/ratchet/.
1. Once you've installed Mobile SDK, create a local hybrid project for your platform.

a. ForiOS: At the command terminal, enter the following command:

forceios create --apptype=hybrid local --appname=UserSearch
—-—-companyid=com.acme.UserSearch --organization=Acme --outputdir=.

The forceios script creates your project at . /UserSearch/UserSearch.xcode.proj.
b. For Android: At the command terminal or the Windows command prompt, enter the following command:

forcedroid create -—apptype="hybrid local" --appname="UserSearch" --targetdir=.
—--packagename="com.acme.usersearch"

The forcedroid script creates the project at . /UserSearch.

Follow the onscreen instructions to open the new project in Eclipse (for Android) or Xcode (for 10S).
Open the www folder.

Remove the inline. js file from the project.

Create a new folder. Name it css.

Copy the ratchet.css file into your new css folder.

NSk WD

In the www folder, open index.html in your code editor and delete all of its contents.

Edit the Application HTML File

To create your app’s basic structure, define an empty HI' ML page that contains references, links, and code infrastructure.

81

http://maker.github.io/ratchet/

Using SmartSync to Access Salesforce Objects Tutorial: Creating a SmartSync Application

1. In Xcode, edit index.html and add the following basic structure:

<!DOCTYPE html>
<html>
<head>
</head>
<body>
</body>
</html>

2. In the <head> element:

a. Turn off scaling to make the page look like an app rather than a web page.

<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0,
user-scalable=no;" />

b. Set the content type.

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

c. Add alink to the ratchet.css file to provide the mobile look:

<link rel="stylesheet" href="css/ratchet.css"/>

d. Include the necessary JavaScript files.

<script src="jquery/jquery-2.0.0.min.Jjs"></script>
<script src="backbone/underscore-1.4.4.min.js"></script>
<script src="backbone/backbone-1.0.0.min.js"></script>
<script src="cordova-2.3.0.7js"></script>

<script src="forcetk.mobilesdk.js"></script>

<script src="cordova.force.js"></script>

<script src="SmartSync.js"></script>

3. Now let’s start adding content to the body. In the <body> block, add a div tag to contain the app Ul

<body>
<div id="content"></div>

It’s good practice to keep your objects and classes in a namespace. In this sample, we use the app namespace to contain
our models and views.

4. Ina<script> tag, create an application namespace. Let’s call it app.

<script>

var app = {
models: {},
views: {}

For the remainder of this procedure, continue adding your code in the <script> block.

82

Using SmartSync to Access Salesforce Objects Tutorial: Creating a SmartSync Application

5. Add an event listener and handler to wait for jQuery, and then call Cordova to start the authentication flow. Also, specify
a callback function, appStart, to handle the user’s credentials.

JjQuery (document) . ready (function () {
document.addEventListener ("deviceready", onDeviceReady, false);

)i

function onDeviceReady () {
cordova.require ("salesforce/plugin/oauth") .getAuthCredentials (appStart) ;

}

Once the application has initialized and authentication is complete, the Salesforce OAuth plugin calls appStart () and
passes it the user’s credentials. The appStart () function passes the credentials to SmartSync by calling Force.init (),
which initializes SmartSync. The appStart () function also creates a Backbone Router object for the application.

6. Add the appStart () function definition at the end of the <script> block

function appStart (creds) {
Force.init (creds, null, null,
cordova.require ("salesforce/plugin/oauth") .forcetkRefresh) ;
app.router = new app.Router();
Backbone.history.start () ;

Here’s the complete application to this point.

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=1.0; user-scalable=no" />
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<link rel="stylesheet" href="css/ratchet.css"/>
<script src="jquery/jquery-2.0.0.min.js"></script>
<script src="backbone/underscore-1.4.4.min.js"></script>
<script src="backbone/backbone-1.0.0.min.js"></script>
<script src="cordova-2.3.0.js"></script>
<script src="forcetk.mobilesdk.js"></script>
<script src="cordova.force.js"></script>
<script src="SmartSync.]js"></script>
</head>
<body>
<div id="content"></div>
<script id="search-page" type="text/template">
<header class="bar-title">
<hl class="title">Users</hl>
</header>

<div class="bar-standard bar-header-secondary">
<input type="search" class="search-key" placeholder="Search"/>
</div>

<div class="content">
<ul class="1list">
</div>
</script>

<script id="user-list-item" type="text/template">
<img src="<%= SmallPhotoUrl %>" class="small-img" />
<div class="details-short">
<%= FirstName %> <%= LastName $%>

83

Using SmartSync to Access Salesforce Objects Create a SmartSync Model and a Collection

Title<%= Title %>
</div>
</script>

<script>

var app = {
models: {},
views: {}

b

jQuery (document) . ready (function () {
document.addEventListener ("deviceready", onDeviceReady, false);
}):

function onDeviceReady () {
cordova.require ("salesforce/plugin/oauth") .getAuthCredentials (appStart) ;

}

function appStart (creds) {
console.log (JSON.stringify (creds)) ;
Force.init (creds, null, null,
cordova.require ("salesforce/plugin/ocauth") . forcetkRefresh) ;
app.router = new app.Router();
Backbone.history.start () ;
} </script>
</body>
</html>

Create a SmartSync Model and a Collection

Now that we've configured the HTML infrastructure, let’s get started using SmartSync by extending two of its primary objects:

e Force.SObject
e Force.SObjectCollection

These objects extend Backbone .Model, so they support the Backbone .Model.extend () function. To extend an object
using this function, pass it a JavaScript object containing your custom properties and functions.

1. In the <body> tag, create a model object for the Salesforce User sObject. Extend Force . SObject to specify the sObject
type and the fields we are targeting.

app.models.User = Force.SObject.extend ({
sobjectType: "User",
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",
"MobilePhone","City"]
})

2. Immediately after setting the User object, create a collection to hold user search results.
ExtendForce.SObjectCollection to indicate your new model (app.models.User) as the model for items in the
collection.

app.models.UserCollection = Force.SObjectCollection.extend ({
model: app.models.User
});

84

Using SmartSync to Access Salesforce Objects Create a Template

Here’s the complete model code.

// Models
app.models.User = Force.SObject.extend ({
sobjectType: "User",
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",
"MobilePhone", "City"]
})

app.models.UserCollection = Force.SObjectCollection.extend ({
model: app.models.User
}) i

Create a Template

Templates let you describe an HTML layout within another HTML page. You can define an inline template in your HTML
page by using a <script> tag of type “text/template”. Your JavaScript code can use the template as the page design when it
instantiates a new HTML page at runtime.

The search page template is simple. It includes a header, a search field, and a list to hold the search results.

1. Add a new script block. Place the block within the <body> block just after the “content” <div> tag.

<script id="search-page" type="text/template">
</script>

2. In the new <script> block, define the search page HITML template using Ratchet styles.

<script id="search-page" type="text/template">
<header class="bar-title">
<hl class="title">Users</hl>
</header>

<div class="bar-standard bar-header-secondary">

<input type="search" class="search-key" placeholder="Search"/>
</div>
<div class="content">

<ul class="1list">

</div>
</script>

Add the Search View

To create the view for a screen, you extend Backbone . View. In the search view extension, you load the template, define
sub-views and event handlers, and implement the functionality for rendering the views and performing a SOQL search query.

1. In the <body> block, create a Backbone.View extension named SearchPage in the app.views array.

app.views.SearchPage = Backbone.View.extend ({

)i

For the remainder of this procedure, add all code to the extend ({}) block.

85

Using SmartSync to Access Salesforce Objects Tutorial: Creating a SmartSync Application

2. Load the search-page template by calling the .template () function. Pass it the raw HTML content of the search-page
script tag.

template: _.template($("#search—page").html()),

3. Instantiate a sub-view named UserListView to contain the list of search results. (You'll define the
app.views.UserListView view later.)

initialize: function() {
this.listView = new app.views.UserListView({model: this.model}) ;
I

4. Create a render () function for the search page view. Rendering the view consists simply of loading the template as the
app’s HTML content. Restore any criteria previously typed in the search field and render the sub-view inside the
element.

render: function (eventName) {
$S(this.el) .html (this.template()) ;
$(".search-key", this.el).val (this.model.criteria);
this.listView.setElement ($ ("ul", this.el)) .render();
return this;

by

5. Add a keyup event handler that performs a search when the user types a character in the search field.

events: {
"keyup .search-key": "search"

b

search: function (event) {
this.model.criteria = $(".search-key", this.el).val();

var soql = "SELECT Id, FirstName, LastName, SmallPhotoUrl, Title FROM User WHERE Name
like '"" 4+ this.model.criteria + "%' ORDER BY Name LIMIT 25 ";

this.model.fetch({config: {type:"sogl", query:soqgl}});

This function defines a SOQL query. It then uses the backing model to send that query to the server and fetch the results.

Here’s the complete extension.

app.views.SearchPage = Backbone.View.extend ({
template: .template (S ("#search-page").html()),

initialize: function() {
this.listView = new app.views.UserListView({model: this.model}) ;

b

render: function (eventName) {
$(this.el) .html (this.template());
$(".search-key", this.el).val(this.model.criteria);
this.listView.setElement ($ ("ul", this.el)) .render():;
return this;

by
events: {
"keyup .search-key": "search"

by

search: function (event) {

86

Using SmartSync to Access Salesforce Objects Add the Search Result List View

this.model.criteria = $(".search-key", this.el).val();

var sogl = "SELECT Id, FirstName, LastName, SmallPhotoUrl, Title FROM User WHERE
Name like '" + this.model.criteria + "%' ORDER BY Name LIMIT 25 ";

this.model.fetch({config: {type:"sogl", query:soql}});
}
1)

Add the Search Result List View

The view for the search result list doesn’t need a template. It is simply a container for list item views. It keeps track of these
views in the 1istItemViews member. If the underlying collection changes, it renders itself again.

1. In the <body> block, create the view for the search result list by extending Backbone . View. Let’s add an array for list
item views as well as an initialize () function.

app.views.UserListView = Backbone.View.extend ({
listItemViews: [],
initialize: function() {
this.model.bind ("reset", this.render, this);

by

For the remainder of this procedure, add all code to the extend ({}) block.

2. Create the render () function to clean up any existing list item views by calling close () on each one.

render: function (eventName) ({
_.each(this.listItemViews, function(itemView) { itemView.close(); });

3. Inthe render () function, create a new set of list item views for the records in the underlying collection. Each of these
views is just an entry in the list. You'll define the app.views.UserListItemView later.

this.listItemViews = .map(this.model.models, function(model) { return new
app.views.UserListItemView ({model: model}); });

4. Append the list item views to the root DOM element.

$(this.el) .append(.map(this.listItemViews, function(itemView) { return
itemView.render () .el;}));
return this;

}

Here’s the complete extension:

app.views.UserListView = Backbone.View.extend ({
listItemViews: [],

initialize: function() {
this.model.bind ("reset", this.render, this);
b
render: function (eventName) {
_.each(this.listItemViews, function(itemView) { itemView.close(
this.listItemViews = .map(this.model.models, function (model) {
return new app.views.UserListItemView ({model: model}); });
$(this.el) .append(.map (this.listItemViews, function (itemView) {
return itemView.render () .el;}));
return this;

)i 1)

87

Using SmartSync to Access Salesforce Objects Add the Search Result List Item View

Add the Search Result List Item View

To define the search result list item view, you design and implement the view of a single row in a list. Each list item displays

the following User fields:

« SmallPhotoUrl
o FirstName

. LastName
. Title

1. In the <body> block, create a template for a search result list item.

<script id="user-list-item" type="text/template">
<img src="<%= SmallPhotoUrl %>" class="small-img" />
<div class="details-short">
<%= FirstName %> <%= LastName %>

Title<%= Title %>
</div>
</script>

2. Immediately after the template, create the view for the search result list item. Once again, subclassBackbone . View and
indicate that the whole view should be rendered as a list by defining the tagName member. For the remainder of this
procedure, add all code in the extend ({}) block.

app.views.UserListItemView = Backbone.View.extend ({
tagName: "1i",

)i
3. Load template by calling . template () with the raw content of the user-list-item script.

template: .template (S ("#user-list-item").html()),

4. In the render () function, simply render the template using data from the model.

render: function (eventName) {
$(this.el) .html (this.template (this.model.toJSON())) ;
return this;

b o
5. Addaclose () method to be called from the list view to do necessary cleanup and avoid memory leaks.

close: function () {
this.remove () ;
this.off ();

Here’s the complete extension.

app.views.UserListItemView = Backbone.View.extend ({
tagName: "1i",

88

Using SmartSync to Access Salesforce Objects Router

template: .template($("#user-list-item") .html()),
render: function (eventName) {

$S(this.el) .html (this.template (this.model.toJSON())) ;
return this;
b
close: function () {
this.remove () ;
this.off ();

Router

A Backbone router defines navigation paths among views. To learn more about routers, see What is a router?

1. Just before the closing tag of the <body> block, define the application router by extending Backbone.Router.

app.Router = Backbone.Router.extend ({

R

For the remainder of this procedure, add all code in the extend ({}) block.

2. Because the app supports only one screen, you need only one “route”. Add a routes object.

routes: {
"ll: "listll

by

3. Definean initialize () function that creates the search result collections and search page view.

initialize: function() {
Backbone.Router.prototype.initialize.call (this);

// Collection behind search screen
app.searchResults = new app.models.UserCollection() ;
app.searchView = new app.views.SearchPage ({model: app.searchResults});

by

4. Define the 1ist () function to handle the only item in this route. When the list screen displays, fetch the search results
and render the search view.

list: function () {
app.searchResults.fetch() ;
$ ('#content') .html (app.searchView.render () .el) ;

5. Run the application by double-clicking index.html to open it in a browser.

You've finished! Here’s the entire application:

<!DOCTYPE html>
<html>
<head>

<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0;
user-scalable=no" />

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

89

http://backbonetutorials.com/what-is-a-router/

Using SmartSync to Access Salesforce Objects Tutorial: Creating a SmartSync Application

<link rel="stylesheet" href="css/ratchet.css"/>
<script src="jquery/jquery-2.0.0.min.js"></script>
<script src="backbone/underscore-1.4.4.min.js"></script>
<script src="backbone/backbone-1.0.0.min.js"></script>
<script src="cordova-2.3.0.7js"></script>
<script src="forcetk.mobilesdk.js"></script>
<script src="cordova.force.js"></script>
<script src="SmartSync.js"></script>
</head>
<body>
<div id="content"></div>
<script id="search-page" type="text/template">
<header class="bar-title">
<hl class="title">Users</hl>
</header>

<div class="bar-standard bar-header-secondary">
<input type="search" class="search-key" placeholder="Search"/>
</div>

<div class="content">
<ul class="list">
</div>
</script>

<script id="user-list-item" type="text/template">
<img src="<%= SmallPhotoUrl %>" class="small-img" />
<div class="details-short">
<%= FirstName %> <%= LastName $%>

Title<%= Title %>
</div>
</script>

<script>
var app = {
models: {},
views: {}

}i

jQuery (document) .ready (function () {
document.addEventListener ("deviceready", onDeviceReady, false);

}) i

function onDeviceReady () {
cordova.require ("salesforce/plugin/ocauth") .getAuthCredentials (appStart) ;

}

function appStart (creds) {
console.log (JSON.stringify (creds)) ;
Force.init (creds, null, null, cordova.require ("salesforce/plugin/oauth") .forcetkRefresh);

app.router = new app.Router();
Backbone.history.start () ;

// Models
app.models.User = Force.SObject.extend ({
sobjectType: "User",
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",
"MobilePhone","City"]
}) i

app.models.UserCollection = Force.SObjectCollection.extend ({

model: app.models.User

)i

90

Using SmartSync to Access Salesforce Objects Tutorial: Creating a SmartSync Application

// Views

app.views.SearchPage = Backbone.View.extend ({
template: .template (S ("#search-page").html()),

initialize: function() {
this.listView = new app.views.UserListView({model: this.model}) ;
by

render: function (eventName) {
$(this.el) .html (this.template()) ;
$(".search-key", this.el).val (this.model.criteria);
this.listView.setElement ($("ul", this.el)).render ()
return this;

by

events: {
"keyup .search-key": "search"

by

search: function (event) {

this.model.criteria = $(".search-key", this.el).val();
var soqgl = "SELECT Id, FirstName, LastName, SmallPhotoUrl, Title
FROM User WHERE Name like '" + this.model.criteria + "%'

ORDER BY Name LIMIT 25 ";
this.model.fetch({config: {type:"sogl", query:soqgl}});

)i
app.views.UserListView = Backbone.View.extend ({
listItemViews: [],

initialize: function() {
this.model.bind ("reset", this.render, this);
b
render: function (eventName) {
_.each(this.listItemViews, function(itemView) { itemView.close(); });
this.listItemViews = .map(this.model.models, function(model) { return new
app.views.UserListItemView ({model: model}); 1});
$(this.el) .append(.map (this.listItemViews, function(itemView) { return
itemView.render () .el;}));
return this;

}
})i

app.views.UserListItemView = Backbone.View.extend ({
tagName: "1i",
template: .template ($ ("#user-list-item").html()),
render: function (eventName) ({
$S(this.el) .html (this.template (this.model.toJSON())) ;
return this;
b
close: function () {
this.remove () ;
this.off () ;

1)

// Router
app.Router = Backbone.Router.extend ({
routes: {
"ll: "listll

by

91

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

initialize: function() {
Backbone.Router.prototype.initialize.call (this) ;

// Collection behind search screen
app.searchResults = new app.models.UserCollection();
app.searchView = new app.views.SearchPage ({model: app.searchResults});
console.log("here");
by

list: function () {

app.searchResults.fetch () ;
S ('"#content') .html (app.searchView.render () .el) ;

});
</script>

</body>
</html>

SmartSync Sample Apps

Salesforce Mobile SDK provides sample apps that demonstrate how to use SmartSync in hybrid apps. Account Editor is the
most full-featured of these samples. You can switch to one of the simpler samples by changing the startPage property in
the bootconfig. json file.

