
Version 28.0: Summer ’13

Salesforce Mobile SDK Development Guide
Salesforce.com Mobile Development

Last updated: July 9, 2013

© Copyright 2000–2013 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

Chapter 1: Introduction to Mobile Development...1
Intended Audience..2
About Native, HTML5, and Hybrid Development..2
Enough Talk; I’m Ready...5
Development Prerequisites..5

Choosing Between Database.com and Force.com...6
Sign Up for Force.com..6
Sign Up for Database.com...6

Mobile SDK Installation...6
Mobile SDK NPM Packages..7
Mobile SDK GitHub Repository..7

Keeping Up With the Mobile SDK..7
What’s New in This Release..7

Chapter 2: Native iOS Development...8
iOS Native Quick Start...9
Native iOS Requirements..9
Installing and Uninstalling Salesforce Mobile SDK for iOS...9
Creating a Native iOS App in Xcode..10

Running the Xcode Project Template App...12
Developing a Native iOS App...13

About Login and Passcodes...13
About Memory Management..13
Overview of Application Flow...13
AppDelegate Class..14
About View Controllers..15
RootViewController Class...16
About Salesforce REST APIs...17

Supported Operations..18
SFRestAPI Interface..20
SFRestDelegate Protocol...20
Creating REST Requests..21
Sending a REST Request..21
SFRestRequest Class...22
Using SFRestRequest Methods...22
SFRestAPI (Blocks) Category...23
SFRestAPI (QueryBuilder) Category..24

iOS Sample Applications..26

Chapter 3: Native Android Development..27
Android Native Quick Start..28

i

Table of Contents

Native Android Requirements...28
Installing and Uninstalling Salesforce Mobile SDK for Android..28
Creating a New Android Project...30

Android Template Application...32
Setting Up Sample Projects in Eclipse..33

Android Project Files...33
Developing a Native Android App..33

The create_native Script..34
Android Application Structure..34
Native API Packages...36
Overview of Native Classes...37

SalesforceSDKManager Class...38
KeyInterface Interface..39
AccountWatcher Class..39
PasscodeManager Class...40
Encryptor class...41
SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity Classes.............................41
UI Classes..41
ClientManager and RestClient Classes...41
LoginActivity Class...42
Other UI Classes...42
UpgradeManager Class..42
Utility Classes..42
ForcePlugin Class..43

Using Passcodes...43
Resource Handling..44
Using REST APIs...46
Android Template App: Deep Dive..49

TemplateApp Class...49
MainActivity Class..50
TemplateApp Manifest...51

Android Sample Applications...52

Chapter 4: Introduction to Hybrid Development...53
iOS Hybrid Development...54

iOS Hybrid Sample Application...54
Android Hybrid Development..54

Hybrid Sample Applications...54
JavaScript Files for Hybrid Applications...55
Versioning and Javascript Library Compatibility..56
Managing Sessions in Hybrid Applications..58
Example: Serving the Appropriate Javascript Libraries...60

Chapter 5: HTML5 Development...62
HTML5 Development Requirements..63
Delivering HTML5 Content With Visualforce..63

ii

Table of Contents

Accessing Salesforce Data: Controllers vs. APIs...63

Chapter 6: Using SmartSync to Access Salesforce Objects..66
About Backbone Technology..67
Models and Model Collections...67

Models...67
Model Collections...68

Using the SmartSync Data Framework in JavaScript..69
Offline Caching...71

Implementing Offline Caching...73
Using StoreCache For Offline Caching..73

Conflict Detection...77
Mini-Tutorial: Conflict Detection..79

Tutorial: Creating a SmartSync Application...81
Set Up Your Project...81
Edit the Application HTML File...81
Create a SmartSync Model and a Collection...84
Create a Template...85
Add the Search View...85
Add the Search Result List View..87
Add the Search Result List Item View..88
Router..89

SmartSync Sample Apps...92
User and Group Search Sample...95
User Search Sample...97
Account Editor Sample...99

Chapter 7: Securely Storing Data Offline...108
Accessing SmartStore in Hybrid Apps..109
Adding SmartStore to Android Apps...109
Offline Hybrid Development..109
SmartStore Soups..110
Registering a Soup...110
Retrieving Data From a Soup..111
Smart SQL Queries...114
Working With Cursors...116
Manipulating Data..116
Using the Mock SmartStore..118
NativeSqlAggregator Sample App: Using SmartStore in Native Apps...119

Chapter 8: Authentication, Security, and Identity in Mobile Apps..122
OAuth Terminology...123
Creating a Connected App..123
Connected Apps..124

About PIN Security...124
OAuth2 Authentication Flow...125

iii

Table of Contents

OAuth 2.0 User-Agent Flow..125
OAuth 2.0 Refresh Token Flow..126
Scope Parameter Values...127
Using Identity URLs...127
Setting a Custom Login Server...131
Revoking OAuth Tokens..132
Handling Refresh Token Revocation in Android Native Apps...132

Token Revocation Events..133
Token Revocation: Passive Handling..133
Token Revocation: Active Handling...134

Portal Authentication Using OAuth 2.0 and Force.com Sites..134

Chapter 9: Migrating from the Previous Release..136
Migrating Android Applications ..137
Migrating iOS Applications..139

Chapter 10: Reference...142
REST API Resources..143
iOS Architecture...143

Native iOS Objects..144
Android Architecture..145

Java Code...146
Libraries...149
Resources...150

Index...154

iv

Table of Contents

Chapter 1

Introduction to Mobile Development

Force.com has proven itself as an easy, straightforward, and highly productive
platform for cloud computing. Developers can define application components,

In this chapter ...

• Intended Audience such as custom objects and fields, workflow rules, Visualforce pages, and Apex
• About Native, HTML5, and Hybrid

Development
classes and triggers, using point-and-click tools of the Web interface, and
assembling the components into killer apps. As a mobile developer, you might
be wondering how you can leverage the power of the Force.com platform to
create sophisticated apps.

• Enough Talk; I’m Ready
• Development Prerequisites

The Mobile SDK seamlessly integrates with the Force.com cloud architecture
by providing:

• Mobile SDK Installation
• Keeping Up With the Mobile SDK

• SmartSync Data Framework for accessing Salesforce data through JavaScript
• Secure offline storage
• Data syncing for hybrid apps
• Implementation of Force.com Connected App policy that works out of the

box
• OAuth credentials management, including persistence and refresh capabilities
• Wrappers for Salesforce REST APIs
• Libraries for building native iOS and Android applications
• Containers for building hybrid applications

Note:

Be sure to visit Salesforce Platform Mobile Services website regularly
for tutorials, blog postings, and other updates.

1

http://www2.developerforce.com/mobile/

Intended Audience
This guide is primarily for developers who are already familiar with mobile technology, OAuth2, and REST APIs, and who
probably have some Force.com experience. But if that doesn’t exactly describe you, don’t worry. We’ve tried to make this guide
usable by a wider audience. For example, you might be a Salesforce admin tasked with developing a new mobile app to support
your organization, or you might be a mobile developer who’s entirely new to Force.com. If either of those descriptions fit you,
then you should be able to follow along just fine.

If you’re an admin setting up users for mobile devices, you’re probably looking for the Salesforce Mobile Implementation
Guide.

About Native, HTML5, and Hybrid Development
Many factors play a part in your mobile strategy, such as your team’s development skills, required device functionality, the
importance of security, offline capability, interoperability, and so on. In the end, it’s not just a question of what your app will
do, but how you’ll get it there. The Mobile SDK offers three ways to create mobile apps:

• Native apps are specific to a given mobile platform (iOS or Android) and use the development tools and language that
the respective platform supports (for example, Xcode and Objective-C with iOS, Eclipse and Java with Android). Native
apps look and perform best but require the most development effort.

• HTML5 apps use standard web technologies—typically HTML5, JavaScript and CSS—to deliver apps through a mobile
Web browser. This “write once, run anywhere” approach to mobile development creates cross-platform mobile applications
that work on multiple devices. While developers can create sophisticated apps with HTML5 and JavaScript alone, some
challenges remain, such as session management, secure offline storage, and access to native device functionality (such as
camera, calendar, notifications, and so on).

• Hybrid apps combine the ease of HTML5 Web app development with the power of the native platform by wrapping a
Web app inside the Salesforce container. This combined approach produces an application that can leverage the device’s
native capabilities and be delivered through the app store. You can also create hybrid apps using Visualforce pages delivered
through the Salesforce hybrid container.

2

Intended AudienceIntroduction to Mobile Development

http://www.salesforce.com/us/developer/docs/mobileImplGuide/index.htm
http://www.salesforce.com/us/developer/docs/mobileImplGuide/index.htm

Native Apps
Native apps provide the best usability, the best features, and the best overall mobile experience. There are some things you get
only with native apps:

• Fast graphics API—the native platform gives you the fastest graphics, which might not be a big deal if you’re showing a
static screen with only a few elements, or a very big deal if you’re using a lot of data and require a fast refresh.

• Fluid animation—related to the fast graphics API is the ability to have fluid animation. This is especially important in
gaming, highly interactive reporting, or intensely computational algorithms for transforming photos and sounds.

• Built-in components—The camera, address book, geolocation, and other features native to the device can be seamlessly
integrated into mobile apps. Another important built-in component is encrypted storage, but more about that later.

• Ease of use—The native platform is what people are accustomed to. When you add that familiarity to the native features
they expect, your app becomes that much easier to use.

Native apps are usually developed using an integrated development environment (IDE). IDEs provide tools for building,
debugging, project management, version control, and other tools professional developers need. You need these tools because
native apps are more difficult to develop. Likewise, the level of experience required is higher than in other development
scenarios. If you’re a professional developer, you don’t have to be sold on proven APIs and frameworks, painless special effects
through established components, or the benefits of having all your code in one place.

3

About Native, HTML5, and Hybrid DevelopmentIntroduction to Mobile Development

HTML5 Apps
An HTML5 mobile app is basically a web page, or series of web pages, that are designed to work on a small mobile device
screen. As such, HTML5 apps are device agnostic and can be opened with any modern mobile browser. Because your content
is on the web, it’s searchable, which can be a huge benefit for certain types of apps (shopping, for example).

If you’re new to mobile development, the technological bar is lower for Web apps; it’s easier to get started here than in native
or hybrid development. Unfortunately, every mobile device seems to have its own idea of what constitutes usable screen size
and resolution. This diversity imposes an additional burden of testing on different devices. Browser incompatibility is especially
common on Android devices, for example.

An important part of the "write once, run anywhere" HTML5 methodology is that distribution and support is much easier
than for native apps. Need to make a bug fix or add features? Done and deployed for all users. For a native app, there are
longer development and testing cycles, after which the consumer typically must log into a store and download a new version
to get the latest fix.

If HTML5 apps are easier to develop, easier to support, and can reach the widest range of devices, where do these apps lose
out?

• Secure offline storage — HTML5 browsers support offline databases and caching, but with no out-of-the-box encryption
support. You get all three features in Mobile SDK native applications.

• Security — In general, implementing even trivial security measures on a native platform can be complex tasks for a mobile
Web developer. It can also be painful for users. For example, a web app with authentication requires users to enter their
credentials every time the app restarts or returns from a background state.

• Native features — the camera, address book, and other native features are accessible on limited, if any, browser platforms.
• Native look and feel — HTML5 can only emulate the native look, while customers won’t be able to use familiar compound

gestures.

Hybrid Apps
Hybrid apps are built using HTML5 and JavaScript wrapped inside a thin container that provides access to native platform
features. For the most part, hybrid apps provide the best of both worlds, being almost as easy to develop as HTML5 apps with
all the functionality of native. In addition, hybrid apps can use the SmartSync Data Framework in JavaScript to model Salesforce
data, query and search it, edit it, securely cache it for offline use, and synchronize it with the Salesforce server.

You know that native apps are installed on the device, while HTML5 apps reside on a Web server, so you might be wondering
whether hybrid apps store their files on the device or on a server? You can implement a hybrid app locally or remotely.

Local
You can package HTML and JavaScript code inside the mobile application binary, in a structure similar to a native
application. In this scenario you use REST APIs and Ajax to move data back and forth between the device and the
cloud.

Server
Alternatively, you can implement the full web application from the server (with optional caching for better performance).
Your container app retrieves the full application from the server and displays it in a browser window.

Both types of hybrid development are covered in this guide.

Native, HTML5, and Hybrid Summary
The following table sums up how the three mobile development scenarios stack up.

HybridHTML5Native

HTML, Canvas, SVGHTML, Canvas, SVGNative APIsGraphics

4

About Native, HTML5, and Hybrid DevelopmentIntroduction to Mobile Development

HybridHTML5Native

FastFastFastestPerformance

EmulatedEmulatedNativeLook and feel

App storeWebApp storeDistribution

YesBrowser dependentYesCamera

YesNoYesNotifications

YesNoYesContacts, calendar

Secure file system, shared SQLShared SQLSecure file systemOffline storage

YesYesYesGeolocation

YesYesYesSwipe

YesYesYesPinch, spread

Online, offlineMostly onlineOnline, offlineConnectivity

HTML5, CSS, JavaScriptHTML5, CSS, JavaScriptObjective C, JavaDevelopment skills

Enough Talk; I’m Ready
If you’d rather read about the details later, there are Quick Start topics in this guide for each native development scenario.

• iOS Native Quick Start

• Android Native Quick Start

Development Prerequisites
It’s helpful to have some experience with Database.com or Force.com. You’ll need either a Database.com account or a Force.com
Developer Edition organization.

This guide also assumes you are familiar with the following technologies and platforms:

• OAuth, login and passcode flows, and Salesforce connected apps. See Authentication, Security, and Identity in Mobile
Apps.

• To build iOS applications (hybrid or native), you’ll need Mac OS X “Lion” or higher, iOS 6.0 or higher, and Xcode 4.5
or higher.

• To build Android applications (hybrid or native), you’ll need the Java JDK 6, Eclipse, Android ADT plugin, and the
Android SDK.

• To build remote hybrid applications, you’ll need an organization that has Visualforce.

• Most of our resources are on GitHub, a social coding community. You can access all of our files in our public repository,
but we think it’s a good idea to join. https://github.com/forcedotcom

5

Enough Talk; I’m ReadyIntroduction to Mobile Development

https://github.com/forcedotcom

Choosing Between Database.com and Force.com
You can build mobile applications that store data on a Database.com or Force.com organization. Hereafter, this guide assumes
you are using a Force.com Developer Edition that uses Force.com login end points such as login.salesforce.com.
However, you can simply substitute your Database.com credentials in the appropriate places.

Note: If you choose to use Database.com, you can’t develop Visualforce–driven hybrid apps.

Sign Up for Force.com

1. In your browser go to developer.force.com/join.
2. Fill in the fields about you and your company.
3. In the Email Address field, make sure to use a public address you can easily check from a Web browser.
4. Enter a unique Username. Note that this field is also in the form of an email address, but it does not have to be the same

as your email address, and in fact, it's usually better if they aren't the same. Your username is your login and your identity
on developer.force.com, and so you're often better served by choosing a username that describes the work you're
doing, such as develop@workbook.org, or that describes you, such as firstname@lastname.com.

5. Read and then select the checkbox for the Master Subscription Agreement.
6. Enter the Captcha words shown and click Submit Registration.
7. In a moment you'll receive an email with a login link. Click the link and change your password.

Sign Up for Database.com

1. In your browser go to www.database.com.
2. Click Signup.
3. Fill in the fields about you and your company.
4. In the Email Address field, make sure to use a public address you can easily check from a Web browser.
5. The Username field is also in the form of an email address, but it does not have to be the same as your actual email address,

or even an email that you use. It’s helpful to change the username to something that describes the use of the organization.
In this workbook we’ll use admin-user@workbook.db.

6. Enter the Captcha words shown.
7. Read and then select the checkbox for the Master Subscription Agreement and supplemental terms.
8. Click Sign Up.
9. After signing up, you’ll be sent an email with a link that you must click to verify your account. Click the link.
10. Now supply a password, and a security question and answer.

Mobile SDK Installation
Salesforce Mobile SDK provides two installation paths. The path you choose depends on your development goals.

6

Choosing Between Database.com and Force.comIntroduction to Mobile Development

http://developer.force.com/join
http://www.database.com/

Mobile SDK NPM Packages
Most developers, who want to use the SDK as a “black box” and create a mobile app quickly, prefer the Node Packaged Module
(NPM) installers. Salesforce provides two packages: forceios for the iOS Mobile SDK, and forcedroid for the Android version
of the Mobile SDK. These packages provide a static snapshot of an SDK release. In the case of iOS, the NPM installer package
provides binary modules rather than uncompiled source code. In the case of Android, the NPM installer package provides a
snapshot of the SDK source code rather than binaries. You use the NPM package both to install Mobile SDK and to create
new template projects.

NPM packages for the Salesforce Mobile SDK reside at https://www.npmjs.org.