Running the Samples in iOS

In your Salesforce Mobile SDK for 1OS installation directory, double-click the SalesforceMobileSDK.xcworkspace to
open it in Xcode. In Xcode, open HybridShared/sampleApps/smartsync/AccountEditor.html.

92

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

806

® @ (A) iPhone 6.1 Simula

Run

i b et b AR hhm&ll'ﬁrwmm&hﬁm
|m|m ®@ 4 = » B

» || Mative SDK

» | | Hybrid SDK

SalesforceSDKCore
» 11 3 targets, 105 SDK 6.1

SalesforceOAuth
» 11 3 targers, i05 SDK 6.1

> f?;fg';‘:'.ai'ésb SDK 6.1
» || ThirdPartyDependencies
¥ [| HybridShared
» | |external
» [libs
| | README.md
¥ [|SampleApps
» || contactexplorer
¥ [| entity
L"| auth.js
| 5 auth_local js
b [Jcss
| 1 stackrouter.js
E] UserAndCroupSearch.html
|#] UserSearch.html
» || sfdcaccounts
» [| smartstoreexplorer

b [test
» [|shared

Running the Samples in Android

In Android, you can run the sample from the command prompt. In your Salesforce Mobile SDK for Android installation
directory, change to the hybrid/SampleApps/AccountEditor directory and run:

ant debug
ant installd

= Note: If you get any errors saying that the local.properties file does not exist, run the following command
. from the directory shown in the error message:
|

$ANDROID SDK%/tools/android update project -p

To run the sample in Eclipse, import the following projects into your workspace:

« forcedroid/native/SalesforceSDK
« forcedroid/hybrid/SmartStore
« forcedroid/hybrid/SampleApps/AccountEditor

After Eclipse finishes building, Control-click or right-click AccountEditor in the Package Explorer, then click Run As >
Android application.

93

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

c E-\(
|
> 3 kevinT New >
evinlie

P@Salesfm Co Into

PEESmanst Open in New Window
Open Type Hierarchy Fd
Show In N BW >
Copy #EC
&= Copy Qualified Name
[Paste B8V
¥ Delete =
Build Path >
Source NS >
Refactor T >
i2g Import...
3 Export...
+ Refresh F5
Close Project
Close Unrelated Projects
Assign Working Sets...
Run As > 1 Android Application
Debug As » Ji 2 Android JUnit Test
Profile As > = 3 Java Applet 38X A
f"d*“e . [l4Java Application %X

eam . -
Compare With o Ju 5 JUnit Test NEXT
Restore from Local History... Run Configurations...
Android Tools >
Properties]
P"
| o® AccountEditor || 114aMof277m |

94

Using SmartSync to Access Salesforce Objects User and Group Search Sample

User and Group Search Sample

User and group search is the simplest SmartSync sample app. Its single screen lets you search users and collaboration groups
and display matching records in a list.

To run the sample, edit external/shared/sampleApps/smartsync/bootconfig.json. Change startPage to
UserAndGroupSearch.html:

{
"remoteAccessConsumerKey":
"3MVG9Tu66FKeHhINkB117xt7kR8czFcCTUhgoA8012Ltf1eYHOU4SqQRSELtYFDUpgRWcoQ2.dBv alDyub5xa",

"oauthRedirectURI": "testsfdc:///mobilesdk/detect/ocauth/done",
"oauthScopes": ["api","web"],

"isLocal": true,

"startPage": "UserAndGroupSearch.html",

"errorPage": "error.html",

"shouldAuthenticate": true,

"attemptOfflinelLoad": true

To run the app from Xcode in iOS, click Run to launch the AccountEditor project. After you've logged in, type at least two
characters in the search box to see matching results.

Looking Under the Hood
Open UseraAndGroupSearch.html in your favorite editor. Here are the key sections of the file:

« Script includes
« Templates

« Models
. Views
. Router

Script Includes

This sample includes the standard list of libraries for SmartSync applications.

+ jQuery—See http://jquery.com/.

« Underscore—Ultility-belt library for JavaScript, required by backbone) See http://underscorejs.org/

« Backbone—Gives structure to web applications. Used by SmartSync Data Framework. See http://backbonejs.org/.
« cordova-2.3.0.js—Required for all hybrid application used the SalesforceMobileSDK.

« forcetk.mobilesdk.js—Force.com JavaScript library for making Rest API calls. Required by SmartSync.

+ cordova.force.js—As of Mobile SDK 2.0, this file combines all Force.com Cordova plugins. Replaces the
SFHybridApp.Jjs, SalesforceOAuthPlugin.js, and SmartStorePlugin.js files.

+ SmartSync.js—The Mobile SDK SmartSync Data Framework.

« fastclick.js—Library used to eliminate the 300 ms delay between physical tap and firing of a click event. See
https://github.com/ftlabs/fastclick.

+ stackrouter.js and auth.js—Helper JavaScript libraries used by all three sample applications.

Templates

Templates for this application include:

95

http://jquery.com/
http://underscorejs.org/
http://backbonejs.org/
https://github.com/ftlabs/fastclick

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

+ search-page—template for the entire search page
+ user-list-item—template for user list items

+ group-list-item—template for collaboration group list items

Models
This application defines a SearchCollection model.

SearchCollection subclasses the Force.SObjectCollection class, which in turn subclasses the Collection class
from the Backbone library. Its only method configures the SOSL query used by the fetch () method to populate the collection.

app.models.SearchCollection = Force.SObjectCollection.extend ({
setCriteria: function (key) {
this.config = {type:"sosl", query:"FIND {" + key + "*} IN ALL FIELDS RETURNING "
+ "CollaborationGroup (Id, Name, SmallPhotoUrl, MemberCount), "
+ "User (Id, FirstName, LastName, SmallPhotoUrl, Title ORDER BY Name)

+ "LIMIT 25"
}i

)

Views
User and Group Search defines three views:

SearchPage

The search page expects a SearchCollection as its model. It watches the search input field for changes and updates
the model accordingly.

events: {
"keyup .search-key": "search"

by

search: function (event) {
var key = $(".search-key", this.el).val();
if (key.length >= 2) {
this.model.setCriteria (key) ;
this.model.fetch() ;

ListView

The list portion of the search screen. ListView also expects a Collection as its model and creates ListItemView
objects for each record in the Collection.

ListItemView
Shows details of a single list item, choosing the User or Group template based on the data.

Router

The router does very little because this application defines only one screen.

96

Using SmartSync to Access Salesforce Objects User Search Sample

User Search Sample

User Search is a more elaborate sample than User and Group search. Instead of a single screen, it defines two screens. If your
search returns a list of matches, User Search lets you tap on each of them to see a basic detail screen. Because it defines more
than one screen, this sample also demonstrates the use of a router.

To run the sample, edit external/shared/sampleApps/smartsync/bootconfig.json. Change startPage to
UserSearch.html:

{
"remoteAccessConsumerKey":
"3MVG9Iu66FKeHhINkB117xt7kR8czFcCTUhgoA8012Ltf1eYHOU4SqQRSELtYFDUpgRWcoQ2.dBv _alDyub5xa",

"oauthRedirectURI": "testsfdc:///mobilesdk/detect/ocauth/done",
"oauthScopes": ["api","web"],

"isLocal": true,

"startPage": "UserSearch.html",

"errorPage": "error.html",

"shouldAuthenticate": true,

"attemptOfflinelLoad": true

In Xcode or Eclipse, launch the AccountEditor. Log in if prompted to do so. Unlike the User and Group Search example,
you need to type only a single character in the search box to begin seeing search results. That’s because this application uses

SOQL, rather than SOSL, to query the server.

When you tap an entry in the search results list, you see a basic detail screen.

Looking Under the Hood
Open the UserSearch.html file in your favorite editor. Here are the key sections of the file:

« Script includes
« Templates

. Models
. Views
. Router

Script Includes

This sample includes the standard list of libraries for SmartSync applications.

+ jQuery—See http://jquery.com/.

+ Underscore—Ultility-belt library for JavaScript, required by backbone) See http://underscorejs.org/

« Backbone—Gives structure to web applications. Used by SmartSync Data Framework. See http://backbonejs.org/.
« cordova-2.3.0.js—Required for all hybrid application used the SalesforceMobileSDK.

« forcetk.mobilesdk.js—Force.com JavaScript library for making Rest API calls. Required by SmartSync.

« cordova.force.js—As of Mobile SDK 2.0, this file combines all Force.com Cordova plugins. Replaces the
SFHybridApp.js, SalesforceOAuthPlugin.js, and SmartStorePlugin.js files.

« SmartSync.js—The Mobile SDK SmartSync Data Framework.

« fastclick.js—Library used to eliminate the 300 ms delay between physical tap and firing of a click event. See
https://github.com/ftlabs/fastclick.

+ stackrouter.js and auth.js—Helper JavaScript libraries used by all three sample applications.

97

http://jquery.com/
http://underscorejs.org/
http://backbonejs.org/
https://github.com/ftlabs/fastclick

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

Templates

Templates for this application include:

+ search-page—template for the whole search page
+ user-list-item—template for user list items

+ user-page—template for user detail page

Models
This application defines two models: UserCollection and User.

UserCollection subclasses the Force.SObjectCollection class, which in turn subclasses the Collection class from
the Backbone library. Its only method configures the SOQL query used by the fetch () method to populate the collection.

app.models.UserCollection = Force.SObjectCollection.extend ({
model: app.models.User,
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title"],

setCriteria: function (key) {

this.key = key;

this.config = {type:"soqgl", query:"SELECT " + this.fieldlist.join(",")
+ " FROM User"
+ " WHERE Name like '" + key + "&'"
+ " ORDER BY Name "
+ " LIMIT 25 "

}i

)i

User subclasses SmartSync’s Force . SObject class. The User model defines:

« An sobjectType field to indicate which type of sObject it represents (User, in this case).
« A fieldlist field that contains the list of fields to be fetched from the server

Here’s the code:

app.models.User = Force.SObject.extend ({

sobjectType: "User",

fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",
"MobilePhone", "City"]
}) i

Views

This sample defines four views:

SearchPage

View for the entire search page. It expects a UserCollection asits model. It watches the search input field for changes
and updates the model accordingly in the search () function.

events: {
"keyup .search-key": "search"

b
search: function (event) {

this.model.setCriteria ($(".search-key", this.el).val());
this.model.fetch();

98

Using SmartSync to Access Salesforce Objects Account Editor Sample

UserListView

View for the list portion of the search screen. It also expects a UserCollection as its model and creates
UserListItemView objects for each user in the UserCollection object.

UserListItemView

View for a single list item.

UserPage
View for displaying user details.

Router

The router class handles navigation between the app’s two screens. This class uses a routes field to map those view to
router class method.

routes: {
"": "list",
"list"™: "list",
"users/:id": "viewUser"
b

The list page calls fetch () to fill the search result collections, then brings the search page into view.

list: function() {
app.searchResults.fetch () ;
// Show page right away - list will redraw when data comes in
this.slidePage (app.searchPage) ;

b

The user detail page calls fetch () to fill the user model, then brings the user detail page into view.

viewUser: function (id) {
var that = this;
var user = new app.models.User ({Id: id});
user.fetch ({
success: function () {
app.userPage.model = user;
that.slidePage (app.userPage) ;

Account Editor Sample

Account Editor is the most complex SmartSync-based sample application in Mobile SDK 2.0. It allows you to
create/edit/update/delete accounts online and offline, and also demonstrates conflict detection.

To run the sample:

1. If you've made changes to external/shared/sampleApps/smartsync/bootconfig. json, revert it to its origin
content.

2. Launch Account Editor.
This application contains three screens:

« Accounts search

99

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

« Accounts detail
« Sync

When the application first starts, you see the Accounts search screen listing the most recently used accounts. In this screen,
you can:

« Type a search string to find accounts whose names contain the given string.
« Tap an account to launch the account detail screen.
« Tap Create to launch an empty account detail screen.

« Tap Online to go offline. If you are already offline, you can tap the Offline button to go back online. (You can also go
offline by putting the device in airplane mode.)

To launch the Account Detail screen, tap an account record in the Accounts search screen. The detail screen shows you the
fields in the selected account. In this screen, you can:

« Tap afield to change its value.
« Tap Save to update or create the account. If validation errors occur, the fields with problems are highlighted.

If you’re online while saving and the server’s record changed since the last fetch, you receive warnings for the fields that
changed remotely.

Two additional buttons, Merge and Overwrite, let you control how the app saves your changes. If you tap Overwrite, the
app saves to the server all values currently displayed on your screen. If you tap Merge, the app saves to the server only the
fields you changed, while keeping changes on the server in fields you did not change.

« Tap Delete to delete the account.
« Tap Online to go offline, or tap Offline to go online.

To see the Sync screen, tap Online to go offline, then create, update, or delete an account. When you tap Offline again to
Y! p g P Y P g
go back online, the Sync screen shows all accounts that you modified on the device.

Tap Process n records to try to save your local changes to the server. If any account fails to save, it remains in the list with a
notation that it failed to sync. You can tap any account in the list to edit it further or, in the case of a locally deleted record,
to undelete it.

Looking Under the Hood
To view the source code for this sample, open AccountEditor.html in an HTML or text editor.
Here are the key sections of the file:

« Script includes
« Templates

. Models
. Views
. Router

Script Includes

This sample includes the standard list of libraries for SmartSync applications.

+ jQuery—See http://jquery.com/.

+ Underscore—Utility-belt library for JavaScript, required by backbone. See http://underscorejs.org/.

« Backbone—Gives structure to web applications. Used by SmartSync Data Framework. See http://backbonejs.org/.
« cordova-2.3.0.js—Required for hybrid applications using the Salesforce Mobile SDK.

100

http://jquery.com/
http://underscorejs.org/
http://backbonejs.org/

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

« forcetk.mobilesdk.js—Force.com JavaScript library for making REST API calls. Required by SmartSync.

+ cordova.force.js—As of Mobile SDK 2.0, this file combines all Force.com Cordova plugins. Replaces the
SFHybridApp.Jjs, SalesforceOAuthPlugin.js, and SmartStorePlugin.js files.

« SmartSync.js—The Mobile SDK SmartSync Data Framework.

« fastclick.js—Library used to eliminate the 300 ms delay between physical tap and firing of a click event. See
https://github.com/ftlabs/fastclick.

« stackrouter.js and auth.js—Helper JavaScript libraries used by all three sample applications.

Templates

Templates for this application include:

« search-page
+ sync-page
. account-list-item

« edit-account-page (for the Account detail page)

Models
This sample defines three models: AccountCollection, Account and OfflineTracker.

AccountCollection is asubclass of SmartSync’s Force.SObjectCollection class, which is a subclass of the Backbone
framework’s Collection class.

The AccountCollection.config () method returns an appropriate query to the collection. The query mode can be:

« Most recently used (MRU) if you are online and haven’t provided query criteria
- SOQL if you are online and have provided query criteria
« SmartSQL when you are offline

When the app calls fetch () on the collection, the fetch () function executes the query returned by config (). It then
uses the results of this query to populate AccountCollection with Account objects from either the offline cache or the
server.

AccountCollection uses the two global caches set up by the AccountEditor application: app . cache for offline storage,
and app.cacheForOriginals for conflict detection. The code shows that the AccountCollection model:

« Contains objects of the app .models.Account model (model field)

« Specifies a list of fields to be queried (fieldlist field)

+ Uses the sample app’s global offline cache (cache field)

« Uses the sample app’s global conflict detection cache (cacheForOriginals field)

« Defines a config () function to handle online as well as offline queries

Here’s the code (shortened for readability):

app.models.AccountCollection = Force.SObjectCollection.extend ({

model: app.models.Account,

fieldlist: ["Id", "Name", "Industry", "Phone", "Owner.Name", "LastModifiedBy.Name",
"LastModifiedDate"],

cache: function() { return app.cache},

cacheForOriginals: function() { return app.cacheForOriginals;},

config: function() {
// Offline: do a cache query
if (l'app.offlineTracker.get ("isOnline")) {

}

101

https://github.com/ftlabs/fastclick

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

// Online
else {

}
b)) g

Account is a subclass of SmartSync’s Force. SObject class, which is a subclass of the Backbone framework’s Mode1 class.
Code for the Account model shows that it:

« Uses a sobjectType field to indicate which type of sObject it represents (Account, in this case).

« Defines fieldlist as a method rather than a field, because the fields that it retrieves from the server are not the same
as the ones it sends to the server.

+ Uses the sample app’s global offline cache (cache field).

« Uses the sample app’s global conflict detection cache (cacheForOriginals field).

« Supports a cacheMode () method that returns a value indicating how to handle caching based on the current offline status.

Here’s the code:

app.models.Account = Force.SObject.extend ({
sobjectType: "Account",
fieldlist: function (method) {

return method == "read"
? ["Id", "Name", "Industry", "Phone", "Owner.Name", "LastModifiedBy.Name",
"LastModifiedDate"]

["Id", "Name", "Industry", "Phone"];
b
cache: function() { return app.cache;},
cacheForOriginals: function() { return app.cacheForOriginals;},
cacheMode: function (method) {
if (lapp.offlineTracker.get ("isOnline")) {
return Force.CACHE_MODE.CACHE_ONLY;
}
// Online
else {
return (method == "read" ? Force.CACHE MODE.CACHE FIRST
Force.CACHE MODE.SERVER FIRST);
}
}
}) i

OfflineTracker is a subclass of Backbone’s Model class. This class tracks the offline status of the application by observing
the browser’s offline status. It automatically switches the app to offline when it detects that the browser is offline. However,
it goes online only when the user requests it.

Here’s the code:

app.models.OfflineTracker = Backbone.Model.extend ({
initialize: function() {

var that = this;

this.set ("isOnline", navigator.onLine);

document .addEventListener ("offline", function() {
console.log ("Received OFFLINE event");
that.set ("isOnline", false);

}, false);

document.addEventListener ("online", function() {
console.log ("Received ONLINE event");
// User decides when to go back online

}, false);

102

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

Views

This sample defines five views:

« SearchPage

« AccountListView

« AccountListltemView
. EditAccountView

« SyncPage

A view typically provides a template field to specify its design template, an initialize () function, and a render () function.

Each view can also define an events field. This field contains an array whose key/value entries specify the event type and the
event handler function name. Entries use the following format:

"<event-type>|[<control>]": "<event-handler-function-name>"
For example:

events: {

"click .button-prev": "goBack",
"change": "change",
"click .save": "save",
"click .merge": "saveMerge",
"click .overwrite": "saveOverwrite",
"click .toggleDelete": "toggleDelete"
by
SearchPage

View for the entire search screen. It expects an AccountCollection as its model. It watches the search input field for
changes (the keyup event) and updates the model accordingly in the search () function.

events: {
"keyup .search-key": "search"

by

search: function (event) {
this.model.setCriteria ($(".search-key", this.el).val());
this.model.fetch();

AcountListView
View for the list portion of the search screen. It expects an AccountCollection as its model and creates
AccountListItemView object for each account in the AccountCollection object.
AccountListItemView

View for an item within the list.

EditAccountPage

View for account detail page. This view monitors several events:

click button-prev goBack

change Not set (can be any edit control) change

103

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

click save save

click merge saveMerge
click overwrite saveOverwrite
click toggleDelete toggleDelete

A couple of event handler functions deserve special attention. The change () function shows how the view uses the
event target to send user edits back to the model:

change: function (evt) {
// apply change to model
var target = event.target;
this.model.set (target.name, target.value);
S ("#account" + target.name + "Error", this.el).hide();

The toggleDelete () function handles a toggle that lets the user delete or undelete an account. If the user clicks to
undelete, the code sets an internal locally deleted flag to false to indicate that the record is no longer
deleted in the cache. Else, it attempts to delete the record on the server by destroying the local model.

toggleDelete: function() {
if (this.model.get (" locally deleted ")) {
this.model.set (" locally deleted ", false);
this.model.save (null, this.getSaveOptions (null, Force.CACHE MODE.CACHE ONLY)) ;

}
else {
this.model.destroy ({
success: function (data) {
app.router.navigate ("#", {trigger:true});
}r
error: function(data, err, options) {
var error = new Force.Error (err);
alert ("Failed to delete account: " + (error.type === "RestError" ?
error.details[0] .message
"Remote change detected - delete aborted")):;

1)

SyncPage

View for the sync page. This view monitors several events:

click button-prev goBack

click sync sync

104

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

To see how the all screen is rendered, look at the render method:

render: function (eventName) {

$(this.el) .html (this.template (.extend(
{countLocallyModified: this.model.length},
this.model.toJSON())));

this.listView.setElement ($("ul", this.el)) .render();
return this;

by

Let’s take a look at what happens when the user taps Process (the sync control).

The sync () function looks at the first locally modified Account in the view’s collection and tries to save it to the server.
If the save succeeds and there are no more locally modified records, the app navigates back to the search screen. Otherwise,
the app marks the account as having failed locally and then calls sync () again.

sync: function (event) {

var that = this;

if (this.model.length == || this.model.at (0).get (" sync failed ")) {
// we push sync failures back to the end of the list -
// if we encounter one, it means we are done
return;

}

else {
var record = this.model.shift();

var options = {
mergeMode: Force.MERGE MODE.MERGE FAIL IF CHANGED,
success: function () {
if (that.model.length == 0) {

app.router.navigate ("#", {trigger:true});
}
else {
that.sync () ;
}
br
error: function() {
record = record.set (" sync failed ", true);
that.model.push (record) ;
that.sync();
}
}i
return record.get (" locally deleted ") ? record.destroy(options)
record.save (null, options);

Router

When the router is initialized, it sets up the two global caches used throughout the sample.

setupCaches: function() {
// Cache for offline support
app.cache = new Force.StoreCache ("accounts", [{path:"Name", type:"string"} 1):

// Cache for conflict detection
app.cacheForOriginals = new Force.StoreCache ("original-accounts") ;

105

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

return $.when (app.cache.init (), app.cacheForOriginals.init());

by

Once the global caches are set up, it also sets up two AccountCollection objects: One for the search screen, and one for

the sync screen.

// Collection behind search screen
app.searchResults = new app.models.AccountCollection();

// Collection behind sync screen
app.localAccounts = new app.models.AccountCollection();
app.localAccounts.config = {type:"cache", cacheQuery: {queryType:"exact",
indexPath:" local ", matchKey:true, order:"ascending", pageSize:25}};

Finally, it creates the view objects for the Search, Sync, and EditAccount screens.

// We keep a single instance of SearchPage / SyncPage and EditAccountPage
app.searchPage = new app.views.SearchPage ({model: app.searchResults});
app.syncPage = new app.views.SyncPage ({model: app.localAccounts});
app.editPage = new app.views.EditAccountPage() ;

The router has a routes field that maps actions to methods on the router class.

routes: {
"": "list",
"list": "list",
"add": "addAccount",
"edit/accounts/:id": "editAccount",
"Sync" : " Sync"

by

The 1ist action fills the search result collections by calling fetch () and brings the search page into view.

list: function() {
app.searchResults.fetch () ;
// Show page right away - list will redraw when data comes in
this.slidePage (app.searchPage) ;

by

The addAccount action creates an empty account object and bring the edit page for that account into view.

addAccount: function () {
app.editPage.model = new app.models.Account ({Id: null});
this.slidePage (app.editPage) ;

1

The editAccount action fetches the specified Account object and brings the account detail page into view.

editAccount: function (id) {
var that = this;
var account = new app.models.Account ({Id: id});
account.fetch ({
success: function (data) {
app.editPage.model = account;
that.slidePage (app.editPage) ;
b
error: function() {
alert ("Failed to get record for edit");

}

106

Using SmartSync to Access Salesforce Objects SmartSync Sample Apps

)i

The sync action computes the localAccounts collection by calling fetch and brings the sync page into view.

sync: function() {
app.localAccounts.fetch();
// Show page right away - list will redraw when data comes in
this.slidePage (app.syncPage) ;

107

Chapter 7

Securely Storing Data Offline

In this chapter ...

Accessing SmartStore in Hybrid
Apps

Adding SmartStore to Android Apps
Offline Hybrid Development
SmartStore Soups

Registering a Soup

Retrieving Data From a Soup
Smart SQL Queries

Working With Cursors
Manipulating Data

Using the Mock SmartStore

NativeSqlAggregator Sample App:
Using SmartStore in Native Apps

Mobile devices can lose connection at any time, and environments such as
hospitals and airplanes often prohibit connectivity. To handle these situations,
it’s important that your mobile apps continue to function when they go offline.

The Mobile SDK uses SmartStore, a secure offline storage solution on your
device. SmartStore allows you to continue working even when the device is not
connected to the Internet. SmartStore stores data as JSON documents in a data
structure called a soup. A soup is a simple one-table database of “entries” which
can be indexed in different ways and queried by a variety of methods.

Mobile SDK 2.0 provides a StoreCache mechanism that works with SmartStore
soups to provide offline synchronization and conflict resolution services. You can
control these services by providing simple configuration settings. We recommend
that you use StoreCache to manage operations on Salesforce data. See Using
StoreCache For Offline Caching on page 73 and Conflict Detection on page
77

= Note: Pure HTMLS5 apps store offline information in a browser cache.
Browser caching isn’t part of the Mobile SDK, and we don’t document
it here. SmartStore uses storage functionality on the device. This strategy

requires a native or hybrid development path.

Sample Objects

The code snippets in this chapter use two objects, Account and Opportunity,
which come predefined with every Salesforce organization. Account and
Opportunity have a master-detail relationship; an Account can have more than

one Opportunity.

108

http://en.wikipedia.org/wiki/Soup_(Apple)

Securely Storing Data Offline Accessing SmartStore in Hybrid Apps

Accessing SmartStore in Hybrid Apps

Hybrid apps access SmartStore from JavaScript. In order to enable offline access in a hybrid mobile application, you need to
include a couple of JavaScript and CSS files in your Visualforce or HTML page.

+ cordova-x.x.x.js — The Cordova library (formerly PhoneGap).

« cordova.force.js — Contains the JavaScript portion of Salesforce OAuth and SmartStore plugins. Also includes
methods that perform utility tasks, such as determining whether you’re offline.

Adding SmartStore to Android Apps

In Android apps, SmartStore is an optional component. It is not optional in iOS apps.

To use SmartStore in an Android app, you need to configure your project to include it. When you create a new Android project
with the forcedroid utility, include SmartStore by setting the optional - —usesmartstore=true parameter. See Creating
a New Android Project on page 30 for examples.

To add SmartStore to an existing Android project (hybrid or native):

1. Add the SmartStore library project to your project. In Eclipse, choose Properties from the Project menu. Select Android
from the left panel, then click Add on the right-hand side. Choose the hybrid/SmartStore project.

2. Inyour projectnameApp.java file, import the SalesforceSDKManagerWithSmartStore class instead of SalesforceSDKManager.
Replace this statement:

import com.salesforce.androidsdk.app.SalesforceSDKManager
with this one:

import com.salesforce.androidsdk.smartstore.app.SalesforceSDKManagerWithSmartStore

3. Inyour projectnameApp.java file, change your App class to extend the SalesforceSDKManagerWithSmartStore class rather
than SalesforceSDKManager.

Offline Hybrid Development

Developing a hybrid application inside the container requires a build/deploy step for every change. For that reason, we
recommend you develop your hybrid application directly in a browser, and only run your code in the container in the final
stages of testing. JavaScript development in a browser is easier because there is no build/compile step. Whenever you make
changes to the code, you can refresh the browser to see your changes.

We recommend using the Google Chrome browser because it comes bundled with developer tools that let you access the
internals of the your web applications. For more information, see Chrome Developer Tools: Overview.

109

https://developers.google.com/chrome-developer-tools/docs/overview

Securely Storing Data Offline SmartStore Soups

SmartStore Soups

You store your offline data in SmartStore in one or more soups. A soup, conceptually speaking, is a logical collection of data
records—represented as JSON objects—that you want to store and query offline. In the Force.com world, a soup will typically
map to a standard or custom object that you wish to store offline, but that is not a hard and fast rule. You can store as many
soups as you want in an application, but remember that soups are meant to be self-contained data sets; there is no direct
correlation between them. In addition to storing the data itself, you can also specify indices that map to fields within the data,
for greater ease and customization of data queries.

#= Note:

SmartStore data is inherently volatile. Its lifespan is tied to the authenticated user as well as to OAuth token states.
When the user logs out of the app, SmartStore deletes all soup data associated with that user. Similarly, when the
OAuuth refresh token is revoked or expires, the user’s app state is reset, and all data in SmartStore is purged. Carefully
consider the volatility of SmartStore data when designing your app. This warning is especially important if your org
sets a short lifetime for the refresh token.

Registering a Soup

In order to access a soup, you first need to register it. Provide a name, index specifications, and names of callback functions
for success and error conditions:

navigator.smartstore.registerSoup (soupName, indexSpecs, successCallback, errorCallback)

If the soup does not already exist, this function creates it. If the soup already exists, registering gives you access to the existing
soup. To find out if a soup already exists, use:

navigator.smartstore.soupExists (soupName, successCallback, errorCallback);

A soup is indexed on one or more fields found in its entries. Insert, update, and delete operations on soup entries are tracked
in the soup indices. Always specify at least one index field when registering a soup. For example, if you are using the soup as
a simple key/value store, use a single index specification with a string type.

indexSpecs

The indexSpecs array is used to create the soup with predefined indexing. Entries in the indexSpecs array specify how
the soup should be indexed. Each entry consists of a path: type pair. path is the name of an index field; type is either
“string”, “integer”, or “floating”. Index paths are case-sensitive and can include compound paths, such as Owner.Name.
* Note: Performance can suffer if the index path is too deep. If index entries are missing any fields described in a
particular indexSpec, they will not be tracked in that index.

"indexSpecs": [
{
"path":"Name",
"type":"string"

110

Securely Storing Data Offline Retrieving Data From a Soup

"path" : "Id" ,
"type":"string"

"path":"ParentId",
"type":"string"

"path":"lastModifiedDate",
"type":"integer"

» o«

= Note: Currently, the Mobile SDK supports three index types: “string”, “integer”, and “floating”. These types apply
only to the index itself, and not to the way data is stored or retrieved. It’s OK to have a null field in an index column.

-

successCallback

The success callback function for registerSoup takes one argument (the soup name).
function (soupName) { alert("Soup " + soupName + " was successfully created"); };

A successful creation of the soup returns a successCallback that indicates the soup is ready. Wait to complete the transaction
and receive the callback before you begin any activity. If you register a soup under the passed name, the success callback function
returns the soup.

errorCallback

The error callback function for registerSoup takes one argument (the error description string).
function(err) { alert ("registerSoup failed with error:" + err); }

During soup creation, errors can happen for a number of reasons, including:

« Aninvalid or bad soup name
+ No index (at least one index must be specified)
+ Other unexpected errors, such as a database error

Retrieving Data From a Soup

SmartStore provides a set of helper methods that build query strings for you. To query a specific set of records, call the build*
method that suits your query specification. You can optionally define the index field, sort order, and other metadata to be used

for filtering, as described in the following table:

indexPath This is what you’re searching for; for example a name, account number, or date.
beginKey Optional. Used to define the start of a range query.
endKey Optional. Used to define the end of a range query.

111

Securely Storing Data Offline Retrieving Data From a Soup

order Optional. Either “ascending” or “descending.”

pageSize Optional. If not present, the native plugin can return whatever page size it sees fit in the
P P plug pag
resulting Cursor.pageSize.

= Note:
.~ All queries are single-predicate searches. Only SmartSQL queries support joins.

Query Everything

buildAllQuerySpec (indexPath, order, [pageSize]) returns all entriesin the soup, with no particular order. Use
this query to traverse everything in the soup.

order and pageSize are optional, and default to ascending and 10, respectively. You can specify:

e buildAllQuerySpec (indexPath)
e buildAllQuerySpec (indexPath, order)
e buildAllQuerySpec (indexPath, order, [pageSize])

However, you can’t specify bui1dAl1lQuerySpec (indexPath, [pageSize]).
See Working With Cursors for information on page sizes.