Note: NPM packages do not support source control, so you can’t update your installation dynamically for new releases.
Instead, you install each release separately. To upgrade to new versions of the SDK, go to the npmjs.org website and
download the new package.

Mobile SDK GitHub Repository
More adventurous developers who want to delve into the SDK, keep up with the latest changes, and possibly contribute to
SDK development can clone the open source repository from GitHub. Using GitHub allows you to monitor source code in
public pre-release development branches. In this scenario, both iOS and Android apps include the SDK source code, which
is built along with your app.

You don’t need to sign up for GitHub to access the Mobile SDK, but we think it’s a good idea to be part of this social coding
community. https://github.com/forcedotcom

You can always find the latest Mobile SDK releases in our public repositories:

• https://github.com/forcedotcom/SalesforceMobileSDK-iOS

• https://github.com/forcedotcom/SalesforceMobileSDK-Android

Keeping Up With the Mobile SDK
The Mobile SDK evolves rapidly, so you’ll want to check the following regularly.

• You can always find the most current releases in the NPM registry or our Mobile SDK GitHub Repository

• Keep up to date with What’s New.

• The latest articles, blog posts, tutorials, and webinars are on http://www2.developerforce.com/mobile/resources.

• Join the conversation on our message boards at http://boards.developerforce.com/t5/Mobile/bd-p/mobile.

What’s New in This Release
For a summary of what’s new and changed in this release of the Salesforce Mobile SDK, visit the Mobile SDK Release Notes.
This page also provides a history of previous releases.

7

Mobile SDK NPM PackagesIntroduction to Mobile Development

https://www.npmjs.org
https://github.com/forcedotcom
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-Android
https://npmjs.org
http://wiki.developerforce.com/page/Mobile_SDK_Release_Notes
http://www2.developerforce.com/mobile/resources
http://boards.developerforce.com/t5/Mobile/bd-p/mobile
http://wiki.developerforce.com/page/Mobile_SDK_Release_Notes

Chapter 2

Native iOS Development

Salesforce Mobile SDK delivers libraries and sample Xcode projects for developing
mobile apps on iOS.

In this chapter ...

• iOS Native Quick Start
Two main things that the iOS native SDK provides are:• Native iOS Requirements
• Automation of the OAuth2 login process, making it easy to integrate OAuth

with your app.
• Installing and Uninstalling Salesforce

Mobile SDK for iOS
• Access to the REST API with infrastructure classes (including third-party

libraries such as RestKit) to make that access as easy as possible.
• Creating a Native iOS App in Xcode
• Developing a Native iOS App
• iOS Sample Applications When you create a native app using the forceios application, your project starts

as a fully functioning native sample app. This simple app allows you to connect
to a Salesforce organization and run a simple query. It doesn’t do much, but it
lets you know things are working as designed.

8

iOS Native Quick Start
Use the following procedure to get started quickly.

1. Make sure you meet all of the native iOS requirements.
2. Install the Mobile SDK for iOS. If you prefer, you can install the Mobile SDK for iOS from GitHub instead.
3. Run the template app.

Native iOS Requirements
• Xcode—4.5 is the minimum, but we recommend the latest version.

• iOS 6.0 or higher.

• Mac OS X “Lion” or higher.

• Install the Mobile SDK.

• A Developer Edition organization with a connected app on page 124.

For important information on using various versions of XCode, see the Readme at
https://github.com/forcedotcom/SalesforceMobileSDK-iOS/blob/master/readme.md.

Installing and Uninstalling Salesforce Mobile SDK for iOS
For the fastest, easiest route to iOS development, use NPM to install Salesforce Mobile SDK for iOS.

1. If you’ve already successfully installed Node.js and NPM, skip to step 4.
2. Install Node.js on your system. The Node.js installer automatically installs NPM.

a. Download Node.js from www.nodejs.org/download.

b. Run the downloaded installer to install Node.js and NPM. Accept all prompts asking for permission to install.

3. At a command prompt, type npm and press Return to make sure your installation was successful. If you don’t see a page
of usage information, revisit Step 2 to find out what’s missing.

4. Use the forceios package to install the Mobile SDK either globally (recommended) or locally.

a. To install Salesforce Mobile SDK in a global location, use the sudo command and append the “global” option, -g:

sudo npm install forceios -g

With the -g option, you can run npm install from any directory. The NPM utility installs the package under
/usr/local/lib/node_modules, and links binary modules in /usr/local/bin. Most users need the sudo
option because they lack read-write permissions in /usr/local.

b. To install Salesforce Mobile SDK in a local folder, cd to that folder and use the NPM command without sudo or –g:

npm install forceios

9

iOS Native Quick StartNative iOS Development

https://github.com/forcedotcom/SalesforceMobileSDK-iOS/blob/master/readme.md
http://www.nodejs.org/download

This command installs Salesforce Mobile SDK in a node_modules folder under your current folder. It links binary
modules in ./node_modules/.bin/. In this scenario, you rarely use sudo because you typically install in a local
folder where you already have read-write permissions.

Uninstalling a Forceios Package Installation
Instructions for uninstalling the forceios package vary with whether you installed the package globally or locally. If you installed
the package globally, you can run the uninstall command from any folder. Be sure to use sudo and the –g option.

$ pwd
/Users/joeuser
$ sudo npm uninstall forceios -g
$

To uninstall a package that you installed locally, run the uninstall command from the folder where you installed the package.
For example:

$ pwd
/Users/joeuser
cd <my_projects/my_sdk_folder>
npm uninstall forceios

If you try to uninstall a local installation from the wrong directory, you’ll get an error message similar to this:

npm WARN uninstall not installed in /Users/joeuser/node_modules:
"my_projects/my_sdk_folder/node_modules/forceios"

(Optional) Clone the Salesforce Mobile SDK Source Code from GitHub
If you’re adventurous or just curious, you can also install the Salesforce iOS SDK source code from its GitHub repository.
Doing so allows you to contribute to the open source and keep up with source code changes.

1. Clone the Mobile SDK iOS repository to your local file system by issuing the following command at the OS X Terminal
app: git clone git://github.com/forcedotcom/SalesforceMobileSDK-iOS.git

Note: If you have the GitHub app for Mac OS X, click Clone in Mac. In your browser, navigate to the Mobile
SDK iOS GitHub repository: https://github.com/forcedotcom/SalesforceMobileSDK-iOS.

2. In the OS X Terminal app, change to the directory where you installed the cloned repository. By default, this is the
SalesforceMobileSDK-iOS directory.

3. Run the install script from the command line: ./install.sh

Creating a Native iOS App in Xcode
To create a new app, you use forceios again on the command line. You have two options for configuring your app. You can:

• Configure your application options interactively as prompted by the forceios app, or

• Specify your application options and values directly at the command line.

10

Creating a Native iOS App in XcodeNative iOS Development

https://github.com/forcedotcom/SalesforceMobileSDK-iOS

To enter application options interactively, type forceios create if you installed Mobile SDK globally, or
<forceios_path>/node_modules/.bin/forceios create if you installed locally. The forceios utility prompts you for
each configuration value.

You can also specify your configuration directly by typing command line options. To see usage information, type forceios
without arguments. The list of available options displays:

$ forceios
Usage:
forceios create

--apptype=<Application Type> (native, hybrid_remote, hybrid_local)
--appname=<Application Name>
--companyid=<Company Identifier> (com.myCompany.myApp)
--organization=<Organization Name> (Your company's/organization's name)
--startpage=<App Start Page> (The start page of your remote app. Only required for

hybrid_remote)
[--outputdir=<Output directory> (Defaults to the current working directory)]
[--appid=<Salesforce App Identifier> (The Consumer Key for your app. Defaults to the

sample app.)]
[--callbackuri=<Salesforce App Callback URL (The Callback URL for your app. Defaults

to the sample app.)]

Using this information, type forceios create, followed by your options and values. For example:

$ forceios create --apptype="native" --appname="package-test"
--companyid="com.acme.mobile_apps" --organization="Acme Widgets, Inc."
--outputdir="PackageTest" --packagename="com.test.my_new_app"

Here are more verbose descriptions of the parameters:

DescriptionParameter Name

One of the following:--apptype

• “native”

• “hybrid_remote” (server-side hybrid app using VisualForce)

• “hybrid_local” (client-side hybrid app that doesn’t use
VisualForce)

Name of your application--appname

A unique identifier for your company. This value is
concatenated with the app name to create a unique app

--companyid

identifier for publishing your app to the App Store. For
example, “com.myCompany.apps”.

11

Creating a Native iOS App in XcodeNative iOS Development

DescriptionParameter Name

The formal name of your company. For example, “Acme
Widgets, Inc.”

--organization

Package identifier for your application. For example,
“com.acme.app”

--packagename

(hybrid remote apps only) Server path to the remote start page.
 For example: /apex/MyAppStartPage

--startpage

(Optional) Folder in which you want your project to be
created. If the folder doesn’t exist, the script creates it. Defaults
to the current working directory.

--outputdir

(Optional) Your connected app’s Consumer Key. Defaults to
the consumer key of the sample app.

--appid

Note: If you don’t specify the value here, you’re
required to change it in the app before you publish
to the App Store.

(Optional) Your connected app’s Callback URL. Defaults to
the callback URL of the sample app.

--callbackuri

Note: If you don’t specify the value here, you’re
required to change it in the app before you publish
to the App Store.

(Optional) Include only if you want to use SmartStore for
offline data. Defaults to false if not specified.

--usesmartstore=true

After the app creation script finishes, you can open and run the project in Xcode. Select File > Open, navigate to the output
folder you specified, and open your app’s xcodeproj file. Apps created with the forceios template are ready to run “right
out of the box”. Click the Run button in the upper left corner to see your new app in action.

Running the Xcode Project Template App
The Xcode project template includes a sample application you can run right away.

1. Press Command-R and the default template app runs in the iOS simulator.
2. On startup, the application starts the OAuth authentication flow, which results in an authentication page. Enter your

credentials, and click Login.
3. Tap Allow when asked for permission

12

Running the Xcode Project Template AppNative iOS Development

You should now be able to compile and run the sample project. It’s a simple app that logs you into an org via OAuth2, issues
a select Name from Account SOQL query, and displays the result in a UITableView instance.

Developing a Native iOS App
The Salesforce Mobile SDK for native iOS provides the tools you need to build apps for Apple mobile devices. Features of
the SDK include:

• Classes and interfaces that make it easy to call the Salesforce REST API

• Fully implemented OAuth login and passcode protocols

• SmartStore library for securely managing user data offline

The native iOS SDK requires you to be proficient in Objective-C coding. You also need to be familiar with iOS application
development principles and frameworks. If you’re a newbie, Start Developing iOS Apps Today is a good place to begin learning.
See Native iOS Requirements on page 9 for additional prerequisites.

In a few Mobile SDK interfaces, you’re required to override some methods and properties. SDK header (.h) files include
comments that indicate mandatory and optional overrides.

About Login and Passcodes
To access Salesforce objects from a Mobile SDK app, the user logs into an organization on a Salesforce server. When the login
flow begins, your app sends its connected app configuration to Salesforce. Salesforce responds by posting a login screen to the
mobile device.

Optionally, a Salesforce administrator can set the connected app to require a passcode after login. The Mobile SDK handles
presentation of the login and passcode screens, as well as authentication handshakes. Your app doesn’t have to do anything to
display these screens. However, you do need to understand the login flow and how OAuth tokens are handled. See About
PIN Security on page 124 and OAuth2 Authentication Flow on page 125.

About Memory Management
Beginning in Mobile SDK 2.0, native iOS apps use Automatic Reference Counting (ARC) to manage object memory. You
don’t have to allocate and then remember to deallocate your objects. See the Mac Developer Library at
https://developer.apple.com for ARC syntax, guidelines, and best practices.

Overview of Application Flow
When you create a project with the forceios application, your new app defines three classes: AppDelegate,
InitialViewController, and RootViewController. The AppDelegate object loads InitialViewController
as the first view to show. After the authentication process completes, the AppDelegate object displays the view associated
with RootViewController as the entry point to your app.

The workflow demonstrated by the template app is merely an example. You can tailor your AppDelegate and supporting
classes to achieve your desired workflow. You can retrieve data through REST API calls and display it, launch other views,
perform services, and so on. Your app remains alive in memory until the user quits it, or until the device is rebooted.

13

Developing a Native iOS AppNative iOS Development

http://developer.apple.com/library/ios/#referencelibrary/GettingStarted/RoadMapiOS/chapters/Introduction.html
https://developer.apple.com
https://developer.apple.com

Native iOS apps built with the Mobile SDK follow the same design as other iOS apps. The main.m source file creates a
UIApplicationMain object that is the root object for the rest of the application. The UIApplicationMain constructor
creates an AppDelegate object that manages the application lifecycle.

AppDelegate Class
The AppDelegate class is the true entry point for an iOS app. In Mobile SDK apps, AppDelegate implements the standard
iOS UIApplicationDelegate interface. The Mobile SDK template application for creating native iOS apps implements
most of the Salesforce-specific startup functionality for you.

To customize the AppDelegate template, populate the following static variables with information from your Force.com
Connected Application:

• RemoteAccessConsumerKey

static NSString * const RemoteAccessConsumerKey =
@"3MVG9Iu66FKeHhINkB1l7xt7kR8czFcCTUhgoA8Ol2Ltf1eYHOU4SqQRSEitYFDUpqRWcoQ2.dBv_a1Dyu5xa";

• OAuthRedirectURI

static NSString * const OAuthRedirectURI = @"testsfdc:///mobilesdk/detect/oauth/done";

OAuth functionality resides in an independent module. This separation makes it possible for you to use Salesforce authentication
on demand. You can start the login process from within your AppDelegate implementation, or you can postpone login until
it’s actually required—for example, you can call OAuth from a sub-view.

Initialization
The following high-level overview shows how the AppDelegate initializes the template app. Keep in mind that you can
change any of these details to suit your needs.

1. When the [AppDelegate init] message runs, it:

14

AppDelegate ClassNative iOS Development

Initializes configuration items, such as Connected App identifiers, OAuth scopes, and so on.•
• Adds notification observers that listen to SFAuthenticationManager, logoutInitiated, and loginHostChanged

notifications.

The logoutInitiated notification lets the app respond when a user logs out voluntarily or is logged out involuntarily
due to invalid credentials. The loginHostChanged notification lets the app respond when the user changes the login
host (for example, from Production to Sandbox). See the logoutInitiated: and loginHostChanged: handler
methods in the sample app.

• Initializes authentication "success" and "failure" blocks for the [SFAuthenticationManager
loginWithCompletion:failure:] message. These blocks determine what happens when the authentication
process completes.

2. application:didFinishLaunchingWithOptions:, a UIApplicationDelegate method, is called at app
startup. The template app uses this method to initialize the UIWindow property, display the initial view (see
initializeAppViewState), and initiate authentication. If authentication succeeds, the SFAuthenticationManager
executes initialLoginSuccessBlock (the “success” block).

3. initialLoginSuccessBlock calls setupRootViewController, which creates and displays the app’s
RootViewController.

You can customize any part of this process. At a minimum, change setupRootViewController to display your own
controller after authentication. You can also customize initializeAppViewState to display your own launch page, or the
InitialViewController to suit your needs. You can also move the authentication details to where they make the most
sense for your app. The Mobile SDK does not stipulate when—or if—actions must occur, but standard iOS conventions apply.
For example, self.window must have a rootViewController by the time
application:didFinishLaunchingWithOptions: completes.

UIApplication Event Handlers
You can also use the application delegate class to implement UIApplication event handlers. Important event handlers that
you might consider implementing or customizing include:

application:didFinishLaunchingWithOptions:

First entry point when your app launches. Called only when the process first starts (not after a
backgrounding/foregrounding cycle).

applicationDidBecomeActive

Called every time the application is foregrounded. The iOS SDK provides no default parent behavior; if you use it, you
must implement it from the ground up.

For a list of all UIApplication event handlers, see “UIApplicationDelegate Protocol Reference” in the iOS Developer
Library.

About View Controllers
In addition to the views and view controllers discussed with the AppDelegate class, Mobile SDK exposes the
SFAuthorizingViewController class. This controller displays the login screen when necessary.

To customize the login screen display:

1. Override the SFAuthorizingViewController class to implement your custom display logic.
2. Set the [SFAuthenticationManager sharedManager].authViewController property to an instance of your

customized class.

15

About View ControllersNative iOS Development

http://developer.apple.com/library/ios
http://developer.apple.com/library/ios

The most important view controller in your app is the one that manages the first view that displays, after login or—if login is
postponed—after launch. This controller is called your root view controller because it controls everything else that happens
in your app. The Mobile SDK for iOS project template provides a skeletal class named RootViewController that
demonstrates the minimal required implementation.

If your app needs additional view controllers, you’re free to create them as you wish. The view controllers used in Mobile SDK
projects reveal some possible options. For example, the Mobile SDK iOS template project bases its root view class on the
UITableViewController interface, while the RestAPIExplorer sample project uses the UIViewController interface.
Your only technical limits are those imposed by iOS itself and the Objective-C language.