= Note: Asabase rule, set pageSize to the number of entries you want displayed on the screen. For a smooth scrolling
display, you might want to increase the value to two or three times the number of entries actually shown.

Query with a Smart SQL SELECT Statement

buildSmartQuerySpec (smartSql, [pageSize]) executes the query specified by smartSql. This function allows
greater flexibility than other query factory functions because you provide your own Smart SQL SELECT statement. See Smart

SQL Queries.
pageSize is optional and defaults to 10

Sample code, in various development environments, for a Smart SQL query that calls the SQL COUNT function:

Javascript:

var querySpec = navigator.smartstore.buildSmartQuerySpec ("select count (*) from {employees}",

1)

navigator.smartstore.runSmartQuery (querySpec, function (cursor) {

// result should be [[n]] if there are n employees

}) i
iOS native:

SFQuerySpec* querySpec = [SFQuerySpec newSmartQuerySpec:@"select count (*) from {employees}"

withPageSize:1];

NSArray* result = [store queryWithQuerySpec:querySpec pageIndex:0];

// result should be [[n]] if there are n employees

112

Securely Storing Data Offline Retrieving Data From a Soup

Android native:

SmartStore store SalesforceSDKManagerWithSmartStore.getInstance () .getSmartStore () ;
JSONArray result = store.query(QuerySpec.buildSmartQuerySpec ("select count (*) from
{employees}", 1), 0);

// result should be [[n]] if there are n employees

Query by Exact

buildExactQuerySpec (indexPath, matchKey, [pageSize]) finds entries that exactly match the given matchKey
for the indexPath value. Use this to find child entities of a given ID. For example, you can find Opportunities by Status.
However, you can’t specify order in the results.

Sample code for retrieving children by ID:
var querySpec = navigator.smartstore.buildExactQuerySpec (“sfdcId”, “some-sfdc-id”);

navigator.smartstore.querySoup (“Catalogs”, querySpec, function (cursor) {
// we expect the catalog to be in: cursor.currentPageOrderedEntries[0]

)i
Sample code for retrieving children by parent ID:

var querySpec = navigator.smartstore.buildExactQuerySpec (“parentSfdcId”, “some-sfdc-id);
navigator.smartstore.querySoup (“Catalogs”, querySpec, function (cursor) {});

Query by Range

buildRangeQuerySpec (indexPath, beginKey, endKey, [order, pageSize]) findsentries whose indexPath
values fall into the range defined by beginKey and endKey. Use this function to search by numeric ranges, such as a range
of dates stored as integers.

order and pageSize are optional, and default to ascending and 10, respectively. You can specify:

« buildRangeQuerySpec (indexPath, beginKey, endKey)
« buildRangeQuerySpec (indexPath, beginKey, endKey, order)
« buildRangeQuerySpec (indexPath, beginKey, endKey, order, pageSize)

However, you can’t specify buildRangeQuerySpec (indexPath, beginKey, endKey, pageSize).
By passing null values to beginKey and endKey, you can perform open-ended searches:

« Passing null to endKey finds all records where the field at indexPath is >= beginKey.
« Passing null to beginKey finds all records where the field at indexPath is <= endKey.
+ Passing null to both beginKey and endKey is the same as querying everything.

Query by Like

buildLikeQuerySpec (indexPath, likeKey, [order, pageSize]) finds entries whose indexPath values are
like the given 1ikeKey. You can use “foo%” to search for terms that begin with your keyword, “%foo” to search for terms that
end with your keyword, and “%foo%” to search for your keyword anywhere in the indexPath value. Use this function for
general searching and partial name matches. order and pageSize are optional, and default to ascending and 10, respectively.

o Note: Query by Like is the slowest of the query methods.

113

Securely Storing Data Offline Smart SQL Queries

Executing the Query

Queries run asynchronously and return a cursor to your JavaScript callback. Your success callback should be of the form
function (cursor). Use the querySpec parameter to pass your query specification to the querySoup method.

navigator.smartstore.querySoup (soupName, querySpec, successCallback,errorCallback) ;

Retrieving Individual Soup Entries by Primary Key

All soup entries are automatically given a unique internal ID (the primary key in the internal table that holds all entries in the
soup). That ID field is made available as the soupEntryId field in the soup entry. Soup entries can be looked up by
_soupEntryld by using the retrieveSoupEntries method. Note that the return order is not guaranteed, and if entries
have been deleted they will be missing from the resulting array. This method provides the fastest way to retrieve a soup entry,
but it’s usable only when you know the soupEntryId:

navigator.smartStore.retrieveSoupEntries (soupName, indexSpecs, successCallback, errorCallback)

Smart SQL Queries

Beginning with Salesforce Mobile SDK version 2.0, SmartStore supports a Smart SQL query language for free-form SELECT
statements. Smart SQL queries combine standard SQL SELECT grammar with additional descriptors for referencing soups
and soup fields. This approach gives you maximum control and flexibility, including the ability to use joins. Smart SQL
supports all standard SQL SELECT constructs.

Smart SQL Restrictions
Smart SQL supports only SELECT statements and only indexed paths.

Syntax
Syntax is identical to the standard SQL SELECT specification but with the following adaptations.

To specify a column {<soupName>:<path>}
To specify a table {<soupName>}

To refer to the entire soup entry JSON {<soupName>: soup}
string

To refer to the internal soup entry ID {<soupName>: soupEntryId}

To refer to the last modified date {<soupName>: soupLastModifiedDate}

Sample Queries

Consider two soups: one named Employees, and another named Departments. The Employees soup contains standard fields
such as:

« First name (firstName)
. Last name (lastName)
+ Department code (deptCode)

114

Securely Storing Data Offline Smart SQL Queries

« Employee ID (employeeId)
« Manager ID (managerId)

The Departments soup contains:

« Name (name)
« Department code (deptCode)

Here are some examples of basic Smart SQL queries using these soups:

select {employees:firstName}, {employees:lastName}
from {employees} order by {employees:lastName}

select {departments:name}

from {departments}

order by {departments:deptCode}
Joins

Smart SQL also allows you to use joins. For example:

select {departments:name}, {employees:firstName} || ' ' || {employees:lastName}
from {employees}, {departments}

where {departments:deptCode} = {employees:deptCode}

order by {departments:name}, {employees:lastName}

You can even do self joins:

select mgr.{employees:lastName}, e.{employees:lastName}
from {employees} as mgr, {employees} as e
where mgr. {employees:employeeld} = e.{employees:managerId}

Aggregate Functions

Smart SQL support the use of aggregate functions such as:

. COUNT
- SUM
- AVG

For example:

select {account:name},
count ({opportunity:name}),
sum ({opportunity:amount}),
avg ({opportunity:amount}),
{account:id},
{opportunity:accountid}
from {account},
{opportunity}
where {account:id} = {opportunity:accountid}
group by {account:name}

The NativeSqlAggregator sample app delivers a fully implemented native implementation of SmartStore, including SmartSQL

support for aggregate functions and joins. See NativeSqlAggregator Sample App: Using SmartStore in Native Apps on page
119.

115

Securely Storing Data Offline Working With Cursors

Working With Cursors

Queries can potentially have long result sets that are too large to load. Instead, only a small subset of the query results (a single
page) is copied from the native realm to the JavaScript realm at any given time. When you perform a query, a cursor object is
returned from the native realm that provides a way to page through a list of query results. The JavaScript code can then move
forward and back through the pages, causing pages to be copied to the JavaScript realm.

. Note: For advanced users: Cursors are not snapshots of data; they are dynamic. If you make changes to the soup and
then start paging through the cursor, you will see those changes. The only data the cursor holds is the original query
and your current position in the result set. When you move your cursor, the query runs again. Thus, newly created
soup entries can be returned (assuming they satisfy the original query).

Use the following cursor functions to navigate the results of a query:

e navigator.smartstore.moveCursorToPageIndex (cursor, newPagelIndex, successCallback,
errorCallback) —Move the cursor to the page index given, where O is the first page, and the last page is defined by
totalPages - 1.

« navigator.smartstore.moveCursorToNextPage (cursor, successCallback, errorCallback)—Move
to the next entry page if such a page exists.

e navigator.smartstore.moveCursorToPreviousPage (cursor, successCallback, errorCallback)—Move
to the previous entry page if such a page exists.

e navigator.smartstore.closeCursor (cursor, successCallback, errorCallback) ——Close the cursor
when you're finished with it.

#»* Note: successCallback for those functions should expect one argument (the updated cursor).

Manipulating Data
In order to track soup entries for insert, update, and delete, SmartStore adds a few fields to each entry:

« _soupEntryId—This field is the primary key for the soup entry in the table for a given soup.
« _soupLastModifiedDate—The number of milliseconds since 1/1/1970.

0 To convert to a JavaScript date, use new Date (entry. soupLastModifiedDate)

0 To convert a date to the corresponding number of milliseconds since 1/1/1970, use date.getTime ()

When inserting or updating soup entries, SmartStore automatically sets these fields. When removing or retrieving specific
entries, you can reference them by soupEntryId.

Inserting or Updating Soup Entries

If the provided soup entries already have the soupEntryId slots set, then entries identified by that slot are updated in the
soup. If an entry does not have a _soupEntryId slot, or the value of the slot doesn’t match any existing entry in the soup,
then the entry is added (inserted) to the soup, and the _soupEntryId slotis overwritten.

116

Securely Storing Data Offline Manipulating Data

= Note: You must not manipulate the soupEntryIdor soupLastModifiedDate value yourself.

Use the upsertSoupEntries method to insert or update entries:
navigator.smartStore.upsertSoupEntries (soupName, entries[], successCallback, errorCallback)

where soupName is the name of the target soup, and entries is an array of one or more entries that match the soup’s data
structure. The successCallback and errorCallback parameters function much like the ones for registerSoup.
However, the success callback for upsertSoupEntries indicates that either a new record has been inserted, or an existing
record has been updated.

Upserting with an External ID

If your soup entries mirror data from an external system, you might need to refer to those entities by their ID (primary key)
in the external system. For that purpose, we support upsert with an external ID. When you perform an upsert, you can designate
any index field as the external ID field. SmartStore will look for existing soup entries with the same value in the designated
field with the following results:

« Ifno field with the same value is found, a new soup entry will be created.
« If the external ID field is found, it will be updated.

« If more than one field matches the external ID, an error will be returned.

When creating a new entry locally, use a regular upsert. Set the external ID field to a value that you can later query when
uploading the new entries to the server.

When updating entries with data coming from the server, use the upsert with external ID. Doing so guarantees that you don’t
end up with duplicate soup entries for the same remote record.

In the following sample code, we chose the value new for the id field because the record doesn’t yet exist on the server. Once
we are online, we can query for records that exist only locally (by looking for records where id == "new") and upload them
to the server. Once the server returns the actual ID for the records, we can update their 1d fields locally. If you create products
that belong to catalogs that have not yet been created on the server, you will be able to capture the relationship with the catalog
through the parentSoupEntryId field. Once the catalogs are created on the server, update the local records’
parentExternalld fields.

The following code contains sample scenarios. First, it calls upsertSoupEntries to create a new soup entry. In the success
callback, the code retrieves the new record with its newly assigned soup entry ID. It then changes the description and calls
forcetk.mobilesdk methods to create the new account on the server and then update it. The final call demonstrates the
upsert with external ID. To make the code more readable, no error callbacks are specified. Also, because all SmartStore calls
are asynchronous, real applications should do each step in the callback of the previous step.

// Specify data for the account to be created
var acc = {id: "new", Name: "Cloud Inc", Description: "Getting started"};

// Create account in SmartStore
// This upsert does a "create" because the acc has no soupEntryId field
navigator.smartstore.upsertSoupEntries ("accounts", [acc], function(accounts) {
acc = accounts|[0];
// acc should now have a _soupEntryId field (and a _lastModifiedDate as well)
1)

// Update account's description in memory
acc["Description"] = "Just shipped our first app ";

// Update account in SmartStore

// This does an "update" because acc has a _soupEntryId field
navigator.smartstore.upsertSoupEntries ("accounts", [acc], function(accounts) {

117

Securely Storing Data Offline Using the Mock SmartStore

acc = accounts|[0];
) 8

// Create account on server (sync client -> server for entities created locally)
forcetkClient.create ("account", {"Name": acc["Name"], "Description": acc["Description"]},
function (result) {

acc["id"] = result["id"];

// Update account in SmartStore

navigator.smartstore.upsertSoupEntries ("accounts", [acc]);
});

// Update account's description in memory
acc["Description"] = "Now shipping for iOS and Android";

// Update account's description on server

// Sync client -> server for entities existing on server

forcetkClient.update ("account", acc["id"], {"Description": acc["Description"]});

///// Later, there is an account (with id: someSfdcId) that you want to get locally
///// There might be an older version of that account in the SmartStore already

// Update account on client

// sync server -> client for entities that might or might not exist on client
forcetkClient.retrieve ("account", someSfdcId, "id,Name,Description", function (result) ({

// Create or update account in SmartStore (looking for an account with the same sfdcId)
navigator.smartstore.upsertSoupEntriesWithExternallId ("accounts", [result], "id"):;

})i

Removing Soup Entries

Entries are removed from the soup asynchronously and your callback is called with success or failure. The soupEntryIdsis
alist of the soupEntryId values from the entries you wish to delete.

navigator.smartStore.removeFromSoup (soupName, soupEntryIds, successCallback, errorCallback)

Removing a Soup

To remove a soup, call removeSoup () . Note that once a user signs out, the soups get deleted automatically.

navigator.smartstore.removeSoup (soupName, successCallback,errorCallback) ;

Using the Mock SmartStore

To facilitate developing and testing code that makes use of the SmartStore while running outside the container, you can use
an emulated SmartStore. The MockSmartStore is a JavaScript implementation of the SmartStore that stores the data in local
storage (or optionally just in memory).

= Note: The MockSmartStore doesn’t encrypt data and is not meant to be used in production applications.

Inside the PhoneGap directory, there’s a local directory containing the following files:

+ MockCordova.js—A minimal implementation of Cordova functions meant only for testing plugins outside the container.

118

Securely Storing Data Offline NativeSqlAggregator Sample App: Using SmartStore in Native
Apps

« MockSmartStore.js—A JavaScript implementation of the SmartStore meant only for development and testing outside
the container.

+ MockSmartStorePlugin.js—A JavaScript helper class that intercepts SmartStore Cordova plugin calls and handles
them using a MockSmartStore.

+ CordovaInterceptor.js—A JavaScript helper class that intercepts Cordova plugin calls.
When writing an application using SmartStore, make the following changes to test your app outside the container:

« Include MockCordova. js instead of cordova-x.x.x.7s.

« Include MockSmartStore. s after cordova.force.js.

To see a MockSmartStore example, check out Cordova/local/test.html.

Same-origin Policies

Same-origin policy permits scripts running on pages originating from the same site to access each other’s methods and properties
with no specific restrictions; it also blocks access to most methods and properties across pages on different sites. Same-origin
policy restrictions are not an issue when your code runs inside the container, because the container disables same-origin policy
in the webview. However, if you call a remote API, you need to worry about same-origin policy restrictions.

Fortunately, browsers offer ways to turn off same-origin policy, and you can research how to do that with your particular
browser. If you want to make XHR calls against Force.com from JavaScript files loaded from the local file system, you should
start your browser with same-origin policy disabled. The following article describes how to disable same-origin policy on
several popular browsers: Getting Around Same-Origin Policy in Web Browsers.

Authentication

For authentication with MockSmartStore, you will need to capture access tokens and refresh tokens from a real session and
hand code them in your JavaScript app. You'll also need these tokens to initialize the forcetk.mobilesdk JavaScript toolkit.

NativeSqglAggregator Sample App: Using SmartStore in Native Apps

The NativeSqlAggregator app demonstrates how to use SmartStore in a native app. It also demonstrates the ability to make
complex SQL-like queries, including aggregate functions, such as SUM and COUNT, and joins across different soups within
SmartStore.

Creating a Soup

The first step to storing a Salesforce object in SmartStore is to create a soup for the object. The function call to register a soup
takes two arguments - the name of the soup, and the index specs for the soup. Indexing supports three types of data: string,
integer, and floating decimal. The following example illustrates how to initialize a soup for the Account object with indexing

on Name, Id, and Ownerld fields.