RootViewController Class
The RootViewController class exists only as part of the template project and projects generated from it. It implements
the SFRestDelegate protocol to set up a framework for your app’s interactions with the Salesforce REST API. Regardless
of how you define your root view controller, it must implement SFRestDelegate if you intend to use it to access Salesforce
data through the REST APIs.

RootViewController Design
As an element of a very basic app built with the Mobile SDK, the RootViewController class covers only the bare essentials.
Its two primary tasks are:

• Use Salesforce REST APIs to query Salesforce data
• Display the Salesforce data in a table

To do these things, the class inherits UITableViewController and implements the SFRestDelegate protocol. The
action begins with an override of the UIViewController:viewDidLoad method:

- (void)viewDidLoad
{

[super viewDidLoad];
self.title = @"Mobile SDK Sample App";

//Here we use a query that should work on either Force.com or Database.com
SFRestRequest *request = [[SFRestAPI sharedInstance] requestForQuery:@"SELECT Name FROM

User LIMIT 10"];
[[SFRestAPI sharedInstance] send:request delegate:self];

}

The iOS runtime calls viewDidLoad only once in the view’s life cycle, when the view is first loaded into memory. The
intention in this skeletal app is to load only one set of data into the app’s only defined view. If you plan to create other views,
you might need to perform the query somewhere else. For example, if you add a detail view that lets the user edit data shown
in the root view, you’ll want to refresh the values shown in the root view when it reappears. In this case, you can perform the
query in a more appropriate method, such as viewWillAppear.

After calling the superclass method, this code sets the title of the view, then issues a REST request in the form of an
asynchronous SOQL query. The query in this case is a simple SELECT statement that gets the Name property from each
User object and limits the number of rows returned to ten. Notice that the requestForQuery and send:delegate:
messages are sent to a singleton shared instance of the SFRestAPI class. Use this singleton object for all REST requests. This
object uses authenticated credentials from the singleton SFAccountManager object to form and send authenticated requests.

The Salesforce REST API responds by passing status messages and, hopefully, data to the delegate listed in the send message.
In this case, the delegate is the RootViewController object itself:

[[SFRestAPI sharedInstance] send:request delegate:self];

16

RootViewController ClassNative iOS Development

The RootViewController object can act as an SFRestAPI delegate because it implements the SFRestDelegate protocol.
This protocol declares four possible response callbacks:

• request:didLoadResponse: — Your request was processed. The delegate receives the response in JSON format. This
is the only callback that indicates success.

• request:didFailLoadWithError: — Your request couldn’t be processed. The delegate receives an error message.
• requestDidCancelLoad — Your request was canceled by some external factor, such as administrator intervention, a

network glitch, or another unexpected event. The delegate receives no return value.
• requestDidTimeout — The Salesforce server failed to respond in time. The delegate receives no return value.

The response arrives in one of the callbacks you’ve implemented in RootViewController. Place your code for handling
Salesforce data in the request:didLoadResponse: callback. For example:

- (void)request:(SFRestRequest *)request
didLoadResponse:(id)jsonResponse {

NSArray *records = [jsonResponse objectForKey:@"records"];
NSLog(@"request:didLoadResponse: #records: %d", records.count);
self.dataRows = records;
[self.tableView reloadData];

}

As the use of the id data type suggests, this code handles JSON responses in generic Objective-C terms. It addresses the
jsonResponse object as an instance of NSDictionary and treats its records as an NSArray object. Because
RootViewController implements UITableViewController, it’s simple to populate the table in the view with extracted
records.

A call to request:didFailLoadWithError: results from one of the following conditions:

• If you use invalid request parameters, you get a kSFRestErrorDomain error code. For example, if you pass nil to
requestForQuery:, or you try to update a non-existent object.

• If an OAuth access token expires, the framework tries to obtain a new access token and, if successful, retries the query. If
a request for a new access token or session ID fails, you get a kSFOAuthErrorDomain error code. For example, if the
access token expires, and the OAuth refresh token is invalid. This scenario rarely occurs.

• If the low-level HTTP request fails, you get an RKRestKitErrorDomain error code. For example, if a Salesforce server
becomes temporarily inaccessible.

The other callbacks are self-describing, and don’t return an error code. You can choose to handle the result however you want:
display an error message, write to the log, retry the request, and so on.

About Salesforce REST APIs
Native app development with the Salesforce Mobile SDK centers around the use of Salesforce REST APIs. Salesforce makes
a wide range of object-based tasks available through URIs with REST parameters. Mobile SDK wraps these HTTP calls in
interfaces that handle most of the low-level work in formatting a request.

In Mobile SDK for iOS, all REST requests are performed asynchronously. You can choose between delegate and block versions
of the REST wrapper classes to adapt your requests to various scenarios. REST responses are formatted as NSArray or
NSDictionary objects for a successful request, or NSError if the request fails.

See the Force.com REST API Developer’s Guide for information on Salesforce REST response formats.

17

About Salesforce REST APIsNative iOS Development

http://www.salesforce.com/us/developer/docs/api_rest/index.htm

Supported Operations

The iOS REST APIs support the standard object operations offered by Salesforce REST and SOAP APIs. Salesforce Mobile
SDK offers delegate and block versions of its REST request APIs. Delegate request methods are defined in the SFRestAPI
class, while block request methods are defined in the SFRestAPI (Blocks) category. Supported operations are:

Block methodDelegate methodOperation

sendRESTRequest:failBlock:completeBlock:send:delegate:Manual REST request

Executes a request that
you’ve built

performSOQLQuery:failBlock:completeBlock:requestForQuery:SOQL query

Executes the given
SOQL string and
returns the resulting
data set

performSOSLSearch:failBlock:completeBlock:requestForSearch:SOSL search

Executes the given
SOSL string and
returns the resulting
data set

performMetadataWithObjectType:failBlock:
completeBlock:

requestForMetadataWithObjectType:Metadata

Returns the object’s
metadata

performDescribeGlobalWithFailBlock:completeBlock:requestForDescribeGlobalDescribe global

Returns a list of all
available objects in your
org and their metadata

18

Developing a Native iOS AppNative iOS Development

Block methodDelegate methodOperation

performDescribeWithObjectType:failBlock:
completeBlock:

requestForDescribeWithObjectType:Describe with object
type

Returns a description
of a single object type

performRetrieveWithObjectType:objectId:
fieldList:failBlock:completeBlock:

requestForRetrieveWithObjectType:
objectId:fieldList:

Retrieve

Retrieves a single
record by object ID

performUpdateWithObjectType:objectId:
fields:failBlock:completeBlock:

requestForUpdateWithObjectType:
objectId:fields:

Update

Updates an object with
the given map

performUpsertWithObjectType:externalIdField:
externalId:fields:failBlock:completeBlock:

requestForUpsertWithObjectType:
externalIdField:externalId::fields:

Upsert

Updates or inserts an
object from external
data, based on whether
the external ID
currently exists in the
external ID field

performCreateWithObjectType:fields:
failBlock:completeBlock:

requestForCreateWithObjectType:fields:Create

Creates a new record in
the specified object

performDeleteWithObjectType:objectId:
failBlock:completeBlock:

requestForDeleteWithObjectType:objectId:Delete

Deletes the object of
the given type with the
given ID

performRequestForVersionsWithFailBlock:
completeBlock:

requestForVersionsVersions

Returns Salesforce
version metadata

performRequestForResourcesWithFailBlock:
completeBlock:

requestForResourcesResources

Returns available
resources for the
specified API version,
including resource
name and URI

19

Developing a Native iOS AppNative iOS Development

SFRestAPI Interface

SFRestAPI defines the native interface for creating and formatting Salesforce REST requests. It works by formatting and
sending your requests to the Salesforce service, then relaying asynchronous responses to your implementation of the
SFRestDelegate protocol.

SFRestAPI serves as a factory for SFRestRequest instances. It defines a group of methods that represent the request types
supported by the Salesforce REST API. Each SFRestAPI method corresponds to a single request type. Each of these methods
returns your request in the form of an SFRestRequest instance. You then use that return value to send your request to the
Salesforce server. The HTTP coding layer is encapsulated, so you don’t have to worry about REST API syntax.

For a list of supported query factory methods, see Supported Operations on page 18

SFRestDelegate Protocol

When a class adopts the SFRestDelegate protocol, it intends to be a target for REST responses sent from the Salesforce
server. When you send a REST request to the server, you tell the shared SFRestAPI instance which object receives the
response. When the server sends the response, Mobile SDK routes the response to the appropriate protocol method on the
given object.

The SFRestDelegate protocol declares four possible responses:

• request:didLoadResponse: — Your request was processed. The delegate receives the response in JSON format. This
is the only callback that indicates success.

• request:didFailLoadWithError: — Your request couldn’t be processed. The delegate receives an error message.

• requestDidCancelLoad — Your request was canceled by some external factor, such as administrator intervention, a
network glitch, or another unexpected event. The delegate receives no return value.

• requestDidTimeout — The Salesforce server failed to respond in time. The delegate receives no return value.

The response arrives in your implementation of one of these delegate methods. Because you don’t know which type of response
to expect, you must implement all of the methods.

request:didLoadResponse: Method

The request:didLoadResponse: method is the only protocol method that handles a success condition, so place your
code for handling Salesforce data in that method. For example:

- (void)request:(SFRestRequest *)request
didLoadResponse:(id)jsonResponse {

NSArray *records = [jsonResponse objectForKey:@"records"];
NSLog(@"request:didLoadResponse: #records: %d", records.count);
self.dataRows = records;
[self.tableView reloadData];

}

At the server, all responses originate as JSON strings. Mobile SDK receives these raw responses and reformats them as iOS
SDK objects before passing them to the request:didLoadResponse: method. Thus, the jsonResponse payload arrives
as either an NSDictionary object or an NSArray object. The object type depends on the type of JSON data returned. If
the top level of the server response represents a JSON object, jsonResponse is an NSDictionary object. If the top level
represents a JSON array of other data, jsonResponse is an NSArray object.

20

Developing a Native iOS AppNative iOS Development

If your method cannot infer the data type from the request, use [NSObject isKindOfClass:] to determine the data type.
For example:

if ([jsonResponse isKindOfClass:[NSArray class]]) {
// Handle an NSArray here.

} else {
// Handle an NSDictionary here.

}

You can address the response as an NSDictionary object and extract its records into an NSArray object. To do so, send the
NSDictionary:objectForKey: message using the key “records”.

request:didFailLoadWithError: Method

A call to the request:didFailLoadWithError: callback results from one of the following conditions:

• If you use invalid request parameters, you get a kSFRestErrorDomain error code. For example, you pass nil to
requestForQuery:, or you try to update a non-existent object.

• If an OAuth access token expires, the framework tries to obtain a new access token and, if successful, retries the query. If
a request for a new access token or session ID fails, you get a kSFOAuthErrorDomain error code. For example, the access
token expires, and the OAuth refresh token is invalid. This scenario rarely occurs.

• If the low-level HTTP request fails, you get an RKRestKitErrorDomain error code. For example, a Salesforce server
becomes temporarily inaccessible.

requestDidCancelLoad and requestDidTimeout Methods

The requestDidCancelLoad and requestDidTimeout delegate methods are self-describing and don’t return an error
code. You can choose to handle the result however you want: display an error message, write to the log, retry the request, and
so on.

Creating REST Requests

Salesforce Mobile SDK for iOS natively supports many types of SOQL and SOSL REST requests. The SFRestAPI class
provides factory methods that handle most of the syntactical details for you. Mobile SDK also offers considerable flexibility
for how you create REST requests.

• For standard SOQL queries and SOSL searches, SFRestAPI methods create query strings based on minimal data input
and package them in an SFRestRequest object that can be sent to the Salesforce server.

• If you are using a Salesforce REST API that isn’t based on SOQL or SOSL, SFRestRequest methods let you configure
the request itself to match the API format.

• The SFRestAPI (QueryBuilder) category provides methods that create free-form SOQL queries and SOSL search
strings so you don’t have to manually format the query or search string.

• Request methods in the SFRestAPI (Blocks) category let you pass callback code as block methods, instead of using a
delegate object.

Sending a REST Request
Salesforce Mobile SDK for iOS natively supports many types of SOQL and SOSL REST requests. Luckily, the SFRestAPI
provides factory methods that handle most of the syntactical details for you.

At runtime, Mobile SDK creates a singleton instance of SFRestAPI. You use this instance to obtain an SFRestRequest
object and to send that object to the Salesforce server.

21

Developing a Native iOS AppNative iOS Development

To send a REST request to the Salesforce server from an SFRestAPI delegate:

1. Build a SOQL, SOSL, or other REST request string.

For standard SOQL and SOSL queries, it’s most convenient and reliable to use the factory methods in the SFRestAPI
class. See Supported Operations.

2. Create an SFRestRequest object with your request string.

Message the SFRestAPI singleton with the request factory method that suits your needs. For example, this code uses
theSFRestAPI:requestForQuery: method, which prepares a SOQL query.

// Send a request factory message to the singleton SFRestAPI instance
SFRestRequest *request = [[SFRestAPI sharedInstance]

requestForQuery:@"SELECT Name FROM User LIMIT 10"];

3. Send the send:delegate: message to the shared SFRestAPI instance. Use your new SFRestRequest object as the
send: parameter. The second parameter designates an SFRestDelegate object to receive the server’s response. In the
following example, the class itself implements the SFRestDelegate protocol, so it sets delegate: to self.

// Use the singleton SFRestAPI instance to send the
// request, specifying this class as the delegate.
[[SFRestAPI sharedInstance] send:request delegate:self];

SFRestRequest Class

Salesforce Mobile SDK provides the SFRestRequest interface as a convenience class for apps. SFRestAPI provides request
methods that use your input to form a request. This request is packaged as an SFRestRequest instance and returned to your
app. In most cases you don’t manipulate the SFRestRequest object. Typically, you simply pass it unchanged to the
SFRestAPI:send:delegate: method.

If you’re sending a REST request that isn’t directly supported by the Mobile SDK—for example, if you want to use the Chatter
REST API—you can manually create and configure an SFRestRequest object.

Using SFRestRequest Methods

SFRestAPI tools support SOQL and SOSL statements natively: they understand the grammar and can format valid requests
based on minimal input from your app. However, Salesforce provides some product-specific REST APIs that have no
relationship to SOQL queries or SOSL searches. You can still use Mobile SDK resources to configure and send these requests.
This process is similar to sending a SOQL query request. The main difference is that you create and populate your
SFRestRequest object directly, instead of relying on SFRestAPI methods.

To send a non-SOQL and non-SOSL REST request using the Mobile SDK:

1. Create an instance of SFRestRequest.
2. Set the properties you need on the SFRestRequest object.
3. Call send:delegate: on the singleton SFRestAPI instance, passing in the SFRestRequest object you created as the

first parameter.

The following example performs a GET operation to obtain all items in a specific Chatter feed.

SFRestRequest *request = [[SFRestRequest alloc] init];
[request setDelegate:self];
[request setEndpoint:kSFDefaultRestEndpoint];

22

Developing a Native iOS AppNative iOS Development

[request setMethod:SFRestMethodGET];
[request setPath:[NSString stringWithFormat:@"/v26.0/chatter/feeds/record/%@/feed-items",

recordId]];
[[SFRestAPI sharedInstance] send:request delegate:self];

4. Alternatively, you can create the same request using the requestWithMethod:path:queryParams class method.

SFRestRequest *request =
[SFRestRequest requestWithMethod:SFRestMethodGET

path:[NSString stringWithFormat:
@"/v26.0/chatter/feeds/record/%@/feed-items",
recordId]

queryParams:nil];
[[SFRestAPI sharedInstance] send:request delegate:self];

5. To perform a request with parameters, create a parameter string, and then use the SFJsonUtils:objectFromJSONString
static method to wrap it in an NSDictionary object. (If you prefer, you can create your NSDictionary object directly,
before the method call, instead of creating it inline.)

The following example performs a POST operation that adds a comment to a Chatter feed.

NSString *body = [NSString stringWithFormat:@"{\"body\" : {\"messageSegments\" :
[{ \"type\" : \"Text\", \"text\" : \"%@\"}

] } }",
comment];

SFRestRequest *request =
[SFRestRequest requestWithMethod:SFRestMethodPOST

path:[NSString stringWithFormat:
@"/v26.0/chatter/feeds/record/%@/feed-items",
recordId]

queryParams:(NSDictionary *)[SFJsonUtils objectFromJSONString:body]];
[[SFRestAPI sharedInstance] send:request delegate:self];

SFRestAPI (Blocks) Category

If you prefer, you can use blocks instead of a delegate to execute callback code. Salesforce Mobile SDK for native iOS provides
a block corollary for each SFRestAPI request method. These methods are defined in the SFRestAPI (Blocks) category.