Android:
SalesforceSDKManagerWithSmartStore sdkManager =
SalesforceSDKManagerWithSmartStore.getInstance () ;
SmartStore smartStore = sdkManager.getSmartStore();
IndexSpec[] ACCOUNTS INDEX SPEC = ({

new IndexSpec ("Name", Type.string),
new IndexSpec ("Id", Type.string),

119

http://romkey.com/2011/04/23/getting-around-same-origin-policy-in-web-browsers

Securely Storing Data Offline NativeSqlAggregator Sample App: Using SmartStore in Native
Apps

new IndexSpec ("OwnerId", Type.string)
bi

smartStore.registerSoup ("Account", ACCOUNTS INDEX SPEC);

iOS:

SFSmartStore *store = [SFSmartStore sharedStoreWithName:kDefaultSmartStoreName];

NSArray *keys = [NSArray arrayWithObjects:@"path", @"type", nil];

NSArray *nameValues = [NSArray arrayWithObjects:@"Name", kSoupIndexTypeString, nil];
NSDictionary *nameDictionary = [NSDictionary dictionaryWithObjects:nameValues
forKeys:keys];

NSArray *idValues = [NSArray arrayWithObjects:@"Id", kSoupIndexTypeString, nil];
NSDictionary *idDictionary = [NSDictionary dictionaryWithObjects:idValues forKeys:keys];
NSArray *ownerIdValues = [NSArray arrayWithObjects:@"OwnerId", kSoupIndexTypeString,
nil];

NSDictionary *ownerIdDictionary = [NSDictionary dictionaryWithObjects:ownerIdValues
forKeys:keys];

NSArray *accountIndexSpecs = [[NSArray alloc] initWithObjects:nameDictionary,
idDictionary, ownerIdDictionary, nil];

[store registerSoup:@"Account" withIndexSpecs:accountIndexSpecs];

Storing Data in a Soup

Once the soup is created, the next step is to store data in the soup. In the following example, account represents a single
record of the object Account. On Android, account is of type JSONObject. On iOS, its type is NSDictionary.

Android:

SmartStore smartStore = sdkManager.getSmartStore() ;
smartStore.upsert (“Account”, account);

iOS:

SFSmartStore *store = [SFSmartStore sharedStoreWithName:kDefaultSmartStoreName];
[store upsertEntries: [NSArray arrayWithObject:account] toSoup:@"Account"];

Running Queries Against SmartStore
Beginning with Mobile SDK 2.0, you can run advanced SQL-like queries against SmartStore that span multiple soups. The

syntax of a SmartStore query is similar to standard SQL syntax, with a couple of minor variations. A colon (“:”) serves as the
delimiter between a soup name and an index field. A set of curly braces encloses each <soup-name>:<field-name> pair.

See Smart SQL Queries on page 114.

Here’s an example of an aggregate query run against SmartStore:

SELECT {Account:Name},
COUNT ({Opportunity:Name}),
SUM ({Opportunity:Amount}),
AVG ({Opportunity:Amount}), {Account:Id}, {Opportunity:AccountId}
FROM {Account}, {Opportunity}
WHERE {Account:Id} = {Opportunity:AccountId}
GROUP BY {Account:Name}

120

Securely Storing Data Offline NativeSqlAggregator Sample App: Using SmartStore in Native
Apps

This query represents an implicit join between two soups, Account and Opportunity. It returns:

« Name of the Account

+ Number of opportunities associated with an Account

+ Sum of all the amounts associated with each Opportunity of that Account
« Average amount associated with an Opportunity of that Account

« Grouping by Account name

The code snippet below demonstrates how to run such queries from within a native app. In this example, smartsSql is the
query and pageSize is the requested page size. The page Index argument specifies which page of results you want returned.

Android:

QuerySpec querySpec = QuerySpec.buildSmartQuerySpec (smartSql, pageSize);
JSONArray result = smartStore.query(querySpec, pagelndex);

iOS:

SFSmartStore *store = [SFSmartStore sharedStoreWithName:kDefaultSmartStoreName] ;
SFQuerySpec *querySpec = [SFQuerySpec newSmartQuerySpec:queryString
withPageSize:pageSize];

NSArray *result = [store queryWithQuerySpec:querySpec pagelndex:pagelndex];

121

Chapter 8

Authentication, Security, and Identity in Mobile Apps

In this chapter ...

* OAuth Terminology

* Creating a Connected App

* Connected Apps

* OAuth2 Authentication Flow

* Portal Authentication Using OAuth

2.0 and Force.com Sites

Secure authentication is essential for enterprise applications running on mobile
devices. OAuth?2 is the industry-standard protocol that allows secure
authentication for access to a user's data, without handing out the username and
password. It is often described as the valet key of software access: a valet key only
allows access to certain features of your car: you cannot open the trunk or glove
compartment using a valet key.

Mobile app developers can quickly and easily embed the Salesforce OAuth2
implementation. The implementation uses an HTML view to collect the
username and password, which are then sent to the server. A session token is
returned and securely stored on the device for future interactions.

A Salesforce connected app is the primary means by which a mobile device connects
to Salesforce. A connected app gives both the developer and the administrator
control over how the app connects and who has access. For example, a connected
app can be restricted to certain users, can set or relax an IP range, and so forth.

122

Authentication, Security, and Identity in Mobile Apps OAuth Terminology

OAuth Terminology
Access Token

A value used by the consumer to gain access to protected resources on behalf of the user, instead of using the user’s
Salesforce credentials. The access token is a session ID, and can be used directly.

Authorization Code

A short-lived token that represents the access granted by the end user. The authorization code is used to obtain an access
token and a refresh token.

Connected App

An application external to Salesforce that uses the OAuth protocol to verify both the Salesforce user and the external
application. Replaces remote access application.

Consumer Key

A value used by the consumer to identify itself to Salesforce. Referred to as client id.

Refresh Token

A token used by the consumer to obtain a new access token, without having the end user approve the access again.

Remote Access Application (DEPRECATED)

A remote access application is an application external to Salesforce that uses the OAuth protocol to verify both the Salesforce
user and the external application. Remote access applications have been deprecated in favor of connected apps.

Creating a Connected App

Before a mobile device can connect with the service, you'll need to create a connected app. The connected app includes a
consumer key, a prerequisite to all development scenarios in this guide.

Log into your Database.com or Force.com instance.

In Setup, navigate to Create > Apps.

Under Connected Apps, click New.

For Connected App Name, enter a name, such as Test Client
Under Developer Name, enter your developer ID.

For callback URL, enter sfdc://success

SR W=

= Note: The Callback URL does not have to be a valid URL; it only has to match what the app expects in this
field. You can use any custom prefix, such as sfdc://.

[

7. For Contact Email, enter your email address.

8. For Selected OAuth Scopes, choose the permissions settings for your app. For descriptions, see Scope Parameter

Values.
9. Click Save.

123

https://help.salesforce.com/HTViewHelpDoc?id=remoteaccess_oauth_scopes.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=remoteaccess_oauth_scopes.htm&language=en_US

Authentication, Security, and Identity in Mobile Apps Connected Apps

= Note: After you create a new connected app, wait a few minutes for the token to propagate before running your app.

..; Tip: The detail page for your connected app displays a consumer key. It’s a good idea to copy the key, as you'll need
- it later.

Connected Apps

A Connected App is an application that integrates with salesforce.com using APIs. Connected Apps use standard SAML and
OAuth protocols to authenticate, provide Single Sign-On, and provide tokens for use with Salesforce APIs. In addition to
standard OAuth capabilities, Connected Apps allow administrators to set various security policies and have explicit control

over who may use the applications.

Connected Apps begin with a developer defining OAuth metadata about the application, including:

« Basic descriptive and contact information for the Connected App
« The OAuth scopes and callback URL for the Connected App
« Optional IP ranges where the Connected App might be running

« Optional information about mobile policies the Connected App can enforce

In return, the developer is provided an OAuth client Id and client secret for the Connected App. The developer can then
package the app and provide it to a Salesforce administrator.

The administrator can install the Connected App into their organization and use profiles, permission sets, and IP range
restrictions to control which users can access the application. Management is done from a detail page for the Connected App.
The administrator can also uninstall the Connected App and install a newer version. When the app is updated, the developer
can notify administrators that there is a new version available for the app.

About PIN Security

Salesforce Connected Apps have an additional layer of security via PIN protection on the app. This PIN protection is for the
mobile app itself, and isn’t the same as the PIN protection on the device or the login security provided by the Salesforce

organization.

In order to use PIN protection, the developer must select the Implements Screen Locking & Pin Protection checkbox when
creating the Connected App. Mobile app administrators then have the options of enforcing PIN protection, customizing
timeout duration, and setting PIN length.

% Note: Because PIN security is implemented in the mobile device’s operating system, only native and hybrid mobile
apps can use PIN protection; HTMLS5 Web apps can’t use PIN protection.

In practice, PIN protection can be used so that the mobile app locks up if it’s isn’t used for a specified number of minutes.
When a mobile app is sent to the background, the clock continues to tick.

To illustrate how PIN protection works:

1. User turns on phone and enters PIN for the device.
2. User starts mobile app (Connected App).

124

Authentication, Security, and Identity in Mobile Apps OAuth2 Authentication Flow

User enters login information for Salesforce organization.

User enters PIN code for mobile app.

User works in the app, then sends it to the background by opening another app (or receiving a call, and so on).
The mobile app times out.

User re-opens the app, and the app PIN screen displays (for the mobile app, not the device).

® NS RW

User enters app PIN and can resume working.

OAuth2 Authentication Flow

The authentication flow depends on the state of authentication on the device.

First Time Authentication Flow

User opens a mobile application.

An authentication dialog/window/overlay appears.
User enters username and password.

App receives session 1D.

User grants access to the app.

AN e o

App starts.

Ongoing Authentication

1. User opens a mobile application.

2. If the session ID is active, the app starts immediately. If the session ID is stale, the app uses the refresh token from its
initial authorization to get an updated session ID.

3. App starts.

PIN Authentication (Optional)

1. User opens a mobile application after not using it for some time.
2. If the elapsed time exceeds the configured PIN timeout value, a passcode entry screen appears. User enters the PIN.

5 Note: PIN protection is a function of the mobile policy and is used only when it’s enabled in the Salesforce
connected app definition. It can be shown whether you are online or offline, if enough time has elapsed since you
last used the application. See About PIN Security on page 124.

3. App re-uses existing session ID.

4. App starts.

OAuth 2.0 User-Agent Flow

The user-agent authentication flow is used by client applications residing on the user’s mobile device. The authentication is
based on the user-agent’s same-origin policy.

In the user-agent flow, the client application receives the access token in the form of an HT'TP redirection. The client
application requests the authorization server to redirect the user-agent to another web server or local resource accessible to the
user-agent, which is capable of extracting the access token from the response and passing it to the client application. Note

125

Authentication, Security, and Identity in Mobile Apps OAuth 2.0 Refresh Token Flow

that the token response is provided as a hash (#) fragment on the URL. This is for security, and prevents the token from being
passed to the server, as well as to other servers in referral headers.

This user-agent authentication flow doesn't utilize the client secret since the client executables reside on the end-user's computer
or device, which makes the client secret accessible and exploitable.

Warning: Because the access token is encoded into the redirection URI, it might be exposed to the end-user and
other applications residing on the computer or device.

If you are authenticating using JavaScript, call window.location.replace () ; to remove the callback from the
browser’s history.

Consumer Salesforce
Directs user to
Salesforce.com User logs in

Authorization Endpaoint .

User approves page
. Redirected

l

Access protected
resgurces

1. The client application directs the user to Salesforce to authenticate and authorize the application.

2. The user must always approve access for this authentication flow. After approving access, the application receives the
callback from Salesforce.

After obtaining an access token, the consumer can use the access token to access data on the end-user’s behalf and receive a
refresh token. Refresh tokens let the consumer get a new access token if the access token becomes invalid for any reason.

OAuth 2.0 Refresh Token Flow

After the consumer has been authorized for access, they can use a refresh token to get a new access token (session ID.) This
is only done after the consumer already has received a refresh token using either the Web server or user-agent flow. It is up
to the consumer to determine when an access token is no longer valid, and when to apply for a new one. Bearer flows can only
be used after the consumer has received a refresh token.

The following are the steps for the refresh token authentication flow. More detail about each step follows:

1. The consumer uses the existing refresh token to request a new access token.

2. After the request is verified, Salesforce sends a response to the client.

126

Authentication, Security, and Identity in Mobile Apps Scope Parameter Values
#® Note:
.~ Mobile SDK apps can use the SmartStore feature to store data locally for offline use. SmartStore data is inherently

volatile. Its lifespan is tied to the authenticated user as well as to OAuth token states. When the user logs out of the
app, SmartStore deletes all soup data associated with that user. Similarly, when the OAuth refresh token is revoked
or expires, the user’s app state is reset, and all data in SmartStore is purged. Carefully consider the volatility of
SmartStore data when designing your app. This warning is especially important if your org sets a short lifetime for
the refresh token.

Scope Parameter Values

The scope parameter enables you to fine-tune what the client application can access in a Salesforce organization. The valid
values for scope are:

api Allows access to the current, logged-in user’s account over the APIs, such as the REST API
or Bulk API. This also includes the chatter api, allowing access to Chatter API resources.

chatter api Allows access to only the Chatter API resources.

full Allows access to all data accessible by the logged-in user. full does not return a refresh
token. You must explicitly request the refresh token scope to get a refresh token.

id Allows access only to the identity URL service.

refresh token Allows a refresh token to be returned if you are eligible to receive one.

visualforce Allows access to Visualforce pages.

web Allows the ability to use the access_token on the Web. This also includes visualforce,

allowing access to Visualforce pages.

Using Identity URLs

In addition to the access token, an identity URL is also returned as part of a token response, in the id parameter.

The identity URL is both a string that uniquely identifies a user, as well as a RESTful API that can be used to query (with a
valid access token) for additional information about the user. Salesforce returns basic personalization information about the
user, as well as important endpoints that the client can talk to, such as photos for the user, and API endpoints it can access.

The format of the URL is: https://login.salesforce.com/id/orgID/userID, where orgIdis the ID of the
Salesforce organization that the user belongs to, and userIDis the Salesforce user ID.

8 Note: For Sandbox, login.salesforce.comis replaced with test.salesforce.com.

.~ The URL must always be HTTPS.

127

Authentication, Security, and Identity in Mobile Apps OAuth2 Authentication Flow

Identity URL Parameters

The following parameters can be used with the access token and identity URL. They are used in an authorization request

header or in a request with the cauth token parameter. For more details, see “Using the Access Token” in the Salesforce
Help.

Access token See “Using the Access Token” in the Salesforce Help.

Format This parameter is optional. Specify the format of the returned
output. Valid values are:

e urlencoded
e Jjson

e xml

Instead of using the format parameter, the client can also
specify the returned format in an accept-request header using
one of the following:

« Accept: application/json
e Accept: application/xml

e Accept: application/x-www-form-urlencoded
Note the following:

« Wildcard accept headers are allowed. */* is accepted and
returns JSON.

« Alist of values is also accepted and is checked left-to-right.
For example:
application/xml, application/Json, application/html, */*
returns XML.

« The format parameter takes precedence over the accept
request header.

Version This parameter is optional. Specify a SOAP API version
number, or the literal string, latest. If this value isn’t
specified, the returned API URLSs contains the literal value
{version}, in place of the version number, for the client to
do string replacement. If the value is specified as 1atest, the
most recent API version is used.

PrettyPrint This parameter is optional, and is only accepted in a header,
not as a URL parameter. Specify the output to be better
formatted. For example, use the following in a header:
X-PrettyPrint:1.If this value isn’t specified, the returned
XML or JSON is optimized for size rather than readability.

Callback This parameter is optional. Specify a valid JavaScript function
name. This parameter is only used when the format is specified
as JSON. The output is wrapped in this function name
(JSONP.) For example, if a request to
https://server/id/orgid/userid/ returns
{"foo":"bar"}, arequest to

128

Authentication, Security, and Identity in Mobile Apps OAuth2 Authentication Flow

https://server/id/orgid/userid/?callback=baz
returns baz ({"foo" :"bar"}) ;.

Identity URL Response

After making a valid request, a 302 redirect to an instance URL is returned. That subsequent request returns the following
information in JSON format:

« id—The identity URL (the same URL that was queried)

+ asserted user—A boolean value, indicating whether the specified access token used was issued for this identity
« user_id—The Salesforce user ID

. username—The Salesforce username

« organization id—The Salesforce organization ID

+ nick_name—The community nickname of the queried user

« display name—The display name (full name) of the queried user

+ email—The email address of the queried user

« status—The user’s current Chatter status.

0 created date:xsd datetime value of the creation date of the last post by the user, for example,
2010-05-08T05:17:51.000Z
0 body: the body of the post

+ photos—A map of URLSs to the user’s profile pictures

= Note: Accessing these URLSs requires passing an access token. See “Using the Access Token” in the Salesforce
Help.

0 picture
0 thumbnail

+ urls—A map containing various API endpoints that can be used with the specified user.

o Note: Accessing the REST endpoints requires passing an access token. See “Using the Access Token” in the
Salesforce Help.

L

enterprise (SOAP)
metadata (SOAP)
partner (SOAP)
profile

feeds (Chatter)
feed-items (Chatter)
groups (Chatter)
users (Chatter)

custom_domain—This value is omitted if the organization doesn’t have a custom domain configured and propagated

ST

« active—A boolean specifying whether the queried user is active
« user_ type—The type of the queried user
« language—The queried user’s language

« locale—The queried user’s locale

129

Authentication, Security, and Identity in Mobile Apps OAuth2 Authentication Flow

« utcOffset—The offset from UTC of the timezone of the queried user, in milliseconds
+ last modified date—xsd datetime format oflast modification of the user, for example, 2010-06-28120:54:09.000Z

The following is a response in XML format:

<?xml version="1.0" encoding="UTF-8"?>

<user xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<id>http://nal.salesforce.com/id/00Dx0000001T0zk/005x0000001S2b9</id>

<asserted user>true</asserted user>

<user 1d>005x0000001S2b9</user id>

<organization id>00Dx0000001T0zk</organization id>

<nick name>adminl.2777578168398293E12foofoofoofoo</nick name>

<display name>Alan Van</display name>

<email>admin@2060747062579699.com</email>

<status>
<created date xsi:nil="true"/>
<body xsi:nil="true"/>

</status>

<photos>
<picture>http://nal.salesforce.com/profilephoto/005/F</picture>
<thumbnail>http://nal.salesforce.com/profilephoto/005/T</thumbnail>

</photos>

<urls>
<enterprise>http://nal.salesforce.com/services/Soap/c/{version}/00Dx0000001T0zk
</enterprise>
<metadata>http://nal.salesforce.com/services/Soap/m/{version}/00Dx0000001T0zk
</metadata>
<partner>http://nal.salesforce.com/services/Soap/u/{version}/00Dx0000001T0zk
</partner>
<rest>http://nal.salesforce.com/services/data/v{version}/
</rest>
<sobjects>http://nal.salesforce.com/services/data/v{version}/sobjects/
</sobjects>
<search>http://nal.salesforce.com/services/data/v{version}/search/
</search>
<query>http://nal.salesforce.com/services/data/v{version}/query/
</query>
<profile>http://nal.salesforce.com/005x000000152b9%
</profile>

</urls>

<active>true</active>

<user type>STANDARD</user type>

<language>en US</language>

<locale>en_US</locale>

<utcOffset>-28800000</utcOffset>

<last modified date>2010-06-28T20:54:09.0002</last modified date>

</user>

The following is a response in JSON format:

{"id":"http://nal.salesforce.com/1id/00Dx0000001T0zk/005x0000001S2b9",

"asserted user":true,

"user i1d":"005x0000001S2b9",

"organization 1d":"00Dx0000001TOzk",

"nick name":"adminl.2777578168398293E12foofoofoofoo",

"display name":"Alan Van",

"email":"admin@2060747062579699.com",

"status":{"created date":null, "body":null},

"photos": {"picture":"http://nal.salesforce.com/profilephoto/005/F",
"thumbnail"™:"http://nal.salesforce.com/profilephoto/005/T"},

"urls":
{"enterprise":"http://nal.salesforce.com/services/Soap/c/{version}/00Dx0000001TOzk",
"metadata":"http://nal.salesforce.com/services/Soap/m/{version}/00Dx0000001T0zk",
"partner":"http://nal.salesforce.com/services/Soap/u/{version}/00Dx0000001T0zk",
"rest":"http://nal.salesforce.com/services/data/v{version}/",

130

Authentication, Security, and Identity in Mobile Apps Setting a Custom Login Server

"sobjects":"http://nal.salesforce.com/services/data/v{version}/sobjects/",
"search":"http://nal.salesforce.com/services/data/v{version}/search/",
"query":"http://nal.salesforce.com/services/data/v{version}/query/",
"profile":"http://nal.salesforce.com/005x0000001S2b9"},

"active":true,

"user type":"STANDARD",

"language":"en US",

"locale":"en US",

"utcOffset":-28800000,

"last modified date":"2010-06-28T20:54:09.000+0000"}

After making an invalid request, the following are possible responses from Salesforce:

HTTP 403 (forbidden) — HTTPS_Required
Missing access token 403 (forbidden) — Missing OAuth_Token
Invalid access token 403 (forbidden) — Bad_OAuth_Token
Users in a different organization 403 (forbidden) — Wrong_Org

Invalid or bad user or organization ID 404 (not found) — Bad_Id

Deactivated user or inactive organization 404 (not found) — Inactive

User lacks proper access to organization or information 404 (not found) — No_Access

Request to the endpoint of a site 404 (not found) — No_Site_Endpoint
Invalid version 406 (not acceptable) — Invalid_Version
Invalid callback 406 (not acceptable) — Invalid_Callback

Setting a Custom Login Server

For special cases--for example, if you're a Salesforce partner using Trialforce--you might need to redirect your customer login
requests to a non-standard login URI. For iOS apps, you set the Custom Host in your app’s iOS settings bundle. If you've
configured this setting, it will be used as the default connection.

In Android, login hosts are known as server connections. Prior to Mobile SDK v. 1.4, server connections for Android apps
were hard-coded in the SalesforceSDK project. In v. 1.4 and later, the host list is defined in the res/xml/servers.xml
file. The SalesforceSDK library project uses this file to define production and sandbox servers.

You can add your servers to the runtime list by creating your own res/xml/servers.xml file in your application project.
The root XML element for this file is <servers>. This root can contain any number of <server> entries. Each <server>
entry requires two attributes: name (an arbitrary human-friendly label) and url (the web address of the login server.)

Here’s an example of a servers.xml file.

<?xml version="1.0" encoding="utf-8"?>
<servers>

<server name="XYZ.com Login" url="https://<username>.cloudforce.com"/>
</servers>

131

Authentication, Security, and Identity in Mobile Apps Revoking OAuth Tokens

Server Whitelisting Errors

If you get a whitelist rejection error, you'll need to add your custom login domain to the ExternalHosts list for your project.
This list is defined in the <project name>/<platform path>/config.xml file. Add those domains (e.g. cloudforce.com)
to the app’s whitelist in the following files:

For Mobile SDK 2.0:

. i0S: /supporting Files/config.xml
« Android: /res/xml/config.xml

Revoking OAuth Tokens

When a user logs out of an app, or the app times out or in other ways becomes invalid, the logged-in users’ credentials are
cleared from the mobile app. This effectively ends the connection to the server. Also, Mobile SDK revokes the refresh token
from the server as part of logout.

Revoking Tokens

To revoke OAuth 2.0 tokens, use the revocation endpoint:
https://login.salesforce.com/services/oauth2/revoke

Construct a POST request that includes the following parameters using the application/x-www-form-urlencoded
format in the HTTP request entity-body. For example:

POST /revoke HTTP/1.1
Host: https://login.salesforce.com/services/oauth2/revoke
Content-Type: application/x-www-form-urlencoded

token=currenttoken
If an access token is included, we invalidate it and revoke the token. If a refresh token is included, we revoke it as well as any
associated access tokens.

The authorization server indicates successful processing of the request by returning an HT'TP status code 200. For all error
conditions, a status code 400 is used along with one of the following error responses.

+ unsupported token type—token type not supported

« invalid token—the token was invalid

For Sandbox, use test.salesforce.cominstead of login.salesforce.com.

Handling Refresh Token Revocation in Android Native Apps

Beginning with Salesforce Mobile SDK version 1.5, native Android apps can control what happens when a refresh token is
revoked by an administrator. The default behavior in this case is to automatically log out the current user. As a result of this
behavior:

« Any subsequent REST API calls your app makes will fail.
« The system discards your user’s account information and cached offline data.
« The system forces the user to navigate away from your page.

« The user must log into Salesforce again to continue using your app.

132

Authentication, Security, and Identity in Mobile Apps OAuth2 Authentication Flow

These side effects provide a secure response to the administrator’s action, but they might or might not be suitable for your
application. In your code you can choose whether to accept the default behavior or implement your own response. In either
case, continue reading to determine whether you need to adapt your code.

Token Revocation Events

When a token revocation event occurs, the ClientManager object sends an Android-style notification. The intent action
for this notification is declared in the ClientManager .ACCESS TOKEN REVOKE INTENT constant.
TokenRevocationReceiver, a utility class, is designed to respond to this intent action. To provide your own handler,
you'll extend this class and override the onReceive () method. See Token Revocation: Active Handling.

SalesforceActivity.java, SalesforcelistActivity.java, SalesforceExpandablelistActivity.java,
and SalesforceDroidGapActivity.javaimplement ACCESS TOKEN REVOKE INTENT event listeners. These listeners
automatically take logged out users to the login page when the refresh token is revoked. A toast message notifies the user of
this occurrence.

Token Revocation: Passive Handling

You can let the SDK handle all token revocation events with no active involvement on your part. However, even if you take
this passive approach, you might still need to change your code. You do not need to change your code if:

+ Your app contains any services, or

« All of your activities extend SalesforceActivity, SalesforceListActivity, or
SalesforceExpandablelListActivity.

If your app fails to satisfy at least one of these conditions, implement the following code changes.

1. (For legacy apps written before the Mobile SDK 1.5 release) In the ClientManager constructor, set the
revokedTokenShouldLogout parameter to true.

o Note: This step is not necessary for apps that are new in Mobile SDK 1.5 or later.

2. In any activity that does not extend SalesforceActivity, SalesforceListActivity, or
SalesforceExpandablelListActivity, amend the code as follows.

a. Declare a new variable:
private TokenRevocationReceiver tokenRevocationReceiver;

b. In the onCreate () method add the following code:
tokenRevocationReceiver = new TokenRevocationReceiver (this) ;

c. In the onResume () method add the following code:

registerReceiver (tokenRevocationReceiver, new
IntentFilter (ClientManager.ACCESS TOKEN REVOKE INTENT)) ;

d. In the onPause () method add the following code:

unregisterReceiver (tokenRevocationReceiver) ;

133

Authentication, Security, and Identity in Mobile Apps Portal Authentication Using OAuth 2.0 and Force.com Sites

Token Revocation: Active Handling

If you choose to implement your own token revocation event handler, be sure to fully analyze the security implications of your
customized flow, and then test it thoroughly. Be especially careful with how you dispose of cached user data. Because the user’s
access has been revoked, that user should no longer have access to sensitive data.

To provide custom handling of token revocation events:

1. The starting point for implementing your own response is the
SalesforceSDKManager.shouldLogoutWhenTokenRevoked () method. By default, this method returns true.
Override this method to return false in your SalesforceSDKManager subclass.

@Override
public boolean shouldLogoutWhenTokenRevoked () {
return false;

}

2. The ClientManager constructor provides a boolean parameter, revokedTokenShouldLogout. Set this parameter to
false. You can do this by calling shouldLogoutWhenTokenRevoked () on your SalesforceSDKManager subclass.

3. Implement your handler by extending TokenRevocationReceiver and overriding the onReceive () method.

4. Regardless of whether your activity subclasses SalesforceActivity, perform step 2 in Token Revocation: Passive
Handling on page 133.

Portal Authentication Using OAuth 2.0 and Force.com Sites

The Salesforce Spring '13 Release adds enhanced flexibility for portal authentication. If your app runs in a Salesforce portal,
you can use OAuth 2.0 with a Force.com site to obtain API access tokens on behalf of portal users. In this configuration you
can

« Authenticate portal users via Auth providers and SAML, rather than a SOAP API login () call
« Avoid handling user credentials in your app

« Customize the login screen provided by the Force.com site

Here's how to get started.

1. Associate a Force.com site with your portal. The site generates a unique URL for your portal. See Associating a Portal
with Force.com Sites.

2. Create a custom login page on the Force.com site. See Managing Force.com Site Login and Registration Settings.

3. Use the unique URL that the site generates as the redirect domain for your users' login requests.

The OAuth2 service recognizes your custom host name and redirects the user to your Site login page if the user is not yet
authenticated.

For example, rather than redirecting to https://login.salesforce. com:

https://login.salesforce.com/services/oauth2/authorize?response type=
code&client id=<your client id>&redirect uri=<your redirect uri>

134

http://help.salesforce.com/help/doc/en/sites_customer_portal_setup.htm
http://help.salesforce.com/help/doc/en/sites_customer_portal_setup.htm
http://help.salesforce.com/help/doc/en/sites_login_and_registration_settings.htm

Authentication, Security, and Identity in Mobile Apps Portal Authentication Using OAuth 2.0 and Force.com Sites

redirect to your unique Force.com Site url, such as https://mysite.secure.force.com:

https://mysite.secure.force.com/services/oauth2/authorize?response type=
code&client id=<your client id>&redirect uri=<your redirect uri>

For more information and a demonstration video, see OAuth for Portal Users on the Force.com Developer Relations Blogs
page.

135

http://blogs.developerforce.com/developer-relations/2013/02/oauth-for-portal-users.html

Chapter 9

Migrating from the Previous Release

In this chapter ... Ifyou developed code with Salesforce Mobile SDK 1.5, follow these instructions
to update your app to version 2.0.

* Migrating Android Applications
* Migrating iOS Applications

136

Migrating from the Previous Release Migrating Android Applications

Migrating Android Applications

Perform these tasks to upgrade your Android applications from Salesforce Mobile SDK 1.5.3 to version 2.0.0.

Upgrading Native Android Apps

« Inyour app’s Eclipse workspace, replace the existing SalesforceSDK project with the 2.0 SalesforceSDK project. If your
app uses SmartStore, replace the existing SmartStore project in Eclipse with the 2.0 SmartStore project.

1. Right-click your project and select Properties.

2. Click the Android tab and replace the existing SalesforceSDK entry at the bottom (in the library project section) with
the new SalesforceSDK project in your workspace. Repeat this step with the SmartStore project if your app uses
SmartStore.

« Change your class that extends ForceApp or ForceAppWithSmartStore to extend Application instead. We'll call
this class SampleApp in the remaining steps.

« Create a new class that implements KeyInterface. Name it KeyImpl (or another name of your choice.) Move the
getKey () implementation from SampleApp into KeyImpl.

. We've renamed ForceApp to SalesforceSDKManager and ForceAppWithSmartStore to
SalesforceSDKManagerWithSmartStore.

0 Replace all occurrences of Forceapp with SalesforceSDKManager
0 Replace all occurrences of ForceAppWithSmartStore with SalesforceSDKManagerWithSmartStore.
0 Update the app's class imports to reflect this change.

0 Replace all occurrences of ForceApp . APP with SalesforceSDKManager.getInstance ().

0 Replace all occurrences of ForceAppWithSmartStore.APP with
SalesforceSDKManagerWithSmartStore.getInstance ().

« Inthe onCreate () method of SampleApp, add the following line of code.

SalesforceSDKManager.initNative (getApplicationContext (), new KeyImpl (),
<mainActivityClass>.class);

where <mainActivityClass> is the class to be launched when the login flow completes.
= Note:

0 If your app supplies its own login activity, you can pass it as an additional argument to the initNative ()
method call.

0 Ifyour app uses SmartStore, call initNative () on SalesforceSDKManagerWithSmartStore instead
of SalesforceSDKManager.

- Remove overridden methods of ForceApp from SampleApp, such as getKey (), getMainActivityClass (), and
any other overridden methods.

+ You're no longer required to create a LoginOptions object. The Salesforce Mobile SDK now automatically reads these
options from an XML file, bootconfig.xml, which resides in the res/values folder of your project.

137

Migrating from the Previous Release Migrating Android Applications

0 Create a file called bootconfig. xml under the res/values folder of your project. Move your app's login options
configuration from code to bootconfig.xml. See res/values/bootconfig.xml in the SalestorceSDK project
or in one of the sample native apps for an example.

+ NativeMainActivity has been renamed to SalesforceActivity and moved to a new package named
com.salesforce.androidsdk.ui.sfnative.

0 Ifany of your app's classes extend NativeMainActivity, replace all references to NativeMainActivity with
SalesforceActivity.

0 Update the app's class imports to reflect this change.

« We've moved SmartStore to a new package named com.salesforce.androidsdk.smartstore. If your app uses
SmartStore project, update the app's class imports and other code references to reflect this change.

Upgrading Hybrid Android Apps

« Inyour app’s Eclipse workspace, replace the existing SalesforceSDK project with the 2.0 SalesforceSDK project. If your
app uses SmartStore, replace the existing SmartStore project in Eclipse with the 2.0 SmartStore project.

1. Right-click your project and select Properties.

2. Click the Android tab and replace the existing SalesforceSDK entry at the bottom (in the library project section) with
the new SalesforceSDK project in your workspace. Repeat this step with the SmartStore project if your app uses
SmartStore.

« Change your class that extends ForceApp or ForceAppWithSmartStore to extend Application instead. We'll call
this class SampleApp in the remaining steps.

« Create a new class that implements KeyInterface. Name it KeyImpl (or any other name of your choice.) Move the
getKey () implementation from SampleApp into KeyImpl.