Block request methods look a lot like delegate request methods. They all return a pointer to SFRestRequest, and they require
the same parameters. Block request methods differ from their delegate siblings in these ways:

1. In addition to copying the REST API parameters, each method requires two blocks: a fail block of type SFRestFailBlock,
and a complete block of type SFRestDictionaryResponseBlock or type SFRestArrayResponseBlock, depending
on the expected response data.

2. Block-based methods send your request for you, so you don’t need to call a separate send method. If your request fails, you
can use the SFRestRequest * return value to retry the request. To do this, use the
SFRestAPI:sendRESTRequest:failBlock:completeBlock: method.

Judicious use of blocks and delegates can help fine-tune your app’s readability and ease of maintenance. Prime conditions for
using blocks often correspond to those that mandate inline functions in C++ or anonymous functions in Java. However, this
observation is just a general suggestion. Ultimately, you need to make a judgement call based on research into your app’s
real-world behavior.

23

Developing a Native iOS AppNative iOS Development

SFRestAPI (QueryBuilder) Category

If you’re unsure of the correct syntax for a SOQL query or a SOSL search, you can get help from the SFRestAPI
(QueryBuilder) category methods. These methods build query strings from basic conditions that you specify, and return
the formatted string. You can pass the returned value to one of the following SFRestAPI methods.

• – (SFRestRequest *)requestForQuery:(NSString *)soql;

• – (SFRestRequest *)requestForSearch:(NSString *)sosl;

SFRestAPI (QueryBuilder) provides two static methods each for SOQL queries and SOSL searches: one takes minimal
parameters, while the other accepts a full list of options.

SOSL Methods

SOSL query builder methods are:

+ (NSString *) SOSLSearchWithSearchTerm:(NSString *)term
objectScope:(NSDictionary *)objectScope;

+ (NSString *) SOSLSearchWithSearchTerm:(NSString *)term
fieldScope:(NSString *)fieldScope
objectScope:(NSDictionary *)objectScope

limit:(NSInteger)limit;

Parameters for the SOSL search methods are:

• term is the search string. This string can be any arbitrary value. The method escapes any SOSL reserved characters before
processing the search.

• fieldScope indicates which fields to search. It’s either nil or one of the IN search group expressions: “IN ALL FIELDS”,
“IN EMAIL FIELDS”, “IN NAME FIELDS”, “IN PHONE FIELDS”, or “IN SIDEBAR FIELDS”. A nil value
defaults to “IN NAME FIELDS”. See Salesforce Object Search Language (SOSL).

• objectScope specifies the objects to search. Acceptable values are:

◊ nil—No scope restrictions. Searches all searchable objects.
◊ An NSDictionary object pointer—Corresponds to the SOSL RETURNING fieldspec. Each key is an sObject

name; each value is a string that contains a field list as well as optional WHERE, ORDER BY, and LIMIT clauses
for the key object.

If you use an NSDictionary object, each value must contain at least a field list. For example, to represent the following
SOSL statement in a dictionary entry:

FIND {Widget Smith}
IN Name Fields
RETURNING Widget__c (name Where createddate = THIS_FISCAL_QUARTER)

set the key to “Widget__c” and its value to “name WHERE createddate = “THIS_FISCAL_QUARTER”. For
example:

[SFRestAPI
SOSLSearchWithSearchTerm:@"all of these will be escaped:~{]"

objectScope:[NSDictionary
dictionaryWithObject:@"name WHERE

createddate="THIS_FISCAL_QUARTER"

forKey:@"Widget__c"]];

24

Developing a Native iOS AppNative iOS Development

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_Left.htm#StartTopic=Content/sforce_api_calls_sosl_in.htm

◊ NSNull—No scope specified.

• limit—If you want to limit the number of results returned, set this parameter to the maximum number of results you
want to receive.

SOQL Methods

SOQL QueryBuilder methods that construct SOQL strings are:

+ (NSString *) SOQLQueryWithFields:(NSArray *)fields
sObject:(NSString *)sObject
where:(NSString *)where
limit:(NSInteger)limit;

+ (NSString *) SOQLQueryWithFields:(NSArray *)fields
sObject:(NSString *)sObject
where:(NSString *)where

groupBy:(NSArray *)groupBy
having:(NSString *)having
orderBy:(NSArray *)orderBy
limit:(NSInteger)limit;

Parameters for the SOQL methods correspond to SOQL query syntax. All parameters except fields and sObject can be
set to nil.

DescriptionParameter name

An array of field names to be queried.fields

Name of the object to query.sObject

An expression specifying one or more query conditions.where

An array of field names to use for grouping the resulting
records.

groupBy

An expression, usually using an aggregate function, for filtering
the grouped results. Used only with groupBy.

having

An array of fields name to use for ordering the resulting
records.

orderBy

Maximum number of records you want returned.limit

See SOQL SELECT Syntax.

SOSL Sanitizing

The QueryBuilder category also provides a class method for cleaning SOSL search terms:

+ (NSString *) sanitizeSOSLSearchTerm:(NSString *)searchTerm;

25

Developing a Native iOS AppNative iOS Development

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_select.htm

This method escapes every SOSL reserved character in the input string, and returns the escaped version. For example:

NSString *soslClean = [SFRestAPI sanitizeSOSLSearchTerm:@"FIND {MyProspect}"];

This call returns “FIND \{MyProspect\}”.

The sanitizeSOSLSearchTerm: method is called in the implementation of the SOSL and SOQL QueryBuilder methods,
so you don’t need to call it on strings that you’re passing to those methods. However, you can use it if, for instance, you’re
building your own queries manually. SOSL reserved characters include:

\ ? & | ! { } [] () ^ ~ * : " ' + -

iOS Sample Applications
The app you created in Running the Xcode Project Template App is itself a sample application, but it only does one thing:
issue a SOQL query and return a result. The native iOS sample apps have a lot more functionality you can examine and work
into your own apps.

• The RestAPIExplorer sample app exercises all of the native REST API wrappers. It is in the Mobile SDK for iOS under
native/SampleApps/RestAPIExplorer.

• The NativeSqlAggregator sample app shows SQL aggregation examples as well as a native SmartStore implementation.
It resides in the Mobile SDK for iOS under native/SampleApps/NativeSqlAggregator.

26

iOS Sample ApplicationsNative iOS Development

Chapter 3

Native Android Development

Salesforce Mobile SDK delivers libraries and sample projects for developing
native mobile apps on Android.

In this chapter ...

• Android Native Quick Start
The Android native SDK provides two main features:• Native Android Requirements
• Automation of the OAuth2 login process, making it easy to integrate the

process with your app.
• Installing and Uninstalling Salesforce

Mobile SDK for Android
• Access to the Salesforce REST API, with utility classes that simplify that

access.
• Creating a New Android Project
• Setting Up Sample Projects in Eclipse
• Developing a Native Android App The Android Salesforce Mobile SDK includes several sample native applications.

It also provides an ant target for quickly creating a new application.• Android Sample Applications

27

Android Native Quick Start
Use the following procedure to get started quickly.

1. Make sure you meet all of the native Android requirements.
2. Install the Mobile SDK for Android.
3. At the command line, run an ant script to create a new Android project , and then run that template application from

the command line.
4. Set up your projects in Eclipse.

Native Android Requirements
• Java JDK 6.

• Apache Ant 1.8 or later.

• Android SDK, version 21 or later—http://developer.android.com/sdk/installing.html.

Note: For best results, install all previous versions of the Android SDK as well as your target version.

• Eclipse 3.6 or later. See http://developer.android.com/sdk/requirements.html for other versions.

• Android ADT (Android Development Tools) plugin for Eclipse, version 21 or
later—http://developer.android.com/sdk/eclipse-adt.html#installing.

• In order to run the application in the Emulator, you need to set up at least one Android Virtual Device (AVD) that targets
Platform 2.2 or above (we recommend 4.0 or above). To learn how to set up an AVD in Eclipse, follow the instructions
at http://developer.android.com/guide/developing/devices/managing-avds.html.

• A Developer Edition organization with a remote access application.

The SalesforceSDK project is built with the Android 3.0 (Honeycomb) library. The primary reason for this is that we want
to be able to make a conditional check at runtime for file system encryption capabilities. This check is bypassed on earlier
Android platforms; thus, you can still use the salesforcesdk.jar in earlier Android application versions, down to the
mininum-supported Android 2.2.

Installing and Uninstalling Salesforce Mobile SDK for Android
For the fastest, easiest route to Android development, use NPM to install Salesforce Mobile SDK for Android.

1. If you’ve already successfully installed Node.js and npm, skip to Step 4.

2. Install Node.js and npm on your system.

a. a. Download Node.js from www.nodejs.org/download.

b. b. Run the downloaded installer to install Node.js and npm. Accept all prompts asking for permission to install.

28

Android Native Quick StartNative Android Development

http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/eclipse-adt.html#installing
http://developer.android.com/guide/developing/devices/managing-avds.html
http://www.nodejs.org/download

3. At a command prompt, type npm and press Return to make sure your installation was successful. If you don’t see a page
of usage information, revisit Step 2 to find out what’s missing.

4. Use the forcedroid package to install the Mobile SDK either globally (recommended) or locally.

a. To install Salesforce Mobile SDK in a global location, append the “global” option, -g, to the end of the command.
 For non-Windows environments, use the sudo command:

sudo npm install forcedroid -g

On Windows:

npm install forcedroid -g

With the -g option, you run npm install from any directory. In non-Windows environments, the NPM utility
installs the package under /usr/local/lib/node_modules, and links binary modules in /usr/local/bin. Most
users need the sudo option because they lack read-write permissions in /usr/local. In Windows environments,
global packages are installed in %APPDATA%\npm\node_modules, and binaries are linked in %APPDATA%\npm.

b. To install Salesforce Mobile SDK in a local directory, cd to that directory and use the NPM command without sudo
or the –g option:

npm install forcedroid

This command installs Salesforce Mobile SDK in a node_modules directory under your current directory. It links
binary modules in ./node_modules/.bin/. In this scenario, you rarely use sudo because you typically install in a
local folder where you already have read-write permissions.

Uninstalling the Forcedroid Package
The instructions for uninstalling the forcedroid package vary with whether you installed the package globally or locally.

If you installed the package globally, you can run the uninstall command from any folder. Be sure to use the –g option.
On a Unix-based platform such as Mac OS X, use sudo as well.

$ pwd
/Users/joeuser
$ sudo npm uninstall forcedroid -g
$

If you installed the package locally, run the uninstall command from the folder where you installed the package. For
example:

cd <my_projects/my_sdk_folder>
npm uninstall forcedroid

If you try to uninstall a local installation from the wrong directory, you’ll get an error message similar to this:

npm WARN uninstall not installed in /Users/joeuser/node_modules:
"my_projects/my_sdk_folder/node_modules/forcedroid"

29

Installing and Uninstalling Salesforce Mobile SDK for AndroidNative Android Development

(Optional) Clone the Salesforce Mobile SDK Source Code from GitHub
If you’re adventurous or just curious, you can choose to install the Salesforce Mobile SDK source code from its GitHub
repository. Doing so allows you to contribute to the open source and keep up with source code changes.

1. In your browser, navigate to the Mobile SDK Android GitHub repository:
https://github.com/forcedotcom/SalesforceMobileSDK-Android.

2. Clone the repository to your local file system by issuing the following command: git clone
git://github.com/forcedotcom/SalesforceMobileSDK-Android.git

3. Open a command prompt in the directory where you installed the cloned repository, and run the install script from the
command line: ./install.sh

Note: Windows users: Run cscript install.vbs.

Create shell variables:

1. ANDROID_SDK_DIR pointing to the Android SDK directory
2. SALESFORCE_SDK_DIR pointing to your clone of the Salesforce Mobile SDK repository, for example:

/home/jon/SalesforceMobileSDK-Android

3. NATIVE_DIR pointing to $SALESFORCE_SDK_DIR/native
4. TARGET_DIR pointing to a location you’ve defined to contain your Android project

Note: These variables are for your own convenience. If you don’t set up these variables, make sure to replace
$ANDROID_SDK_DIR, $SALESFORCE_SDK_DIR, $NATIVE_DIR and $TARGET_DIR in the various code snippets
in this guide with the actual paths.

Creating a New Android Project
To create a new app, you use forcedroid again on the command line. You have two options for configuring your app. You
can:

• Configure your application options interactively as prompted by the forcedroid app, or

• Specify your application options and values directly at the command line.

To enter application options interactively, type <forcedroid_path>/forcedroid create. The forcedroid utility prompts
you for each configuration option.

30

Creating a New Android ProjectNative Android Development

https://github.com/forcedotcom/SalesforceMobileSDK-Android

To specify your configuration directly with command line options, type forcedroid without arguments. The list of available
options displays:

$ node_modules/.bin/forcedroid
Usage:
forcedroid create

--apptype=<Application Type> (native, hybrid_remote, hybrid_local)
--appname=<Application Name>
--targetdir=<Target App Folder>
--packagename=<App Package Identifier> (com.my_company.my_app)
--apexpage=<Path to Apex start page> (/apex/MyPage — Only required/used for

'hybrid_remote')
[--usesmartstore=<Whether or not to use SmartStore> (--usesmartstore=true — false by

default)]

Using this information, type forcedroid create, followed by your options and values. For example:

$ node_modules/.bin/forcedroid create --apptype="native" --appname="package-test"
--targetdir="PackageTest" --packagename="com.test.my_new_app"

Here are more verbose descriptions of the parameters:

DescriptionParameter Name

One of the following:--apptype

• “native”

• “hybrid_remote” (server-side hybrid app using VisualForce)

• “hybrid_local” (client-side hybrid app that doesn’t use
VisualForce)

Name of your application--appname

Folder in which you want your project to be created. If the
folder doesn’t exist, the script creates it.

--targetdir

Package identifier for your application (for example,
“com.acme.app”)

--packagename

(hybrid remote apps only) Server path to the Apex start page.
 For example: /apex/MyAppStartPage

--apexpage

(Optional) Include only if you want to use SmartStore for
offline data. Defaults to false if not specified.

--usesmartstore=true

Building and Running Your App From the Command Line
After the command line returns to the command prompt, the forcedroid script prints instructions for running Android utilities
to configure and clean your project. Follow these instructions only if you want to build and run your app from the command
line.

31

Creating a New Android ProjectNative Android Development

1. To build the new application, type the following commands at the command prompt:

cd <your_project_directory>
$ANDROID_SDK_DIR/tools/android update project -p .

where ANDROID_SDK_DIR points to your Android SDK directory.

2. To run the application, start an emulator or plug in your device. Then, type the following command at the command
prompt:

ant installd

Note: You can safely ignore the following warning:

It seems that there are sub-projects. If you want to update them please use the
--subprojects parameter.

The Android project you created contains a simple application you can build and run.

Importing and Building Your App in Eclipse
The forcedroid script also prints instructions for running the new app in the Eclipse editor.

1. Launch Eclipse and select the –target_dir directory as your workspace directory.

2. Select Window > Preferences, choose the Android section, and enter the Android SDK location.

3. Click OK.

4. Select File > Import and select General > Existing Projects into Workspace.

5. Click Next.

6. Specify the forcedroid/native directory as your root directory. Next to the list that displays, click Deselect All, then
browse the list and check the SalesforceSDK project.

7. If you set –use_smartstore=true, check the SmartStore project as well.

8. Click Import.

9. Repeat Steps 4–8. In Step 6, choose your target directory as the root, then select only your new project.

When you’ve finished importing the projects, Eclipse automatically builds your workspace. This process can take several
minutes. When the status bar reports zero errors, you’re ready to run the project.

1. In your Eclipse workspace, Control-click or right-click your project.
2. From the popup menu, choose Run As > Android Application.

Eclipse launches your app in the emulator or on your connected Android device.

Android Template Application
The native template app for Android allows you to login and do standard CRM tasks, such as queries and inserts.

To build the new application:

1. In a text editor, open $TARGET_DIR/res/values/bootconfig.xml.
2. Enter your OAuth client ID and callback URL, and then save the file.

32

Android Template ApplicationNative Android Development

3. Open a command prompt and enter the following commands:

cd $TARGET_DIR
$ANDROID_SDK_DIR/tools/android update project -p . -t 1
ant clean debug

Note: The -t <id> parameter specifies API level of the target Android version. Use android.bat list
targets to see the IDs for API versions installed on your system. See Native Android Requirements on page
28 for supported API levels.

4. If your emulator is not running, use the Android AVD Manager to start it. If you are using a real device, connect it.
5. Enter ant installd.

For an in-depth look at the native Android template app, see TemplateApp Class.

Setting Up Sample Projects in Eclipse
The repository you cloned has other sample apps you can run. To import those into Eclipse:

1. Launch Eclipse and select —target_dir as your workspace directory.
2. If you haven’t done so already, select Window > Preferences, choose the Android section, and enter the Android SDK

location. Click OK.
3. Select File > Import and select General > Existing Projects into Workspace.
4. Click Next.
5. Select forcedroid/native as your root directory and import the projects listed in Android Project Files.