.« We've renamed ForceApp to SalesforceSDKManager and ForceAppWithSmartStore to
SalesforceSDKManagerWithSmartStore.

0 Replace all occurrences of ForceApp with SalesforceSDKManager
Replace all occurrences of ForceAppWithSmartStore with SalesforceSDKManagerWithSmartStore.
Update the app's class imports to reflect this change.

0
0
0 Replace all occurrences of ForceApp . APP with SalesforceSDKManager.getInstance ().
0

Replace all occurrences of ForceAppWithSmartStore.APP with
SalesforceSDKManagerWithSmartStore.getInstance ().

« Inthe onCreate () method of SampleApp, add the following line of code.

SalesforceSDKManager.initHybrid (getApplicationContext (), new KeyImpl())

@ Note:

0 Ifyour app supplies its own login activity, you can pass it as an additional argument to the initHybrid ()
method call.

0 If your app uses SmartStore, call initHybrid () on SalesforceSDKManagerWithSmartStore instead
of SalesforceSDKManager.

138

Migrating from the Previous Release Migrating iOS Applications

. Remove overridden methods of ForceApp from SampleApp, such as getKey (), getMainActivityClass (), and
any other overridden methods.

« You're no longer required to create a LoginOptions object. The Salesforce Mobile SDK now automatically reads these
options from an XML file, bootconfig.xml, which resides in the res/values folder of your project.

0 Create a file called bootconfig. xml under the res/values folder of your project. Move your app's login options
configuration from code to bootconfig.xml. See res/values/bootconfig.xml in the SalesforceSDK project
or in one of the sample native apps for an example.

+ NativeMainActivity has been renamed to SalesforceActivity and moved to a new package named
com.salesforce.androidsdk.ui.sfnative.

0 Ifany of your app's classes extend NativeMainActivity, replace all references to NativeMainActivity with
SalesforceActivity.

0 Update the app's class imports to reflect this change.

« We've moved SmartStore to a new package named com. salesforce.androidsdk. smartstore. If your app uses the
SmartStore project, update the app's class imports and other code references to reflect this change.

« We've replaced bootconfig. js with bootconfig. json. Convert your existing bootconfig.js to the new
bootconfig.json format. See the hybrid sample apps for examples.

« The SalesforceSDK Cordova plugins—SFHybridApp.Js, cordova. force.Js, and
SalesforceOAuthPlugin.js—have been combined into a single file named filecordova.force.js.

0 Replace these Cordova plugin files with cordova. force. js.

0 Replace all references to SFHybridApp.js, cordova. force.js, and SalesforceOAuthPlugin.js with
cordova.force.js.

« forcetk.js has now been renamed to forcetk.mobilesdk.js. Replace the existing copy of forcetk. js with the
latest version of forcetk.mobilesdk.js. Update all references to forcetk.js to the new name.
« Thebootstrap.html file is no longer required and can safely be removed.

« We've moved SalesforceDroidGapActivity and SalesforceGapViewClient to a new package named
com.salesforce.androidsdk.ui.sfhybrid. If your app references these classes, update those references and related
class imports.

Migrating iOS Applications

Perform these tasks to upgrade your iOS applications from Salesforce Mobile SDK 1.5 to version 2.0.

Upgrading Native iOS Apps
As with all upgrades, you have two choices for upgrading your existing app:

+ Create a new project using the Mobile SDK 2.0 template app for your app type (native, hybrid), then move your existing
code and artifacts into the new app.
+ Incorporate Mobile SDK 2.0 artifacts into your existing app.

For 2.0, we strongly recommend that you take the first approach. Even if you opt for the second approach, you can profit from
creating a sample app to see the change of work flow in the AppDelegate class. For both native and hybrid cases, the parent

139

Migrating from the Previous Release Migrating iOS Applications

app delegate classes—SFNativeRestAppDelegate and SFContainerAppDelegate, respectively—are no longer supported.
Your app's AppDelegate class now orchestrates the startup process.

+ Remove SalesforceHybridSDK. framework, which has been replaced.

- Update your Mobile SDK library and resource dependencies, from the SalesforceMobileSDK-1OS-Package repo.

Remove SalesforceSDK

Add salesforceNativeSDK (in the Dependencies/ folder)

Add salesforceSDKCore (in the Dependencies/ folder)

Update SalesforceOauth (in the Dependencies/ folder)

Update SalesforceSDKResources.bundle (in the Dependencies/ folder)

Update RestKit (in the Dependencies/ThirdParty/RestKit/ folder)

Update SalesforceCommonUtils (in the Dependencies/ThirdParty/SalesforceCommonUtils folder)

Update openssl (1ibcrypto.a and 1ibssl.a, in the Dependencies/ThirdParty/openssl folder)

(e R > R e IS 2 >

Update sqlcipher (in the Dependencies/ThirdParty/sqlcipher folder)

« Update your AppDelegate class. Make your AppDelegate.h and AppDelegate.m files conform to the new design
patterns. Here are some key points:

0 InappDelegate.h, AppDelegate should no longer inherit from SFNativeRestAppDelegate.

0 InAppDelegate.m, AppDelegate now has primary responsibility for navigating the auth flow and root view controller
staging. It also handles boundary events when the user logs out or switches login hosts.

= Note: The design patterns in the new AppDelegate are just suggestions. Mobile SDK no longer requires a
specific flow. Use an authentication flow (with the updated SFAuthenticationManager singleton) that
suits your needs, relative to your app startup and boundary use cases.)

0 The only prerequisites for using authentication are the SFAccountManager configuration settings at the top of
[AppDelegate init].Make sure that those settings match the values specified in your connected app. Also, make
sure that this configuration is set before the first call to [SFAuthenticationManager
loginWithCompletion:failure:].

Upgrading Hybrid iOS Apps

In Mobile SDK 2.0, hybrid configuration during bootstrap moves to native code. Take alook at SFHybridViewController
to see the new configuration. (You can also see this change in AppDelegate in the hybrid template app.)

New app templates are now available through the forceios NPM package. To install the templates, first install node.js. See
the forceios README at npmjs.org for more information on installing the templates and using them to create apps.

Even if you're not porting your previous contents into a 2.0 application shell, it's still a good idea to create a new hybrid app
from the template and follow along.

+ Remove SalesforceHybridSDK. framework. We've replaced this project.

« Update your Mobile SDK library and resource dependencies from the SalesforceMobileSDK-iOS-Package repo. The
following modules are new additions to your Mobile SDK 1.5 application.

¢ SalesforceHybridSDK (in the Dependencies/ folder)
¢ SalesforceOAuth (in the Dependencies/ folder)

¢ SalesforceSDKCore (in the Dependencies/ folder)

140

https://github.com/forcedotcom/SalesforceMobileSDK-iOS-Package
https://npmjs.org
https://github.com/forcedotcom/SalesforceMobileSDK-iOS-Package

Migrating from the Previous Release Migrating iOS Applications

SalesforceSDKResources.bundle (in the Dependencies/ folder)

Cordova (in the Dependencies/Cordova/ folder)

SalesforceCommonUtils (in the Dependencies/ThirdParty/SalesforceCommonUtils folder)
openssl (libcrypto.a and 1ibssl.a, in the Dependencies/ThirdParty/openssl folder)

sqlcipher (in the Dependencies/ThirdParty/sqglcipher folder)

(R N = R > e

libxml2.dylib (System library)

« Update hybrid dependencies in your app's www/ folder.

o Note: If you're updating a Visualforce app, only the bootconfig. js change is required. Your hybrid app does

not use the other files.
—

Migrate your bootconfig.js configuration to the new bootconfig.json format.

Remove SalesforceOAuthPlugin.js, SFHybridApp.Jjs, cordova.force.js, and forcetk.s.
If you're not using them, you can remove SFTestRunnerPlugin.js, qunit.css, and qunit.js.
Add cordova. force.js (in the HybridShared/libs/ folder).

If you're using forceTk, add forcetk.mobilesdk.js (in the HybridShared/libs/ folder).

If you're using jQuery, update jQuery (in the HybridShared/external/ folder).

Add smartSync.s (in the HybridShared/1libs/ folder).

(e IR >R~ I~ e IR R v

Addbackbone-1.0.0.min.jsandunderscore-1.4.4.min.Jjs (inthe HybridShared/external/backbone/
folder).

Add jQuery if you haven't already (in the HybridShared/external/jquery/ folder).

<

If you'd like to use the new SmartSync Data Framework:

- Add smartsync.js (in the HybridShared/libs/ folder).

- Addbackbone-1.0.0.min.Js and underscore-1.4.4.min.7s (in the
HybridShared/external/backbone/ folder).

- Ifyou haven’t already, add jQuery, (in the HybridShared/external/jquery/ folder).

« Update your AppDelegate—Make your AppDelegate.hand AppDelegate . mfiles conform to the new design patterns.
If you've never changed your AppDelegate class, you can simply copy the new template app’s AppDelegate.h and
AppDelegate.m files over the old ones. Here are some key points:

¢ InAppDelegate.h:

- AppDelegate no longer inherits SFContainerAppDelegate.

- There's a new viewController property on SFHybridViewController.

0 InaAppDelegate.m, AppDelegate now assumes primary responsibility for navigating the bootstrapping and
authentication flow. This responsibility includes handling boundary events when the user logs out or switches login
hosts.

141

Chapter 10

Reference

In this chapter ...

REST API Resources
10S Architecture
Android Architecture

Reference documentation is hosted on GitHub

For iOS: http://forcedotcom.github.com/SalesforceMobileSDK-10S/
Documentation/SalesforceSDK/index.html

For Android:
http://forcedotcom.github.com/SalesforceMobileSDK-Android/index.html

142

http://forcedotcom.github.com/SalesforceMobileSDK-iOS/Documentation/SalesforceSDK/index.html
http://forcedotcom.github.com/SalesforceMobileSDK-iOS/Documentation/SalesforceSDK/index.html
http://forcedotcom.github.com/SalesforceMobileSDK-Android/index.html

Reference REST API Resources

REST API Resources

The Salesforce Mobile SDK simplifies using the REST API by creating wrappers. All you need to do is call a method and
provide the correct parameters; the rest is done for you. This table lists the resources available and what they do. For more
information, see the REST API Developer’s Guide.

Versions / Lists summary information about each Salesforce
version currently available, including the version,
label, and a link to each version's root.

Resources /vxx.x/ Lists available resources for the specified API version,
by including resource name and URI.

Version

Describe /vXX.X/sobjects/ Lists the available objects and their metadata for your
Global organization's data.

SObject /vXX.X/sobjects/SObject/ Describes the individual metadata for the specified
Basic object. Can also be used to create a new record for
Information a given object.

SObject /vXX.X/sobjects/SObject/describe/ Completely describes the individual metadata at all
Describe levels for the specified object.

SObject /vXx.X/sobjects/SObject/id/ Accesses records based on the specified object ID.
Rows Retrieves, updates, or deletes records. This resource

can also be used to retrieve field values.

SObject /vxX.X/sobjects/SobjectName/fieldName/fieldValue Creates new records or updates existing records

Rows by (upserts records) based on the value of a specified
External external ID field.

1D

SObject Set, reset, or get information about a user password.

U /VXX.X/sobjects/User/user id/password
ser

Password /vXX.X/sobjects/SelfServiceUser/self service
user id/password

Query /vXX.X/query/?g=soql Executes the specified SOQL query.

Search /vXX.X/search/?s=sosl Executes the specified SOSL search. The search
string must be URL-encoded.

iOS Architecture

At a high level, the current facilities that the native SDK provides to consumers are:

143

http://developer.force.com/REST

Reference Native iOS Objects

« OAuth authentication capabilities
« REST API communication capabilities

« SmartStore secure storage and retrieval of app data
8 Note: SmartStore is not currently exposed to native template apps, but is included in the binary distribution.
e
The Salesforce native SDK is essentially one library, with dependencies on (and providing exposure to) the following additional
libraries:
+ libRestKit.a — Third-party underlying libraries for facilitating REST API calls.
0 RestKit in turn depends on 1ibxm12.dylib, which is part of the standard iOS development environment

+ libSalesforceOAuth.a — Underlying libraries for managing OAuth authentication.

« libsglite3.dylib— Library providing access to SQLite capabilities. This is also a part of the standard iOS development
environment.

+ fmdb — Objective-C wrapper around SQLite.
= Note: This wrapper is not currently exposed to native template apps, but is included in the binary distribution.

|

Native iOS Objects

The following objects let you access Salesforce data in your native app:

+ SFRestAPI
« SFRestAPI (Blocks)
¢ SFRestRequest

SFRestAPI

SFRestAPI is the entry point for making REST requests, and is generally accessed as a singleton, via [SFRestAPT
sharedInstance].

You can easily create many standard canned queries from this object, such as:

SFRestRequest* request = [[SFRestAPI sharedInstance] requestForUpdateWithObjectType:@"Contact"

objectId:contactId
fields:updatedFields];

You can then initiate the request with the following:

[[SFRestAPI sharedInstance] send:request delegate:self];

144

Reference Android Architecture

SFRestAPI (Blocks)

This is a category extension of the SFRestAPI class that allows you to specify blocks as your callback mechanism. For example:

NSMutableDictionary *fields = [NSMutableDictionary dictionaryWithObjectsAndKeys:
@"John", @Q"FirstName",
@"Doe", @"LastName",
nil];
[[SFRestAPI sharedInstance] performCreateWithObjectType:@"Contact"
fields:fields
failBlock:” (NSError *e) {
NSLog (@"Error: %@", e);
}
completeBlock:” (NSDictionary *d) {
NSLog (@"ID value for object: %$Q@", [d objectForKey:@"id"]);
}1i

SFRestRequest
In addition to the canned REST requests provided by SFRestAPI, you can also create your own:

NSString *path = @"/v23.0";
SFRestRequest* request = [SFRestRequest requestWithMethod:SFRestMethodGET path:path
queryParams:nil];

SFRestAPI (QueryBuilder)
This category extension provides utility methods for creating SOQL and SOSL query strings. Examples:

NSString *soglQuery =
[SFRestAPI SOQLQueryWithFields: [NSArray arrayWithObjects:@"Id", @"Name", @"Company",
@"Status"™, nil]
sObject:@"Lead"
where:nil
limit:107;

NSString *soslQuery =
[SFRestAPI SOSLSearchWithSearchTerm:@"all of these will be escaped:~{]"
objectScope: [NSDictionary dictionaryWithObject:@"WHERE isactive=true ORDER BY
lastname
asc limit 5"
forKey:@"User"]1];

Other Objects
Though you won'’t likely leverage these objects directly, their purpose in the SDK is worth noting.

+ RKRequestDelegatelirapper—7The intermediary between SFRestAPI and the RestKit libraries.
RKRequestDelegateWrapper wraps the functionality of RestKit communications, providing convenience methods
for determining the type of HI'TP post, handling data transformations, and interpreting responses.

+ SFSessionRefresher—Tightly-coupled with SFRestAPI, providing an abstraction around functionality for automatically
refreshing a session if any REST requests fail due to session expiration.

Android Architecture

The SalesforceSDK is provided as a library project. You need to reference the SalesforceSDK project from your application
project. See the Android developer documentation.

145

http://developer.android.com

Reference Java Code

Java Code

Java sources are under /src.

Java Code

com.salesforce.androidsdk.app SDK application classes (SalesforceSDKManager)
com.salesforce.androidsdk.auth OAuth support classes

com.salesforce.androidsdk.phonegap Native implementation of Salesforce Mobile SDK PhoneGap plugin
com.salesforce.androidsdk.rest Classes for REST requests/responses
com.salesforce.androidsdk.security Security-related helper classes (e.g. passcode manager)

com. salesforce.androidsdk. smartstore SmartStore and supporting classes
com.salesforce.androidsdk.ui Activities (e.g. login)

com.salesforce.androidsdk.ui.sfhybrid App activity base classes

com.salesforce.androidsdk.ui.sfnative App activity base classes

com.salesforce.androidsdk.util Miscellaneous utility classes

com.salesforce.androidsdk. app

SalesforceSDKManager Abstract subclass of application; you must supply a concrete
subclass in your project.