Android Project Files
Inside the $NATIVE_DIR, you will find several projects:

1. SalesforceSDK—The SalesforceSDK, which provides support for OAuth2 and REST API calls
2. test/SalesforceSDKTest—Tests for the SalesforceSDK project
3. TemplateApp—Template used when creating new native applications using SalesforceSDK
4. test/TemplateAppTest—Tests for the TemplateApp project
5. SampleApps/RestExplorer—App using SalesforceSDK to explore the REST API calls
6. SampleApps/NativeSqlAggregator —A native app that uses SmartStore

Developing a Native Android App
The native Android version of the Salesforce Mobile SDK empowers you to create rich mobile apps that directly use the
Android operating system on the host device. To create these apps, you need to understand Java and Android development
well enough to write code that uses Mobile SDK native classes.

33

Setting Up Sample Projects in EclipseNative Android Development

The create_native Script
The create_native script creates the app folder you specify, then populates it with a project file, build file, manifest file
and resource files. Next, it copies the entire TemplateApp project to the new folder. It then updates the project properties,
file names, class names, and directory paths to match the new app’s configuration. As a result, your new project replicates all
the settings and components used by the TemplateApp project.

If your new app supports SmartStore, the script also:

• Adds the SmartStore support library to the app directory.

• References the SmartStore library in the new project’s properties.

• Changes the application class to extend SalesforceSDKManagerWithSmartStore rather than
SalesforceSDKManager.

Finally, the script posts an important message:

“Before you ship, make sure to plug in your oauth client id and callback url in:

${target.dir}/res/values/bootconfig.xml”

If you’re wondering where to get the OAuth client ID and callback URL, look in your connected app definition in your
Salesforce organization. The OAuth client ID is the connected app’s Consumer Key. The callback URL is the one you specified
when you created your connected app. You enter these keys in the res/values/bootconfig.xml file of your project,
which contains a few clearly named <string> nodes. Here’s an example bootconfig.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="remoteAccessConsumerKey">3MVG92.uWdyphVj4bnolD7yuIpCQsNgddW

tqRND3faxrv9uKnbj47H4RkwheHA2lKY4cBusvDVp0M6gdGE8hp</string>
<string name="oauthRedirectURI">sfdc:///axm/detect/oauth/done</string>
<string-array name="oauthScopes">

<item>api</item>
</string-array>

</resources>

The create_native script pre-populates oauthRedirectURI and remoteAccessConsumerKey strings with dummy
values. Replace those values with the strings from your connected app definition.

Android Application Structure
Typically, native Android apps that use the Mobile SDK require:

• An application entry point class that extends android.app.Application.

• At least one activity that extends android.app.Activity.

With the Mobile SDK, you:

• Create a stub class that extends android.app.Application.

• Implement onCreate() in your Application stub class to call SalesforceSDKManager.initNative().

• Extend SalesforceActivity, SalesforceListActivity, or SalesforceExpandableListActivity. This
extension is optional but recommended.

34

The create_native ScriptNative Android Development

The top-level SalesforceSDKManager class implements passcode functionality for apps that use passcodes, and fills in the
blanks for those that don’t. It also sets the stage for login, cleans up after logout, and provides a special event watcher that
informs your app when a system-level account is deleted. OAuth protocols are handled automatically with internal classes.

The SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity classes offer
free handling of application pause and resume events and related passcode management. We recommend that you extend one
of these classes for all activities in your app—not just the main activity. If you use a different base class for an activity, you’re
responsible for replicating the pause and resume protocols found in SalesforceActivity.

Within your activities, you interact with Salesforce objects by calling Salesforce REST APIs. The Mobile SDK provides the
com.salesforce.androidsdk.rest package to simplify the REST request and response flow.

You define and customize user interface layouts, image sizes, strings, and other resources in XML files. Internally, the SDK
uses an R class instance to retrieve and manipulate your resources. However, the Mobile SDK makes its resources directly
accessible to client apps, so you don’t need to write code to manage these features.

35

Developing a Native Android AppNative Android Development

Native API Packages
Salesforce Mobile SDK groups native APIs into seven packages. Here’s a quick overview of these packages and points of
interest within them.

DescriptionPackage name

Contains SalesforceSDKManager, the entry point class
for all Mobile SDK applications. This package also contains
app utility classes for internal use.

app

36

Native API PackagesNative Android Development

DescriptionPackage name

Internal use only. Handles login, OAuth authentication, and
HTTP access.

auth

Internal classes used by hybrid applications to create a bridge
between native code and Javascript code. Includes plugins that

phonegap

implement Mobile SDK Javascript libraries. If you want to
implement your own Javascript plugin within an SDK app,
extend ForcePlugin and implement the abstract execute()
function. See ForcePlugin Class on page 43.

Provides classes for handling REST API activities. These
classes manage the communication with the Salesforce instance

rest

and handle the HTTP protocol for your REST requests. See
ClientManager and RestClient for information on
available synchronous and asynchronous methods for sending
requests.

Internal classes that handle passcodes and encryption. If you
provide your own key, you can use the Encryptor class to
generate hashes. See Encryptor.

security

Mostly internal classes that define the UI activities common
to all Mobile SDK apps. These packages include

ui, ui.sfhybrid, ui.sfnative

SalesforceActivity, SalesforceListActivity, and
SalesforceExpandableListActivity, which are
intended to serve individually as potential base classes for all
app activities.

Contains utility and test classes. These classes are mostly for
internal use, with some notable exceptions.

util

• You can register an instance of the
TokenRevocationReceiver class to detect when an
OAuth access token has been revoked.

• You can implement the EventObserver interface to
eavesdrop on any event type.

• The EventsListenerQueue class is useful for
implementing your own tests.

• Browse the EventsObservable source code to see a list
of all supported event types.

Overview of Native Classes
This overview of the Mobile SDK native classes give you a look at pertinent details of each class and a sense of where to find
what you need.

37

Overview of Native ClassesNative Android Development

SalesforceSDKManager Class

The SalesforceSDKManager class is the entry point for all native Android applications that use the Salesforce Mobile
SDK. It provides mechanisms for:

• Login and logout

• Passcodes

• Encryption and decryption of user data

• String conversions

• User agent access

• Application termination

• Application cleanup

initNative() Method

During startup, you initialize the singleton SalesforceSDKManager object by calling its static initNative() method.
This method takes four arguments:

DescriptionParameter Name

An instance of Context that describes your application’s
context. In an Application extension class, you can satisfy

applicationContext

this parameter by passing a call to
getApplicationContext().

An instance of your implementation of theKeyInterface
Mobile SDK interface. You are required to implement this
interface.

keyImplementation

The descriptor of the class that displays your main activity.
The main activity is the first activity that displays after login.mainActivity

(Optional) The class descriptor of your custom
LoginActivity class.loginActivity

Here’s an example from the TemplateApp:

SalesforceSDKManager.initNative(getApplicationContext(), new KeyImpl(), MainActivity.class);

In this example, KeyImpl is the app’s implementation of KeyInterface. MainActivity subclasses SalesforceActivity
and is designated here as the first activity to be called after login.

logout() Method

The SalesforceSDKManager.logout() method clears user data. For example, if you’ve introduced your own resources
that are user-specific, you don’t want them to persist into the next user session. SmartStore destroys user data and account
information automatically at logout.

Always call the superclass method somewhere in your method override, preferably after doing your own cleanup. Here’s a
pseudo-code example.

@Override
public void logout(Activity frontActivity) {

38

Developing a Native Android AppNative Android Development

// Clean up all persistent and non-persistent app artifacts
// Call superclass after doing your own cleanup
super.logout(frontActivity);

}

getLoginActivityClass() Method

This method returns the descriptor for the login activity. The login activity defines the WebView through which the Salesforce
server delivers the login dialog.

getUserAgent() Methods

The Mobile SDK builds a user agent string to publish the app’s versioning information at runtime. This user agent takes the
following form.

SalesforceMobileSDK/<salesforceSDK version> android/<android OS version> appName/appVersion
<Native|Hybrid>

Here’s a real-world example.

SalesforceMobileSDK/2.0 android mobile/4.2 RestExplorer/1.0 Native

To retrieve the user agent at runtime, call the SalesforceSDKManager.getUserAgent() method.

isHybrid() Method

Imagine that your Mobile SDK app creates libraries that are designed to serve both native and hybrid clients. Internally, the
library code switches on the type of app that calls it, but you need some way to determine the app type at runtime. To determine
the type of the calling app in code, call the boolean SalesforceSDKManager.isHybrid() method. True means hybrid,
and false means native.

KeyInterface Interface

KeyInterface is a required interface that you implement and pass into the SalesforceSDKManager.initNative() method.

getKey() Method

You are required to return a Base64-encoded encryption key from the getKey() abstract method. Use the Encryptor.hash()
and Encryptor.isBase64Encoded() helper methods to generate suitable keys. The Mobile SDK uses your key to encrypt
app data and account information.

AccountWatcher Class

AccountWatcher informs your app when the user’s account is removed through Settings. Without AccountWatcher, the
application gets no notification of these changes. It’s important to know when an account is removed so that its passcode and
data can be disposed of properly, and logout can begin.

AccountWatcher defines an internal interface, AccountRemoved, that each app must implement. SalesforceSDKManager
implements this interface to terminate the app’s current (front) activity and reset the passcode, if used, and encryption key.

39

Developing a Native Android AppNative Android Development

PasscodeManager Class

The PasscodeManager class manages passcode encryption and displays the passcode page as required. It also reads mobile
policies and caches them locally. This class is used internally to handle all passcode-related activities with minimal coding on
your part. As a rule, apps call only these three PasscodeManager methods:

• public void onPause(Activity ctx)

• public boolean onResume(Activity ctx)

• public void recordUserInteraction()

These methods must be called in any native activity class that

• Is in an app that requires a passcode, and

• Does not extend SalesforceActivity, SalesforceListActivity, or SalesforceExpandableListActivity.

You get this implementation for free in any activity that extends SalesforceActivity, SalesforceListActivity, or
SalesforceExpandableListActivity.

onPause() and onResume()

These methods handle the passcode dialog box when a user pauses and resumes the app. Call each of these methods in the
matching methods of your activity class. For example, SalesforceActivity.onPause() calls
PasscodeManager.onPause(), passing in its own class descriptor as the argument, before calling the superclass.

@Override
public void onPause() {

passcodeManager.onPause(this);
super.onPause();

}

Use the boolean return value of PasscodeManager.onResume() method as a condition for resuming other actions. In your
app’s onResume() implementation, be sure to call the superclass method before calling the PasscodeManager version. For
example:

@Override
public void onResume() {

super.onResume();
// Bring up passcode screen if needed
passcodeManager.onResume(this);

}

recordUserInteraction()

This method saves the time stamp of the most recent user interaction. Call PasscodeManager.recordUserInteraction()
in the activity's onUserInteraction() method. For example:

@Override
public void onUserInteraction() {

passcodeManager.recordUserInteraction();
}

40

Developing a Native Android AppNative Android Development

Encryptor class

The Encryptor helper class provides static helper methods for encrypting and decrypting strings using the hashes required
by the SDK. It’s important for native apps to remember that all keys used by the Mobile SDK must be Base64-encoded. No
other encryption patterns are accepted. Use the Encryptor class when creating hashes to ensure that you use the correct
encoding.

Most Encryptor methods are for internal use, but apps are free to use this utility as needed. For example, if an app implements
its own database, it can use Encryptor as a free encryption and decryption tool.

SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity Classes

SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity are the skeletal
base classes for native SDK activities. They extend android.app.Activity, android.app.ListActivity, and
android.app.ExpandableListActivity, respectively.

Each of these classes provides a free implementation of PasscodeManager calls. When possible, it’s a good idea to extend
one of these classes for all of your app’s activities, even if your app doesn’t currently use passcodes.

For passcode-protected apps: If any of your activities don’t extend SalesforceActivity, SalesforceListActivity,
or SalesforceExpandableListActivity, you’ll need to add a bit of passcode protocol to each of those activities. See
Using Passcodes on page 43

Each of these activity classes contain a single abstract method:

public abstract void onResume(RestClient client);

This method overloads the Activity.onResume() method, which is implemented by the class. The class method calls
your overload after it instantiates a RestClient instance. Use this method to cache the client that’s passed in, and then use
that client to perform your REST requests.

UI Classes

Activities in the com.salesforce.androidsdk.ui package represent the UI resources that are common to all Mobile
SDK apps. You can style, skin, theme, or otherwise customize these resources through XML. With the exceptions of
SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity, do not override
these activity classes with intentions of replacing the resources at runtime.

ClientManager and RestClient Classes

ClientManager works with the Android AccountManager class to manage user accounts. More importantly for apps, it
provides access to RestClient instances through two methods:

• getRestClient()

• peekRestClient()

The getRestClient() method asynchronously creates a RestClient instance for querying Salesforce data. Asynchronous
in this case means that this method is intended for use on UI threads. The peekRestClient() method creates a RestClient
instance synchronously, for use in non-UI contexts.

Once you get the RestClient instance, you can use it to send REST API calls to Salesforce. Again, the method you call
depends on whether you’re calling from a UI context. The RestClient methods for sending HTTP requests are:

41

Developing a Native Android AppNative Android Development

• sendAsync()—Call this method if you called ClientManager.getRestClient()

• sendSync()—Call this method if you called ClientManager.peekRestClient()

You can choose from three overloads of RestClient.sendSync(), depending on the degree of information you can provide
for the request.

LoginActivity Class

LoginActivity defines the login screen. The login workflow is worth describing because it explains two other classes in the
activity package. In the login activity, if you press the Menu button, you get three options: Clear Cookies, Reload, and Pick
Server. Pick Server launches an instance of the ServerPickerActivity class, which displays Production, Sandbox, and
Custom Server options. When a user chooses Custom Server, ServerPickerActivity launches an instance of the
CustomServerURLEditor class. This class displays a popover dialog that lets you type in the name of the custom server.

Other UI Classes

Several other classes in the ui package are worth mentioning, although they don’t affect your native API development efforts.

The PasscodeActivity class provides the UI for the passcode screen. It runs in one of three modes: Create, CreateConfirm,
and Check. Create mode is presented the first time a user attempts to log in. It prompts the user to create a passcode. After
the user submits the passcode, the screen returns in CreateConfirm mode, asking the user to confirm the new passcode.
Thereafter, that user sees the screen in Check mode, which simply requires the user to enter the passcode.

SalesforceR is a deprecated class. This class was required when the Mobile SDK was delivered in JAR format, to allow
developers to edit resources in the binary file. Now that the Mobile SDK is available as a library project, SalesforceR is not
needed. Instead, you can override resources in the SDK with your own.

SalesforceDroidGapActivity and SalesforceGapViewClient are used only in hybrid apps.

UpgradeManager Class

UpgradeManager provides a mechanism for silently upgrading the SDK version installed on a device. This class stores the
SDK version information in a shared preferences file on the device. To perform an upgrade, UpgradeManager queries the
current SalesforceSDKManager instance for its SDK version and compares its version to the device’s version information.
If an upgrade is necessary—for example, if there are changes to a database schema or to encryption patterns—UpgradeManager
can take the necessary steps to upgrade SDK components on the device. This class is intended for future use. Its implementation
in Mobile SDK 2.0 simply stores and compares the version string.

Utility Classes

Though most of the classes in the util package are for internal use, several of them can also benefit third-party developers.

DescriptionClass

See the source code for a list of all events that the Mobile SDK
for Android propagates.

EventsObservable

Implement this interface to eavesdrop on any event. This
functionality is useful if you’re doing something special when
certain types of events occur.

EventsObserver

42

Developing a Native Android AppNative Android Development

DescriptionClass

This class handles what happens when an administrator
revokes a user’s refresh token. See Handling Refresh Token
Revocation in Android Native Apps on page 132.

TokenRevocationReceiver

You can directly call this static helper class. It parses a given
URI, breaks its parameters into a series of key/value pairs, and
returns them in a map.

UriFragmentParser

ForcePlugin Class

All classes in thecom.salesforce.androidsdk.phonegap package are intended for hybrid app support. Most of these
classes implement Javascript plugins that access native code. The base class for these Mobile SDK plugins is ForcePlugin.
If you want to implement your own Javascript plugin in a Mobile SDK app, extend ForcePlugin, and implement the abstract
execute() function.

ForcePlugin extends CordovaPlugin, which works with the Javascript framework to let you create a Javascript module
that can call into native functions. PhoneGap provides the bridge on both sides: you create a native plugin with CordovaPlugin,
then you create a Javascript file that mirrors it. Cordova calls the plugin’s execute() function when a script calls one of the
plugin’s Javascript functions.

Using Passcodes
User data in Mobile SDK apps is secured by encryption. The administrator of your Salesforce org has the option of requiring
the user to enter a passcode for connected apps. In this case, your app uses that passcode as an encryption hash key. If the
Salesforce administrator doesn’t require a passcode, you’re responsible for providing your own key.

Salesforce Mobile SDK does all the work of implementing the passcode workflow. It calls the passcode manager to obtain the
user input, and then combines the passcode with prefix and suffix strings into a hash for encrypting the user's data. It also
handles decrypting and re-encrypting data when the passcode changes. If an organization changes its passcode requirement,
the Mobile SDK detects the change at the next login and reacts accordingly. If you choose to use a passcode, your only
responsibility is to implement the SalesforceSDKManager.getKey() method. All your implementation has to do in this
case is return a Base64-encoded string that can be used as an encryption key.

Internally, passcodes are stored as Base64-encoded strings. The SDK uses the Encryptor class for creating hashes from
passcodes. You should also use this class to generate a hash when you provide a key instead of a passcode. Passcodes and keys
are used to encrypt and decrypt SmartStore data as well as oAuth tokens, user identification strings, and related security
information. To see exactly what security data is encrypted with passcodes, browse the ClientManager.changePasscode()
method.

Mobile policy defines certain passcode attributes, such as the length of the passcode and the timing of the passcode dialog.
Mobile policy files for connected apps live on the Salesforce server. If a user enters an incorrect passcode more than ten
consecutive times, the user is logged out. The Mobile SDK provides feedback when the user enters an incorrect passcode,
apprising the user of how many more attempts are allowed. Before the screen is locked, the PasscodeManager class stores
a reference to the front activity so that the same activity can be resumed if the screen is unlocked.

If you define activities that don’t extend SalesforceActivity, SalesforceListActivity, or
SalesforceExpandableListActivity in a passcode-protected app, be sure to call these three PasscodeManager
methods from each of those activity classes:

43

Using PasscodesNative Android Development

• PasscodeManager.onPause()

• PasscodeManager.onResume(Activity)

• PasscodeManager.recordUserInteraction()

Call onPause() and onResume() from your activity's methods of the same name. Call recordUserInteraction()
from your activity’s onUserInteraction() method. Pass your activity class descriptor to onResume(). These calls ensure
that your app enforces passcode security during these events. See PasscodeManager Class on page 40.

Note: The SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity
classes implement these mandatory methods for you for free. Whenever possible, base your activity classes on one of
these classes.

Resource Handling
Salesforce Mobile SDK resources are configured in XML files that reside in the native/SalesforceSDK/res folder. You
can customize many of these resources by making changes in this folder.

Resources in the /res folder are grouped into categories, including:

• Drawables—Backgrounds, drop shadows, image resources such as PNG files

• Layouts—Screen configuration for any visible component, such as the passcode screen

• Values—Strings, colors, and dimensions that are used by the SDK

Two additional resource types are mostly for internal use:

• Menus

• XML

Drawable, layout, and value resources are subcategorized into folders that correspond to a variety of form factors. These
categories handle different device types and screen resolutions. Each category is defined in its folder name, which allows the
resource file name to remain the same for all versions. For example, if the developer provides various sizes of an icon named
icon1.png, for example, the smart phone version goes in one folder, the low-end phone version goes in another folder, while
the tablet icon goes into a third folder. In each folder, the file name is icon1.png. The folder names use the same root but
with different suffixes.

The following table describes the folder names and suffixes.

UsageFolder name

Generic versions of drawable resourcesdrawable

High resolution; for most smart phonesdrawable-hdpi

Low resolution; for low-end feature phonesdrawable-ldpi

Medium resolution; for low-end smart phonesdrawable-mdpi

For tablet screens in landscape orientationdrawable-xlarge

For tablet screens in portrait orientationdrawable-xlarge-port

Generic versions of layoutslayout

For landscape orientationlayout-land

44

Resource HandlingNative Android Development

UsageFolder name

For tablet screenslayout-xlarge

Generic styles and valuesvalues

For tablet screensvalues-xlarge

The compiler looks for a resource in the folder whose name matches the target device configuration. If the requested resource
isn’t in the expected folder (for example, if the target device is a tablet, but the compiler can’t find the requested icon in the
drawables-xlarge or drawables-xlarge-port folder) the compiler looks for the icon file in the generic drawable
folder.

Layouts
Layouts in the Mobile SDK describe the screen resources that all apps use. For example, layouts configure dialog boxes that
handle logins and passcodes.

The name of an XML node in a layout indicates the type of control it describes. For example, the following EditText node
from res/layout/sf__passcode.xml describes a text edit control:

<EditText android:id="@+id/sf__passcode_text"
style="@style/SalesforceSDK.Passcode.Text.Entry"
android:inputType="textPassword" />

In this case, the EditText control uses an android:inputType attribute. Its value, “textPassword”, tells the operating
system to obfuscate the typed input.

The style attribute references a global style defined elsewhere in the resources. Instead of specifying style attributes in place,
you define styles defined in a central file, and then reference the attribute anywhere it’s needed. The value
@style/SalesforceSDK.Passcode.Text.Entry refers to an SDK-owned style defined in
res/values/sf__styles.xml. Here’s the style definition.

<style name="SalesforceSDK.Passcode.Text.Entry">
<item name="android:layout_width">wrap_content</item>
<item name="android:lines">1</item>
<item name="android:maxLength">10</item>
<item name="android:minWidth">@dimen/sf__passcode_text_min_width</item>
<item name="android:imeOptions">actionGo</item>

</style>

You can override any style attribute with a reference to one of your own styles. Rather than changing sf__styles.xml,
define your styles in a different file, such as xyzcorp__styles.xml. Place your file in the res/values for generic device
styles, or the res/values-xlarge folder for tablet devices.

Values
The res/values and res/values-xlarge folders contain definitions of style components, such as dimens and colors, string resources,
and custom styles. File names in this folder indicate the type of resource or style component. To provide your own values,
create new files in the same folders using a file name prefix that reflects your own company or project. For example, if your
developer prefix is XYZ, you can override sf__styles.xml in a new file named XYZ__styles.xml.

ContainsFile name

Colors referenced by Mobile SDK stylessf__colors.xml

45

Developing a Native Android AppNative Android Development

ContainsFile name

Dimensions referenced by Mobile SDK stylessf__dimens.xml

Strings referenced by Mobile SDK styles; error messages can be overriddensf__strings.xml

Visual styles used by the Mobile SDKsf__styles.xml

App-defined stringsstrings.xml

You can override the values in strings.xml. However, if you used the create_native script to create your app, strings
in strings.xml already reflect appropriate values.

Other Resources
Two other folders contain Mobile SDK resources.

• res/menu defines menus used internally. If your app defines new menus, add them as resources here in new files.

• res/xml includes one file that you must edit: servers.xml. In this file, change the default Production and Sandbox
servers to the login servers for your org. The other files in this folder are for internal use. The authenticator.xml file
configures the account authentication resource, and the config.xml file defines PhoneGap plugins for hybrid apps.

Using REST APIs
To query, describe, create, or update data from a Salesforce org, native apps call Salesforce REST APIs. Salesforce REST
APIs honor SOQL strings and can accept and return data in either JSON or XML format. REST APIs are fully documented
at REST API Developer’s Guide You can find links to related Salesforce development documentation at the Force.com
developer documentation website..

With Android native apps, you do only minimal coding to access Salesforce data through REST calls. The classes in the
com.salesforce.androidsdk.rest package initialize the communication channels and encapsulate low-level HTTP
plumbing. These classes include:

• ClientManager—Serves as a factory for RestClient instances. It also handles account logins and handshakes with the
Salesforce server. Implemented by the Mobile SDK.

• RestClient—Handles protocol for sending REST API requests to the Salesforce server. Don’t directly create instances
of RestClient. Instead, call the ClientManager.getRestClient() method. Implemented by the Mobile SDK.

• RestRequest—Formats REST API requests from the data your app provides. Also serves as a factory for instances of
itself. Don’t directly create instances of RestRequest. Instead, call an appropriate RestRequest static getter function
such as RestRequest.getRequestForCreate(). Implemented by the SDK.

• RestResponse—Formats the response content in the requested format, returns the formatted response to your app, and
closes the content stream. The RestRequest class creates instances of RestResponse and returns them to your app
through your implementation of the RestClient.AsyncRequestCallback interface. Implemented by the SDK.

The RestRequest class natively handles the standard Salesforce data operations offered by the Salesforce REST and SOAP
APIs. Supported operations are:

46

Using REST APIsNative Android Development

http://www.salesforce.com/us/developer/docs/api_rest/api_rest.pdf
http://wiki.developerforce.com/page/Documentation
http://wiki.developerforce.com/page/Documentation

DescriptionParametersOperation

Returns Salesforce version metadataNoneVersions

Returns available resources for the
specified API version, including resource
name and URI

API versionResources

API version, object typeMetadata

Returns a list of all available objects in
your org and their metadata

API versionDescribeGlobal

Returns a description of a single object
type

API version, object typeDescribe

Creates a new record in the specified
object

API version, object type, map of field
names to value objects

Create

Retrieves a record by object IDAPI version, object type, object ID, list
of fields

Retrieve

Updates an object with the given mapAPI version, object type, object ID, map
of field names to value objects

Update

Updates or inserts an object from external
data, based on whether the external ID
currently exists in the external ID field

API version, object type, external ID
field, external ID, map of field names to
value objects

Upsert

Deletes the object of the given type with
the given ID

API version, object type, object IDDelete

To obtain an appropriate RestRequest instance, call the RestRequest static method that matches the operation you want
to perform. Here are the RestRequest static methods.

• getRequestForCreate()

• getRequestForDelete()

• getRequestForDescribe()

• getRequestForDescribeGlobal()

• getRequestForMetadata()

• getRequestForQuery()

• getRequestForResources()

• getRequestForRetrieve()

• getRequestForSearch()

• getRequestForUpdate()

• getRequestForUpsert()

• getRequestForVersions()

These methods return a RestRequest object which you pass to an instance of RestClient. The RestClient class provides
synchronous and asynchronous methods for sending requests: sendSync() and sendAsync(). UsesendAsync() when
you’re sending a request from a UI thread. Use sendSync() only on non-UI threads, such as a service or a worker thread
spawned by an activity.

47

Developing a Native Android AppNative Android Development

Here’s the basic procedure for using the REST classes on a UI thread:

1. Create an instance of ClientManager.

a. Use the SalesforceSDKManager.getInstance().getAccountType() method to obtain the value to pass as
the second argument of the ClientManager constructor.

b. For the LoginOptions parameter of the ClientManager constructor, call
SalesforceSDKManager.GetInstance().getLoginOptions().

2. Implement the ClientManager.RestClientCallback interface.

3. Call ClientManager.getRestClient() to obtain a RestClient instance, passing it an instance of your
RestClientCallback implementation. This code from the native/SampleApps/RestExplorer sample app
implements and instantiates RestClientCallback inline:

String accountType = SalesforceSDKManager.getInstance().getAccountType();

LoginOptions loginOptions = SalesforceSDKManager.getInstance().getLoginOptions();
// Get a rest client
new ClientManager(this, accountType, loginOptions,
SalesforceSDKManager.getInstance().shouldLogoutWhenTokenRevoked()).getRestClient(this,
new RestClientCallback() {
@Override
public void authenticatedRestClient(RestClient client) {
if (client == null) {
SalesforceSDKManager.getInstance().logout(ExplorerActivity.this);
return;
}
// Cache the returned client
ExplorerActivity.this.client = client;
}
});

4. Call a static RestRequest() getter method to obtain the appropriate RestRequest object for your needs. For example,
to get a description of a Salesforce object:

request = RestRequest.getRequestForDescribe(apiVersion, objectType);

5. Pass the RestRequest object you obtained in the previous step to RestClient.sendAsync() or
RestClient.sendSync(). If you’re on a UI thread and therefore calling sendAsync():

a. Implement the ClientManager.AsyncRequestCallback interface.
b. Pass an instance of your implementation to the sendAsync() method.
c. Receive the formatted response through your ASyncRequestCallback.onSuccess() method.

The following code implements and instantiates ASyncRequestCallback inline:

private void sendFromUIThread(RestRequest restRequest) {
client.sendAsync(restRequest, new AsyncRequestCallback() {
private long start = System.nanoTime();
@Override
public void onSuccess(RestRequest request, RestResponse result) {
try
{
// Do something with the result
}
catch (Exception e) {
printException(e);

48

Developing a Native Android AppNative Android Development

}
EventsObservable.get().notifyEvent(EventType.RenditionComplete);
}
@Override
public void onError(Exception exception)
{
printException(exception);
EventsObservable.get().notifyEvent(EventType.RenditionComplete);
}
});

If you’re calling the sendSync() method from a service, use the same procedure with the following changes:

1. To obtain a RestClient instance call ClientManager.peekRestClient() instead of
ClientManager.getRestClient().

2. Retrieve your formatted REST response from the sendSync() method’s return value.

Android Template App: Deep Dive
The TemplateApp sample project implements everything you need to create a basic Android app. Because it’s a “bare bones”
example, it also serves as the template that the Mobile SDK’s create_native ant script uses to set up new native Android
projects. You can gain a quick understanding of the native Android SDK by studying this project.

The TemplateApp project defines two classes, TemplateApp and MainActivity. The TemplateApp class extends
Application and calls SalesforceSDKManager.initNative() in its onCreate() override. The MainActivity
class subclasses the SalesforceActivity class. These two classes are all you need to create a running mobile app that
displays a login screen and a home screen.

Despite containing only about 200 lines of code, TemplateApp is more than just a “Hello World” example. In its main activity,
it retrieves Salesforce data through REST requests and displays the results on a mobile page. You can extend TemplateApp
by adding more activities, calling other components, and doing anything else that the Android operating system, the device,
and security restraints allow.

TemplateApp Class

Every native Android app requires an instance of android.app.Application. Here’s the entire class:

package com.salesforce.samples.templateapp;

import android.app.Application;

import com.salesforce.androidsdk.app.SalesforceSDKManager;

/**
* Application class for our application.
*/
public class TemplateApp extends Application {

@Override
public void onCreate() {
super.onCreate();
SalesforceSDKManager.initNative(getApplicationContext(), new KeyImpl(), MainActivity.class);

}
}

49

Android Template App: Deep DiveNative Android Development

The TemplateApp class accomplishes two main tasks:

• Calls initNative() to initialize the app

• Passes in the app’s implementation of KeyInterface

Most native Android apps can use similar code. For this small amount of work, your app gets free implementations of passcode
and login/logout mechanisms, plus a few other benefits. See SalesforceActivity, SalesforceListActivity, and
SalesforceExpandableListActivity Classes on page 41.

MainActivity Class

In Mobile SDK apps, the main activity begins immediately after the user logs in. Once the main activity is running, it can
launch other activities, which in turn can launch sub-activities. When the application exits, it does so by terminating the main
activity. All other activities terminate in a cascade from within the main activity.

The MainActivity class for the Template app extends
com.salesforce.androidsdk.ui.sfnative.SalesforceActivity. This superclass is the Mobile SDK's basic
abstract activity class.SalesforceActivity, gives you free implementations of mandatory passcode and login protocols. If
you use another base activity class instead, you’re responsible for implementing those protocols. MainActivity initializes
the app's UI and implements its UI buttons. The UI includes a list view that can show the user's Salesforce Contacts or
Accounts. When the user clicks one of these buttons, the MainActivity object performs a couple of basic queries to populate
the view. For example, to fetch the user's Contacts from Salesforce, the onFetchContactsClick() message handler sends
a simple SOQL query:

public void onFetchContactsClick(View v) throws UnsupportedEncodingException {
sendRequest("SELECT Name FROM Contact");

}

Internally, the private sendRequest() method formulates a server request using the RestRequest class and the given
SOQL string:

private void sendRequest(String soql) throws UnsupportedEncodingException
{
RestRequest restRequest = RestRequest.getRequestForQuery(getString(R.string.api_version),
soql);
client.sendAsync(restRequest, new AsyncRequestCallback()
{
@Override
public void onSuccess(RestRequest request,
RestResponse result) {
try {
listAdapter.clear();
JSONArray records = result.asJSONObject().getJSONArray("records");
for (int i = 0; i < records.length(); i++) {
listAdapter.add(records.getJSONObject(i).getString("Name"));
}

} catch (Exception e) {
onError(e);
}
}
@Override
public void onError(Exception exception)
{
Toast.makeText(MainActivity.this,
MainActivity.this.getString(
SalesforceSDKManager.getInstance().getSalesforceR().stringGenericError(),
exception.toString()),
Toast.LENGTH_LONG).show();

50

Developing a Native Android AppNative Android Development

}
});
}

This method uses an instance of the com.salesforce.androidsdk.rest.RestClient class, client, to process its
SOQL query. The RestClient class relies on two helper classes—RestRequest and RestResponse—to send the query
and process its result. The sendRequest() method calls RestClient.sendAsync() to process the SOQL query
asynchronously.