UpgradeManager Helper class for upgrades

UUIDManager Helper class for UUID generation

com.salesforce.androidsdk.auth

AccountWatcher Watcher responsible for cleanup when account is removed
from settings application

AuthenticatorService Service taking care of authentication

HttpAccess Generic HTTP access layer

LoginServerManager Manages login hosts

OAuth2 Helper class for common OAuth2 requests

146

Reference Android Architecture

com.salesforce.androidsdk.phonegap

ForcePlugin Abstract super class for all Salesforce plugins

JavaScriptPluginVersion Helper class to encapsulate the version reported by the
JavaScript code

SalesforceORuthPlugin PhoneGap plugin for Salesforce OAuth

SDKInfoPlugin PhoneGap plugin to get information about the SDK container

TestRunnerPlugin PhoneGap plugin to run javascript tests in container

com.salesforce.androidsdk.rest

ClientManager Factory of RestClient, kicks off login flow if needed
RestClient Authenticated client to talk to a Force.com server
RestRequest Force.com REST request wrapper

RestResponse REST response wrapper

com.salesforce.androidsdk. security

Encryptor Helper class for encryption/decryption/hash computations

PasscodeManager Inactivity timeout manager, kicks off passcode screen if needed

com.salesforce.androidsdk. smartstore. app

This package is part of the SmartStore library project.

SalesforceSDKManagerWithSmartStore Super class for all force applications that use the SmartStore
(lives in SmartStore library project)

UpgradeManagerWithSmartStore Upgrade manager for applications that use the SmartStore
(lives in SmartStore library project)

com.salesforce.androidsdk. smartstore.phonegap

This package is part of the SmartStore library project.

SmartStorePlugin PhoneGap plugin for SmartStore

147

Reference Android Architecture

StoreCursor Represents a query cursor

com.salesforce.androidsdk.smartstore.store

This package is part of the SmartStore library project.

DBHelper Helper class to access the database underlying SmartStore

DBOpenHelper Helper class to manage regular database creation and version
management

IndexSpec Represents an index specification

QuerySpec Represents a query specification

SmartSqlHelper Helper class for parsing and running SmartSql

SmartStore Searchable/secure store for JSON documents

com.salesforce.androidsdk.ui

CustomServerUrlEditor Custom dialog allowing user to pick a different login host
LoginActivity Login screen
SalesforceActivity Main activity of native application should extend or duplicate

the functionality of this class

OAuthWebviewHelper Helper class to manage a WebView instance that is going
through the OAuth login process

PasscodeActivity Passcode (PIN) screen

SalesforceDroidGapActivity Main activity for hybrid applications

SalesforceGapViewClient WebView client used in hybrid applications

SalesforceR Class that allows references to resources defined outside the SDK

ServerPickerActivity Choose login host screen

com.salesforce.androidsdk.ui.sfhybrid

SalesforceDroidGapActivity Defines the main activity for a Cordova-based application

SalesforceGapViewClient Defines the web view client for a Cordova-based application

148

Reference Libraries

com.salesforce.androidsdk.ui.sfnative

SalesforceActivity Main activity of native applications. All native activities are
encouraged to extend one of the classes in this package, or else
duplicate the functionality of one of these classes.

SalesforcelListActivity Main activity of native applications, based on the Android
ListActivity class. All native activities are encouraged to
extend one of the classes in this package, or else duplicate the
functionality of one of these classes.

SalesforceExpandablelListActivity Main activity of native applications, based on the Android
ExpandableListActivity class. All native activities are
encouraged to extend one of the classes in this package, or else
duplicate the functionality of one of these classes.

com.salesforce.androidsdk.util

BaseActivityInstrumentationTestCase Super class for activty test classes

EventsListenerQueue Class to track activity events using a queue, allowing for tests
to wait for certain events to turn up

EventsObservable Used to register and receive events generated by the SDK
(used primarily in tests)

EventsObserver Observer of SDK events

SalesforceSDKManagerInstrumentationTestCase Super class for tests of an application using the Salesforce

Mobile SDK
HybridInstrumentationTestCase Super class for tests of hybrid application
JSTestCase Super class to run tests written in JavaScript
JUnitReportTestRunner Test runner that runs tests using a time run cap
LogUtil Helper methods for logging
NativeInstrumentationTestCase Super class for tests of native application
TimeLimitedTestRunner Test runner that limits the lifetime of the test run

Libraries

Libraries are under /1ibs.

cordova-2.3.0.jar Open source mobile development framework; used in hybrid applications

)

149

Reference Resources

sqlcipher.jar Open source extension to SQLite that provides transparent 256-bit AES
encryptiong of database files (**)

x86/*.s0 Native libraries required by sqlcipher on Intel-based devices
armeabi/*.so Native libaries required by sqlcipher on ARM-based devices (**)
commons-code.jar, guava-r09.jar Java libraries required by sqlcipher

(*) denotes files required for hybrid application.

(**) denotes files required for SmartStore.

Resources

Resources are under /res.

drawable-hdpi

sf edit icon.png Server picker screen
sf highlight glare.png Login screen
sf icon.png Application icon

drawable-ldpi

sf icon.png Application icon

drawable-mdpi

sf edit icon.png Server picker screen

sf__highlight glare.png Login screen

sf ic refresh sync anim0.png Application icon

sf icon.png Application icon
drawable

sf _header bg.png Login screen

150

Reference

Android Architecture

sf progress spinner.xml

sf toolbar background.xml

Login screen

Login screen

drawable-xlarge

sf header bg.png

sf header drop shadow.xml

sf header left border.xml

sf header refresh.png

sf header refresh press.png
sf header refresh states.xml
sf header right border.xml
sf login content header.xml
sf nav shadow.png

sf oauth background.png

sf oauth container dropshadow.9.png
sf progress spinner.xml

sf refresh loader.png

sf toolbar background.xml

Login screen (tablet)
Login screen (tablet)
Login screen (tablet)
Login screen (tablet)
Login screen (tablet)
Login screen (tablet)
Login screen (tablet)
Login screen (tablet)
Login screen (tablet)
Login screen (tablet)
Login screen (tablet)
Login screen (tablet)
Login screen (tablet)

Login screen (tablet)

drawable-xlarge-port

sf oauth background.png

Login screen (tablet)

layout

sf custom server url.xml
sf login.xml

sf passcode.xml

sf server picker.xml

sf server picker list.xml

Server picker screen
Login screen

Pin screen

Server picker screen (deprecated)

Server picker screen

151

Reference

layout-land

Android Architecture

sf passcode.xml

PIN screen

layout-xlarge

sf header bottom.xml

sf header separator.xml
sf login.xml

sf login header.xml

sf passcode.xml

sf server picker.xml

sf server picker header.xml

Header (tablet)

Header (tablet)

Login screen (tablet)

Login screen (tablet)

PIN screen (tablet)

Server picker screen (tablet)

Server picker screen (tablet)

menu

sf clear custom url.xml

sf login.xml

Add connection dialog

Login menu (phone)

values

bootconfig.xml
sf colors.xml
sf dimens.xml
sf strings.xml
sf style.xml

strings.xml

Connected app configuration settings
Colors

Dimensions

SDK strings

Styles

Other strings (app name)

values-xlarge

sf colors.xml

sf dimens.xml

Colors (tablet)

Dimensions (tablet)

152

Reference Android Architecture

styles.xml Styles (tablet)

authenticator.xml Preferences for account used by application
config.xml Plugin configuration file for PhoneGap. Required for hybrid.
servers.xml Server configuration.

153

Index

A

Account Editor sample 99
AccountWatcher class 39
Android architecture 145-146, 149—-150
Android development 27, 33
Android hybrid development 54
Android hybrid sample apps 54
Android project 30
Android requirements 28
Android sample app 32, 52
Android template app 49
Android template app, deep dive 49
Android, native development 33
Apex controller 60
Application flow, iOS 13
Architecture, Android 145-146, 149-150
Audience 2
authentication

Force.com Sites

134
and portal authentication 134

portal 134

portal authentication 134
Authentication 122
Authentication flow 125
Authorization 124

B

Backbone framework 67
Base64 encoding 41
BLOBs 109, 118

C

caching, offline 71

Callback URL 123

ClientManager class 41, 46
com.salesforce.androidsdk.rest package 46
Connected apps 122, 124

Consumer key 123

Container 53

D

Database.com 6

Delete soups 110-111, 116

Describe global 143

Developer Edition 6
Developer.force.com 6

Developing HTML apps 62
Developing HTMLS apps 63
Development 5

Development requirements, Android 28
Development, Android 27, 33

Index

Development, hybrid 53

E

encoding, Base64 41
Encryptor class 41
Events
Refresh token revocation 133—134

F

Files

JavaScript 55
Flow 125-126
Force.com 6

ForcePlugin class 43

G

GitHub 7
Glossary 123

H

HTMLS5 62-63
HTMLS5 development 2, 5
Hybrid Android development 54
Hybrid applications
JavaScript files 55
Javascript library compatibility 56
Versioning 56
Hybrid development 2, 5, 53
Hybrid i0S sample 54
hybrid sample apps 54

|

Identity URLs 127
installation, Mobile SDK 6
Installing the SDK 9, 28
interface

Keylnterface 39
108 application, creating 10
108 architecture 9, 28, 143—-144
10S development 8
i0S Hybrid sample app 54
108 hybrid sample apps 54
10S sample app 12, 26
10S Xcode template 12
IP ranges 124

J

JavaScript 63

Javascript library compatiblity 56 154
Javascript library version 60

JavaScript, files 55

K

Keylnterface interface 39

L

List objects 143

List resources 143
localStorage 109, 118
LoginActivity class 42

M

MainActivity class 50
Manifest, TemplateApp 51
Metadata 143
Migrating
1.5t0 2.0 136
migration
Android applications 137
iOS applications 139
Mobile container 53
Mobile Container 9
Mobile development 1
Mobile Development 9
Mobile policies 124
Mobile SDK installation 9, 28
Mobile SDK Packages 7
Mobile SDK Repository 7

N

Native Android development 33
Native Android UI classes 42
Native Android utility classes 42
Native apps

Android 132
Native development 2, 5
Native iOS application 10

Native iOS architecture 9, 28, 143144

Native iOS development 8
Native iOS project template 12
New features 7

NPM 7

@)

OAuth

custom login host 131
OAuth2 122,125
offline caching 71, 73
Offline storage 108-110

P

Packages 7

Parameters, scope 127
PasscodeManager class 40
Password 143

Index

PIN protection 124
Prerequisites 5

project template, Android 49
Project, Android 30

Q

Queries, Smart SQL 114
Query 143

Querying a soup 110-111, 116
querySpec 110-111, 116

R

Reference documentation 142
refresh token 58
Refresh token

Revocation 133-134
Refresh token flow 126
Refresh token revocation 132
Refresh token revocation events 133—-134
registerSoup 110-111, 116
Releases 7
Remote access 123
Remote access application 123
REST 143
REST API

supported operations 18
REST APIs 17
REST APIs, using 46
REST request 21
REST Resources 143
RestAPIExplorer 26
RestClient class 41, 46
RestRequest class 46
RestResponse class 46
Restricting user access 124
Revoking tokens 132
RootViewController class 16

S

Salesforce mobile 2
SalesforceActivity class 41
SalesforceSDKManager class 38
SalesforceSDKManager.shouldLogoutWhenTokenRevoked() method
132
Sample app, Android 32, 52
Sample app, 10S 26
sample apps
SmartSync 92
Sample i0S app 12
Scope parameters 127
SDK prerequisites 5
SDK version 60
SDKLibController 60
Search 143
Security 122
session management 58
SFRestAPI (QueryBuilder) category 24
shouldLogoutWhenTokenRevoked() method 132 155

Signup 6
Smart SQL 114
SmartStore
soups 110
SmartStore extensions 109, 118
SmartStore functions 110-111, 116
SmartSync
conflict detection 77, 79
JavaScript 69
model collections 67—-68
model objects 67
models 67
offline caching 71
offline caching, implementing 73
tutorial 67, 81, 84-85, 87-89, 119
User and Group Search sample 95
User Search sample 97
using in JavaScript 69
SmartSync sample apps 92
SmartSync samples
Account Editor 99
SObject information 143
soups 110
Soups 110-111, 116
Source code 7
StoreCache 73
storing files 109, 118
supported operations, REST API 18

T

Template app, Android 49
template project, Android 49

Index

TemplateApp sample project 49
TemplateApp, manifest 51
Terminology 123
Tokens, revoking 132
tutorial
conflict detection 79
SmartSync 67, 81, 84-85, 87-89, 119
SmartSync, setup 81

U

UI classes (Android native) 41

UI classes, native Android 42
UpgradeManager class 42
upsertSoupEntries 110-111, 116
URLs, indentity 127

User-agent flow 125

Utility classes, native Android 42

v

Version 143
Versioning 56
Versions 7

W

What's new in this release 7

X

Xcode project template 12

156

	Introduction to Mobile Development
	Intended Audience
	About Native, HTML5, and Hybrid Development
	Enough Talk; I’m Ready
	Development Prerequisites
	Choosing Between Database.com and Force.com
	Sign Up for Force.com
	Sign Up for Database.com

	Mobile SDK Installation
	Mobile SDK NPM Packages
	Mobile SDK GitHub Repository

	Keeping Up With the Mobile SDK
	What’s New in This Release

	Native iOS Development
	iOS Native Quick Start
	Native iOS Requirements
	Installing and Uninstalling Salesforce Mobile SDK for iOS
	Creating a Native iOS App in Xcode
	Running the Xcode Project Template App

	Developing a Native iOS App
	About Login and Passcodes
	About Memory Management
	Overview of Application Flow
	AppDelegate Class
	About View Controllers
	RootViewController Class
	About Salesforce REST APIs
	Supported Operations
	SFRestAPI Interface
	SFRestDelegate Protocol
	Creating REST Requests
	Sending a REST Request
	SFRestRequest Class
	Using SFRestRequest Methods
	SFRestAPI (Blocks) Category
	SFRestAPI (QueryBuilder) Category

	iOS Sample Applications

	Native Android Development
	Android Native Quick Start
	Native Android Requirements
	Installing and Uninstalling Salesforce Mobile SDK for Android
	Creating a New Android Project
	Android Template Application

	Setting Up Sample Projects in Eclipse
	Android Project Files

	Developing a Native Android App
	The create_native Script
	Android Application Structure
	Native API Packages
	Overview of Native Classes
	SalesforceSDKManager Class
	KeyInterface Interface
	AccountWatcher Class
	PasscodeManager Class
	Encryptor class
	SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity Classes
	UI Classes
	ClientManager and RestClient Classes
	LoginActivity Class
	Other UI Classes
	UpgradeManager Class
	Utility Classes
	ForcePlugin Class

	Using Passcodes
	Resource Handling
	Using REST APIs
	Android Template App: Deep Dive
	TemplateApp Class
	MainActivity Class
	TemplateApp Manifest

	Android Sample Applications

	Introduction to Hybrid Development
	iOS Hybrid Development
	iOS Hybrid Sample Application

	Android Hybrid Development
	Hybrid Sample Applications

	JavaScript Files for Hybrid Applications
	Versioning and Javascript Library Compatibility
	Managing Sessions in Hybrid Applications
	Example: Serving the Appropriate Javascript Libraries

	HTML5 Development
	HTML5 Development Requirements
	Delivering HTML5 Content With Visualforce
	Accessing Salesforce Data: Controllers vs. APIs

	Using SmartSync to Access Salesforce Objects
	About Backbone Technology
	Models and Model Collections
	Models
	Model Collections

	Using the SmartSync Data Framework in JavaScript
	Offline Caching
	Implementing Offline Caching
	Using StoreCache For Offline Caching

	Conflict Detection
	Mini-Tutorial: Conflict Detection

	Tutorial: Creating a SmartSync Application
	Set Up Your Project
	Edit the Application HTML File
	Create a SmartSync Model and a Collection
	Create a Template
	Add the Search View
	Add the Search Result List View
	Add the Search Result List Item View
	Router

	SmartSync Sample Apps
	User and Group Search Sample
	User Search Sample
	Account Editor Sample

	Securely Storing Data Offline
	Accessing SmartStore in Hybrid Apps
	Adding SmartStore to Android Apps
	Offline Hybrid Development
	SmartStore Soups
	Registering a Soup
	Retrieving Data From a Soup
	Smart SQL Queries
	Working With Cursors
	Manipulating Data
	Using the Mock SmartStore
	NativeSqlAggregator Sample App: Using SmartStore in Native Apps

	Authentication, Security, and Identity in Mobile Apps
	OAuth Terminology
	Creating a Connected App
	Connected Apps
	About PIN Security

	OAuth2 Authentication Flow
	OAuth 2.0 User-Agent Flow
	OAuth 2.0 Refresh Token Flow
	Scope Parameter Values
	Using Identity URLs
	Setting a Custom Login Server
	Revoking OAuth Tokens
	Handling Refresh Token Revocation in Android Native Apps
	Token Revocation Events
	Token Revocation: Passive Handling
	Token Revocation: Active Handling

	Portal Authentication Using OAuth 2.0 and Force.com Sites

	Migrating from the Previous Release
	Migrating Android Applications
	Migrating iOS Applications

	Reference
	REST API Resources
	iOS Architecture
	Native iOS Objects

	Android Architecture
	Java Code
	Libraries
	Resources

	Index