To support the sendAsync() call, the sendRequest() method constructs an instance of
com.salesforce.androidsdk.rest.RestRequest, passing it the API version and the SOQL query string. The resulting
object is the first argument for sendAsync(). The second argument is a callback object. When sendAsync() has finished
running the query, it sends the results to this callback object. If the query is successful, the callback object uses the query
results to populate a UI list control. If the query fails, the callback object displays a toast popup to display the error message.

Java Note:

In the call toRestClient.sendAsync() the code instantiates a new AsyncRequestCallback object as its second
argument. However, the AsyncRequestCallbackconstructor is followed by a code block that overrides a couple of
methods: onSuccess() and onError(). If that code looks strange to you, take a moment to see what's happening.
ASyncRequestCallback is defined as an interface, so it has no implementation. In order to instantiate it, the code implements
the two ASyncRequestCallback methods inline to create an anonymous class object. This technique gives TemplateApp
an sendAsync() implementation of its own that can never be called from another object and doesn't litter the API landscape
with a group of specialized class names.

TemplateApp Manifest

A look at the AndroidManifest.xml file in the TemplateApp project reveals the components required for Mobile SDK
native Android apps. Required components include:

DescriptionTypeName

Validates the user’s
credentials against the
Salesforce OAuth module.

Servicecom.salesforce.androidsdk.auth.AuthenticatorService

The first activity to be
called after login. The

ActivityMainActivity

name and the class are
defined in the project.

Displays the Salesforce
login screen.

Activitycom.salesforce.androidsdk.ui.LoginActivity

Displays the passcode
screen. Used only if the

Activitycom.salesforce.androidsdk.ui.PasscodeActivity

Salesforce administrator
requires a passcode for the
corresponding Connected
App. This requirement can
change at any time on the
server, but the Mobile

51

Developing a Native Android AppNative Android Development

DescriptionTypeName

SDK checks the policy
only during login.

Displays a list of Salesforce
login servers from which

Activitycom.salesforce.androidsdk.ui.ServerPickerActivity

the user can choose. This
activity also lets users add
custom servers.

Displayed when the user
clicks on Manage Space in

Activitycom.salesforce.androidsdk.ui.ManageSpaceActivity

the Settings app. Warns
the user that clearing user
data from Settings causes
the user to be logged out.

Because apps created by the create_native script are based on the TemplateApp project, you don’t need to add these
components to the manifest. As with any Android app, you can add other components, such as custom activities or services,
using the Android Manifest editor in Eclipse.

In addition to component specifications, the manifest grants Android permissions to the app. Grants in TemplateApp include:

• android.permission.INTERNET

• android.permission.MANAGE_ACCOUNTS

• android.permission.AUTHENTICATE_ACCOUNTS

• android.permission.GET_ACCOUNTS

• android.permission.USE_CREDENTIALS

• android.permission.ACCESS_NETWORK_STATE

Most of these permissions provide access to Android user accounts. For details, search for manifest permissions in the Android
SDK documentation.

Android Sample Applications
RestExplorer is a sample app that demonstrates how to use the OAuth and REST API functions of the SalesforceSDK. It’s
also useful to investigate the various REST API actions from a Honeycomb tablet.

1. To run the application from your Eclipse workspace, right-click the RestExplorer project and choose Run As > Android
Application.

2. To run the tests, right-click the RestExplorerTest project and choose Run As > Android JUnit Test.

NativeSqlAggregator is a sample app that demonstrates SQL aggregation with SmartSQL. As such, it also demonstrates a
native implementation of SmartStore. To run the application from your Eclipse workspace, right-click the NativeSqlAggregator
project and choose Run As > Android Application.

52

Android Sample ApplicationsNative Android Development

Chapter 4

Introduction to Hybrid Development

Hybrid apps combine the ease of HTML5 Web app development with the power
and features of the native platform. They run within the Salesforce Mobile
Container

In this chapter ...

• iOS Hybrid Development
• Android Hybrid Development , a native layer that translates the app into device-specific code.
• JavaScript Files for Hybrid

Applications Hybrid apps depend on HTML and JavaScript files. These files can be stored
on the device or on the server.• Versioning and Javascript Library

Compatibility • Device—Hybrid apps developed with forcetk.mobilesdk wrap a Web
app inside the Salesforce Mobile Container. In this scenario, the JavaScript
and HTML files are stored on the device.

• Managing Sessions in Hybrid
Applications

• Server — Hybrid apps developed using Visualforce technology store their
HTML and JavaScript files on the Salesforce server and are delivered through
the Salesforce Mobile Container.

• Example: Serving the Appropriate
Javascript Libraries

53

iOS Hybrid Development
In order to develop hybrid applications, you’ll need to meet some of the prerequisites for both the iOS native and the vanilla
HTML5 scenarios.

1. Make sure you meet the HTML5 Development
2. Follow the installation instructions for iOS.

iOS Hybrid Sample Application
The sample applications contained under the hybrid/SampleApps folder are designed around the PhoneGap SDK.
PhoneGap is also known as Cordova. Salesforce Mobile SDK v. 1.4 and later include the Cordova libraries, so no separate
installation is required. You can find documentation for the Cordova SDK in the Getting Started Guide.

Inside the hybrid/SampleApps folder, you can find sample projects:

• AccountEditor: Demonstrates how to use the SmartSync Data Framework to access Salesforce data.

• ContactExplorer: The ContactExplorer sample app uses PhoneGap (also known as Cordova) to retrieve local device
contacts. It also uses the forcetk.mobilesdk.js toolkit to implement REST transactions with the Salesforce REST
API. The app uses the OAuth2 support in Salesforce SDK to obtain OAuth credentials, then propagates those credentials
to forcetk.mobilesdk.js by sending a JavaScript event.

• VFConnector: The VFConnector sample app demonstrates how to wrap a Visualforce page in a native container. This
example assumes that your org has a Visualforce page called BasicVFTest. The app first obtains OAuth login credentials
using the Salesforce SDK OAuth2 support, then uses those credentials to set appropriate webview cookies for accessing
Visualforce pages.

• SmartStoreExplorer: Lets you explore SmartStore APIs.

Android Hybrid Development
In order to develop hybrid applications, you’ll need to meet some of the prerequisites for both the Android native and the
vanilla HTML5 scenarios.

1. Make sure you meet the HTML5 Development.
2. Follow the installation instructions for Android Native.
3. After installing Mobile SDK for Android, create a new hybrid app as described in Creating a New Android Project on

page 30. For the apptype parameter:

• Use -—apptype=”hybrid_local” for a hybrid app with all code in the local project. Put your HTML and JavaScript
files in ${target.dir}/assets/www/.

• Use -—apptype=”hybrid_remote” for a hybrid app with code in a Visualforce app on the server

Hybrid Sample Applications
Inside the ./hybrid folder, you can find sample projects and related test applications:

54

iOS Hybrid DevelopmentIntroduction to Hybrid Development

http://www.phonegap.com/
http://www.phonegap.com/start

• AccountEditor: Demonstrates how to use the SmartSync Data Framework to access Salesforce data.

• SampleApps/ContactExplorer: The ContactExplorer sample app uses PhoneGap (also known as Cordova) to retrieve
local device contacts. It also uses the forcetk.mobilesdk.js toolkit to implement REST transactions with the Salesforce
REST API. The app uses the OAuth2 support in Salesforce SDK to obtain OAuth credentials, then propagates those
credentials to forcetk.mobilesdk.js by sending a javascript event.

• SampleApps/test/ContactExplorerTest: Tests for the ContactExplorer sample app.

• SampleApps/VFConnector: The VFConnector sample app demonstrates how to wrap a Visualforce page in a native
container. This example assumes that your org has a Visualforce page called BasicVFTest. The app first obtains OAuth
login credentials using the Salesforce SDK OAuth2 support, then uses those credentials to set appropriate webview cookies
for accessing Visualforce pages.

• SampleApps/test/VFConnectorTest: Test for the VFConnector sample app.

• SampleApps/SmartStoreExplorer: Lets you explore SmartStore APIs.

• SampleApps/test/SmartStoreExplorerTest: Tests for the SmartStoreExplorer sample app.

JavaScript Files for Hybrid Applications
In Salesforce Mobile SDK 2.0, we’ve refactored some JavaScript files and added new ones to support SmartSync. JavaScript
files reside in the forcedotcom/SalesforceMobileSDK-Shared repository on GitHub.

Refactored JavaScript Files
These files are now collected in the cordova.force.js file.

• SFHybridApp.js

• SalesforceOAuthPlugin.js

• SmartStorePlugin.js

New JavaScript Files
These files are new in Mobile SDK 2.0.

DescriptionJavaScript File

Contains plugins for hybrid apps using the Cordova librariescordova.force.js

The SmartSync Data Framework librarySmartSync.js

New External Dependencies
Mobile SDK 2.0 introduces new external dependencies.

DescriptionExternal JavaScript File

Popular HTML utility libraryjquery.js

SmartSync supportunderscore.js

SmartSync supportbackbone.js

55

JavaScript Files for Hybrid ApplicationsIntroduction to Hybrid Development

Which JavaScript Files Do I Include?
Files that you include depend on the type of hybrid project. For each type described here, include all files in the list.

For basic hybrid apps:

• cordova.js

• cordova.force.js

To make REST API calls from a basic hybrid app:

• cordova.js

• cordova.force.js

• forcetk.mobilesdk.js

To use SmartSync in a hybrid app:

• jquery.js

• underscore.js

• backbone.js

• cordova.js

• cordova.force.js

• forcetk.mobilesdk.js

• SmartSync.js

Versioning and Javascript Library Compatibility
In hybrid applications, client Javascript code interacts with native code through Cordova (formerly PhoneGap) and
SalesforceSDK plugins. When you package your Javascript code with your mobile application, your testing assures that the
code works with native code. However, when the Javascript code comes from the server—for example, when the application
is written with VisualForce—harmful conflicts can occur. In such cases you must be careful to use Javascript libraries from the
version of PhoneGap or Cordova that matches the Mobile SDK version you’re using.

For example, suppose you shipped an application with Mobile SDK 1.2, which uses PhoneGap 1.2. Later, you ship an update
that uses Mobile SDK 1.3. The 1.3 version of the Mobile SDK uses Cordova 1.8.1 rather than PhoneGap 1.2. You must
make sure that the Javascript code in your updated application accesses native components only through the Cordova 1.8.1
and Mobile SDK 1.3 versions of the Javascript libraries. Using mismatched Javascript libraries can crash your application.

You can’t force your customers to upgrade their clients, so how can you prevent crashes? First, identify the version of the client.
Then, you can either deny access to the application if the client is outdated (for example, with a "Please update to the latest
version" warning), or, preferably, serve compatible Javascript libraries.

The following table correlates Cordova and PhoneGap versions to Mobile SDK versions.

Cordova or PhoneGap versionMobile SDK version

PhoneGap 1.21.2

Cordova 1.8.11.3

Cordova 2.21.4

Cordova 2.31.5

56

Versioning and Javascript Library CompatibilityIntroduction to Hybrid Development

Cordova or PhoneGap versionMobile SDK version

Cordova 2.32.0

Using the User Agent to Find the Mobile SDK Version
Fortunately, you can look up the Mobile SDK version in the user agent. The user agent starts with
SalesforceMobileSDK/<version>. Once you obtain the user agent, you can parse the returned string to find the Mobile
SDK version.

You can obtain the user agent on the server with the following Apex code:

userAgent = ApexPages.currentPage().getHeaders().get('User-Agent');

On the client, you can do the same in Javascript using the navigator object:

userAgent = navigator.userAgent;

Detecting the Mobile SDK Version with the sdkinfo Plugin
In Javascript, you can also retrieve the Mobile SDK version and other information by using the sdkinfo plugin. This plugin,
which is defined in the cordova.force.js file, offers one method:

getInfo(callback)

This method returns an associative array that provides the following information:

DescriptionMember name

Version of the Salesforce Mobile SDK used to build to the
container. For example: “1.4”.

sdkVersion

Name of the hybrid application.appName

Version of the hybrid application.appVersion

Array containing the names of Salesforce plugins installed in
the container. For example: "com.salesforce.oauth",
"com.salesforce.smartstore", and so on.

forcePluginsAvailable

The following code retrieves the information stored in the sdkinfo plugin and displays it in alert boxes.

var sdkinfo = cordova.require("salesforce/plugin/sdkinfo");
sdkinfo.getInfo(new function(info) {

alert("sdkVersion->" + info.sdkVersion);
alert("appName->" + info.appName);
alert("appVersion->" + info.appVersion);
alert("forcePluginsAvailable->" + JSON.stringify(info.forcePluginsAvailable));

});

See Also:
Example: Serving the Appropriate Javascript Libraries

57

Versioning and Javascript Library CompatibilityIntroduction to Hybrid Development

Managing Sessions in Hybrid Applications
Mobile users expect their apps to just work. To help iron out common difficulties that plague many mobile apps, the Mobile
SDK uses native containers for hybrid applications. These containers provide seamless authentication and session management
by abstracting the complexity of web session management. However, as popular mobile app architectures evolve, this “one size
fits all” approach proves to be too limiting in some cases. For example, if a mobile app uses JavaScript remoting in Visualforce,
Salesforce cookies can be lost if the user lets the session expire. These cookies can be retrieved only when the user manually
logs back in.

Mobile SDK 1.4 begins to transition hybrid apps away from predefined, proactive session management to more flexible,
reactive session management. Rather than letting the hybrid container automatically control the session, developers can
participate in the management by responding to session events. This change gives developers more control over managing
sessions in the Salesforce Touch Platform.

To switch to reactive management, adjust your session management settings according to your app’s architecture. This table
summarizes the behaviors and recommended approaches for common architectures.

Steps for Upgrading CodeReactive Behavior in SDK
1.4

Proactive Behavior in SDK
1.3 and Earlier

App Architecture

No change for
forcetk.mobilesdk.js. For other
frameworks, add refresh code.

Refresh from JavaScriptBackground session refreshREST API

Catch timeout, then either
reload page or load a new
iFrame.

Refresh session and CSRF
token from JavaScript

Restart appJavaScript Remoting in
Visualforce

Catch timeout, then reload
page.

Reload pageRestart appJQuery Mobile

These sections provide detailed coding steps for each architecture.

REST APIs (Including Apex2REST)
If you’re writing or upgrading a hybrid app that leverages REST APIs, detect an expired session and request a new access
token at the time the REST call is made. We encourage authors of apps based on this framework to leverage API wrapping
libraries, such as forcetk.mobilesdk.js, to manage session retention.

The following code, from index.html in the ContactExplorer sample application, demonstrates the recommended technique.
When the application first loads, call getAuthCredentials() on the Salesforce OAuth plugin, passing the handle to your
refresh function (in this case, salesforceSessionRefreshed.) The OAuth plugin function calls your refresh function,
passing it the session and refresh tokens. Use these returned values to initialize forcetk.mobilesdk.

• From the onDeviceReady() function:

cordova.require("salesforce/plugin/oauth").getAuthCredentials(salesforceSessionRefreshed,
getAuthCredentialsError);

58

Managing Sessions in Hybrid ApplicationsIntroduction to Hybrid Development

• salesforceSessionRefreshed() function:

function salesforceSessionRefreshed(credsData) {
forcetkClient = new forcetk.Client(credsData.clientId, credsData.loginUrl);
forcetkClient.setSessionToken(credsData.accessToken, apiVersion,

credsData.instanceUrl);
forcetkClient.setRefreshToken(credsData.refreshToken);
forcetkClient.setUserAgentString(credsData.userAgent);

}

For the complete code, see the ContactExplorer sample application
(SalesforceMobileSDK-Android\hybrid\SampleApps\ContactExplorer).

JavaScript Remoting in Visualforce
For mobile apps that use JavaScript remoting to access Visualforce pages, incorporate the session refresh code into the method
parameter list. In JavaScript, use the Visualforce remote call to check the session state and adjust accordingly.

<Controller>.<Method>(
<params>,
function(result, event) {
if (hasSessionExpired(event)) {
// Reload will try to redirect to login page, container will intercept
// the redirect and refresh the session before reloading the origin page
window.location.reload();

} else {
// Everything is OK. You can go ahead and use the result.

},
{escape: true}

);

This example defines hasSessionExpired() as:

function hasSessionExpired(event) {
return (event.type == "exception" && event.message.indexOf("Logged in?") != -1);

}

Advanced developers: Reloading the entire page might not provide the optimal user experience. If you want to avoid reloading
the entire page, you’ll need to:

1. Refresh the access token
2. Refresh the Visualforce domain cookies
3. Finally, refresh the CSRF token

In hasSessionExpired(), instead of fully reloading the page as follows:

window.location.reload();

Do something like this:

// Refresh oauth token
cordova.require("salesforce/plugin/oauth").authenticate(
function(creds) {
// Reload hidden iframe that points to a blank page to
// to refresh Visualforce domain cookies
var iframe = document.getElementById("blankIframeId");
iframe.src = src;

// Refresh CSRF cookie

59

Managing Sessions in Hybrid ApplicationsIntroduction to Hybrid Development

<provider>.refresh(function() {
<Retry call for a seamless user experience>;

});

},
function(error) {
console.log("Refresh failed");

}
);

JQuery Mobile
JQueryMobile makes Ajax calls to transfer data for rendering a page. If a session expires, a 302 error is masked by the framework.
To recover, incorporate the following code to force a page refresh.

$(document).on('pageloadfailed', function(e, data) {
console.log('page load failed');
if (data.xhr.status == 0) {
// reloading the VF page to initiate authentication
window.location.reload();

}
});

Example: Serving the Appropriate Javascript Libraries
To provide the correct version of Javascript libraries, create a separate bundle for each Salesforce Mobile SDK version you use.
Then, provide Apex code on the server that downloads the required version.

1. For each Salesforce Mobile SDK version that your application supports, do the following.

a. Create a ZIP file containing the Javascript libraries from the intended SDK version.
b. Upload the ZIP file to your org as a static resource.

For example, if you ship a client that uses Salesforce Mobile SDK v. 1.3, add these files to your ZIP file:

• cordova.force.js

• SalesforceOAuthPlugin.js

• bootconfig.js

• cordova-1.8.1.js, which you should rename as cordova.js

Note: In your bundle, it’s permissible to rename the Cordova Javascript library as cordova.js (or PhoneGap.js
if you’re packaging a version that uses a PhoneGap-x.x.js library.)

2. Create an Apex controller that determines which bundle to use. In your controller code, parse the user agent string to find
which version the client is using.

a. In your org, from Setup, click Develop > Apex Class.
b. Create a new Apex controller named SDKLibController with the following definition.

public class SDKLibController {
public String getSDKLib() {

String userAgent = ApexPages.currentPage().getHeaders().get('User-Agent');

if (userAgent.contains('SalesforceMobileSDK/1.3')) {

60

Example: Serving the Appropriate Javascript LibrariesIntroduction to Hybrid Development

return 'sdklib13';
}

// Add additional if statements for other SalesforceSDK versions
// for which you provide library bundles.

}
}

3. Create a Visualforce page for each library in the bundle, and use that page to redirect the client to that library.
For example, for the SalesforceOAuthPlugin library:

a. In your org, from Setup, click Develop > Pages.
b. Create a new page called “SalesforceOAuthPlugin” with the following definition.

<apex:page controller="SDKLibController" action="{!URLFor($Resource[SDKLib],
'SalesforceOAuthPlugin.js')}">
</apex:page>

c. Reference the VisualForce page in a <script> tag in your HTML code. Be sure to point to the page you created in
step 3b. For example:

<script type="text/javascript" src="/apex/SalesforceOAuthPlugin" />

Note: Provide a separate <script> tag for each library in your bundle.

61

Example: Serving the Appropriate Javascript LibrariesIntroduction to Hybrid Development

Chapter 5

HTML5 Development

HTML5 lets you create lightweight mobile interfaces without installing software
on the target device. Any mobile, touch or desktop device can access these mobile
interfaces.

In this chapter ...

• HTML5 Development Requirements
• Delivering HTML5 Content With

Visualforce
You can create an HTML5 application that leverages the Force.com platform
by:

• Accessing Salesforce Data:
Controllers vs. APIs • Using Visualforce to deliver the HTML content

• Using JavaScript remoting to invoke Apex controllers for fetching records
from Force.com

62

HTML5 Development Requirements
• You’ll need a Force.com organization.

• Some knowledge of Apex and Visualforce is necessary.

Note: This type of development uses Visualforce. You can’t use Database.com.

Delivering HTML5 Content With Visualforce
Traditionally, you use Visualforce to create custom websites for the desktop environment. When combined with HTML5,
however, Visualforce becomes a viable delivery mechanism for mobile web apps. These apps can leverage third-party UI widget
libraries such as Sencha, or templating frameworks such as AngularJS and Backbone.js, that bind to data inside Salesforce.

To set up an HTML5 Apex page, change the docType attribute to “html-5.0”, and use other settings similar to these:

<apex:page docType="html-5.0" sidebar="false" showHeader="false" standardStylesheets="false"
cache="true" >

</apex:page>

This code sets up an Apex page that can contain HTML5 content, but, of course, it produces an empty page. With the use
of static resources and third-party libraries, you can add HTML and JavaScript code to build a fully interactive mobile app.

Accessing Salesforce Data: Controllers vs. APIs
In an HTML5 app, you can access Salesforce data two ways:

• By using JavaScript remoting to invoke your Apex controller

• By accessing the Salesforce API with forcetk.js

Using JavaScript Remoting to Invoke Your Apex Controller
Like apex:actionFunction, JavaScript remoting lets you invoke methods in your Apex controller through JavaScript code
hosted on your Visualforce page.

JavaScript remoting offers several advantages.

• It offers greater flexilibity and better performance than apex:actionFunction.
• It supports parameters and return types in the Apex controller method, with automatic mapping between Apex and

JavaScript types.
• It uses an asynchronous processing model with callbacks.
• Unlike apex:actionFunction, the AJAX request does not include the view state for the Visualforce page. This results

in a faster round trip.

Compared to apex:actionFunction, however, JavaScript Remoting requires you to write more code.

63

HTML5 Development RequirementsHTML5 Development

http://www.salesforce.com/us/developer/docs/pages/Content/pages_compref_actionFunction.htm
http://www.salesforce.com/us/developer/docs/pages/Content/pages_js_remoting.htm

The following example inserts JavaScript code in a <script> tag on the Visualforce page. This code calls the invokeAction()
method on the Visualforce remoting manager object. It passes invokeAction() the metadata needed to call a function
named getItemId() on the Apex controller object objName. Because invokeAction() runs asynchronously, the code
also defines a callback function to process the value returned from getItemId(). In the Apex controller, the @RemoteAction
annotation exposes the getItemId() function to external JavaScript code.

//Visualforce page code
<script type="text/javascript">

Visualforce.remoting.Manager.invokeAction(
'{!$RemoteAction.MyController.getItemId}',
objName,
function(result, event){

//process response here
},
{escape: true}

);
<script>

//Apex Controller code

@RemoteAction
global static String getItemId(String objectName) { ... }

See this Dreamforce 2012 session for a more detailed comparison between the JavaScript remoting and actionFunction.
See http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_classes_annotation_RemoteAction.htm to read
more about @RemoteAction annotations.

Accessing the Salesforce API with Forcetk and JQuery
When you call Salesforce REST APIs from Visualforce, you’re calling to a different domain. This separation violates same-origin
browser policy, which causes the browser to refuse the connection. The forcetk JavaScript library works around same-origin
policy restrictions by using the AJAX Proxy to give full access to the REST API. Since the AJAX proxy is present on all
Visualforce hosts with an endpoint of the form https://<abc>.na1.visual.force.com/services/proxy, your Visualforce-hosted
JavaScript can invoke it by passing the desired resource URL in an HTTP header.

To use the proxy service:

1. Send your request to https://<domain>/services/proxy, where <domain> is the domain of your current Visualforce
page.

2. Use the following HTTP headers:

SalesforceProxy-Endpoint
URL of the request endpoint

SalesforceProxy-SID
Current user session ID

For tips on accessing this proxy through JavaScript, see AJAX Proxy.

The following code sample uses the jQuery Mobile library for the user interface. To run this code, your Visualforce page must
include jQuery and the forcetk toolkit. To add these resources:

1. Create an archive file, such as a ZIP file, that contains app.js, forcetk.js, jquery.js, and any other static resources
your project requires.

2. In Salesforce, upload the archive file via Your Name > App Setup > Develop > Static Resources.

After obtaining an instance of the jQuery Mobile library, the sample code creates a forcetk client object and initializes it with
a session ID. It then calls the asynchronous forcetk query() method to process a SOQL query. The query callback function

64

Accessing Salesforce Data: Controllers vs. APIsHTML5 Development

http://www.youtube.com/watch?feature=player_embedded&v=ckkChgcM9VQ
http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_classes_annotation_RemoteAction.htm
http://www.salesforce.com/us/developer/docs/ajax/Content/sforce_api_ajax_queryresultiterator.htm#ajax_proxy
https://abc.na1.visual.force.com/services/proxy
http://www.salesforce.com/us/developer/docs/ajax/Content/sforce_api_ajax_queryresultiterator.htm#ajax_proxy

uses jQuery Mobile to display the first Name field returned by the query as HTML in an object with ID “accountname.” At
the end of the Apex page, the HTML5 content defines the accountname element as a simple tag.

<apex:page>
<apex:includeScript value="{!URLFOR($Resource.static, 'jquery.js')}" />
<apex:includeScript value="{!URLFOR($Resource.static, 'forcetk.js')}" />
<script type="text/javascript">

// Get a reference to jQuery that we can work with
$j = jQuery.noConflict();

// Get an instance of the REST API client and set the session ID
var client = new forcetk.Client();
client.setSessionToken('{!$Api.Session_ID}');

client.query("SELECT Name FROM Account LIMIT 1", function(response){
$j('#accountname').html(response.records[0].Name);

});
</script>
<p>The first account I see is .</p>
</apex:page>

Note:

• Using the REST API—even from a Visualforce page—consumes API calls.
• SalesforceAPI calls made through a Mobile SDK container or through a Cordova webview do not require proxy

services. Cordova webviews disable same-origin policy, so you can make API calls directly. This exemption applies
to all Mobile SDK hybrid and native apps.

Additional Options
You can use the SmartSync Data Framework in HTML5 apps. Just include the required JavaScript libraries as static resources.
Take advantage of the model and routing features. Offline access is disabled for this use case. See Using SmartSync to Access
Salesforce Objects on page 66.

Salesforce Developer Marketing provides developer mobile packs that can help you get a quick start with HTML5 apps.

Offline Limitations
Read these articles for tips on using HTML5 with Force.com in offline situations.

• http://blogs.developerforce.com/developer-relations/2011/06/using-html5-offline-with-forcecom.html
• http://blogs.developerforce.com/developer-relations/2013/03/using-javascript-with-force-com.html

65

Accessing Salesforce Data: Controllers vs. APIsHTML5 Development

http://www2.developerforce.com/mobile/services/mobile-packs
http://blogs.developerforce.com/developer-relations/2011/06/using-html5-offline-with-forcecom.html
http://blogs.developerforce.com/developer-relations/2013/03/using-javascript-with-force-com.html

Chapter 6

Using SmartSync to Access Salesforce Objects

The SmartSync Data Framework is a Mobile SDK library that represents
Salesforce objects as JavaScript objects. Using SmartSync in a hybrid app, you

In this chapter ...

• About Backbone Technology can create models of Salesforce objects and manipulate the underlying records
• Models and Model Collections just by changing the model data. If you perform a SOQL or SOSL query, you

receive the resulting records in a model collection rather than as a JSON string.• Using the SmartSync Data
Framework in JavaScript Underlying the SmartSync technology is the backbone.js open-source

JavaScript library. Backbone.js defines an extensible mechanism for modeling• Offline Caching
data. To understand the basic technology behind the SmartSync Data Framework,
browse the examples and documentation at backbonejs.org.

• Conflict Detection
• Tutorial: Creating a SmartSync

Application Three sample hybrid applications demonstrate SmartSync.
• SmartSync Sample Apps

• Account Editor (AccountEditor.html)
• User Search (UserSearch.html)
• User and Group Search (UserAndGroupSearch.html)

You can find these sample apps in the
./hybrid/SampleApps/AccountEditor/assets/www folder.

66

http://www.backbonejs.org

About Backbone Technology
The SmartSync library, SmartSync.js, provides extensions to the open-source Backbone JavaScript library. The Backbone
library defines key building blocks for structuring your web application:

• Models with key-value binding and custom events, for modeling your information

• Collections with a rich API of enumerable functions, for containing your data sets

• Views with declarative event handling, for displaying information in your models

• A router for controlling navigation between views

Salesforce SmartSync Data Framework extends the Model and Collection core Backbone objects to connect them to the
Salesforce REST API. SmartSync also provides optional offline support through SmartStore, the secure storage component
of the Mobile SDK.

To learn more about Backbone, see http://backbonejs.org/ and http://backbonetutorials.com/. You can also search online for
“backbone javascript” to find a wealth of tutorials and videos.

Models and Model Collections
Two types of objects make up the SmartSync Data Framework:

• Models

• Model collections

Definitions for these objects extend classes defined in backbone.js, a popular third-party JavaScript framework. For
background information, see http://backbonetutorials.com.

Models
Models on the client represent server records. In SmartSync, model objects are instances of Force.SObject, a subclass of
the Backbone.Model class. SObject extends Model to work with Salesforce APIs and, optionally, with SmartStore.

You can perform the following CRUD operations on SObject model objects:

• Create

• Destroy

• Fetch

• Save

• Get/set attributes

In addition, model objects are observable: Views and controllers can receive notifications when the objects change.

Properties
Force.SObject adds the following properties to Backbone.Model:

sobjectType

Required. The name of the Salesforce object that this model represents. This value can refer to either a standard object
or a custom object.

67

About Backbone TechnologyUsing SmartSync to Access Salesforce Objects

http://backbonejs.org/
http://backbonetutorials.com/
http://backbonetutorials.com

fieldlist

Required. Names of fields to fetch, save, or destroy.

cacheMode

Offline behavior.

mergeMode

Conflict handling behavior.

cache

For updatable offline storage of records. The SmartSync Data Framework comes bundled with Force.StoreCache, a
cache implementation that is backed by SmartStore.

cacheForOriginals

Contains original copies of records fetched from server to support conflict detection.

Examples
You can assign values for model properties in several ways:

• As properties on a Force.SObject instance.
• As methods on a Force.SObject sub-class. These methods take a parameter that specifies the desired CRUD action

(“create”, “read”, “update”, or “delete”).
• In the options parameter of the fetch(), save(), or destroy() function call.

For example, these code snippets are equivalent.

// As properties on a Force.SObject instance
acc = new Force.SObject({Id:"<some_id>"});
acc.sobjectType = "account";
acc.fieldlist = ["Id", "Name"];
acc.fetch();

// As methods on a Force.SObject sub-class
Account = Force.SObject.extend({
sobjectType: "account",
fieldlist: function(method) { return ["Id", "Name"];}

});
Acc = new Account({Id:"<some_id>"});
acc.fetch();

// In the options parameter of fetch()
acc = new Force.SObject({Id:"<some_id>"});
acc.sobjectType = "account";
acc.fetch({fieldlist:["Id", "Name"]);

Model Collections
Model collections in the SmartSync Data Framework are containers for query results. Query results stored in a model collection
can come from the server via SOQL, SOSL, or MRU queries. Optionally, they can also come from the cache via SmartSQL
(if the cache is SmartStore), or another query mechanism if you use an alternate cache.

Model collection objects are instances of Force.SObjectCollection, a subclass of the Backbone.Collection class.
SObjectCollection extends Collection to work with Salesforce APIs and, optionally, with SmartStore.

68

Model CollectionsUsing SmartSync to Access Salesforce Objects

Properties
Force.SObjectCollection adds the following properties to Backbone.Collection:

config

Required. Defines the records the collection can hold (using SOQL, SOSL, MRU or SmartSQL).

cache

For updatable offline storage of records. The SmartSync Data Framework comes bundled with Force.StoreCache, a
cache implementation that’s backed by SmartStore.

cacheForOriginals

Contains original copies of records fetched from server to support conflict detection.

Examples
You can assign values for model collection properties in several ways:

• As properties on a Force.SObject instance
• As methods on a Force.SObject sub-class
• In the options parameter of the fetch(), save(), or destroy() function call

For example, these code snippets are equivalent.

// As properties on a Force.SObject instance
list = new Force.SObjectCollection({config:<valid_config>});
list.fetch();

// As methods on a Force.SObject sub-class
MyCollection = Force.SObjectCollection.extend({
config: function() { return <valid_config>; }

});
list = new MyCollection();
list.fetch();

// In the options parameter of fetch()
list = new Force.SObjectCollection();
list.fetch({config:valid_config});

Using the SmartSync Data Framework in JavaScript
To use SmartSync in a hybrid app, include:

• jquery-x.x.x.min.js (use version of file in external/shared/jquery/)

• underscore-x.x.x.min.js (use version of file in external/shared/backbone/)

• backbone-x.x.x.min.js (use version of file in external/shared/backbone/)

• cordova.js

• cordova.force.js

• forcetk.mobilesdk.js

• SmartSync.js

69

Using the SmartSync Data Framework in JavaScriptUsing SmartSync to Access Salesforce Objects

Implementing a Model Object
To begin using SmartSync objects, define a model object to represent each SObject that you want to manipulate. The
SObjects can be standard Salesforce objects or custom objects. For example, this code creates a model of the Account object
that sets the two required properties—sobjectType and fieldlist—and defines a cacheMode() function.

app.models.Account = Force.SObject.extend({
sobjectType: "Account",
fieldlist: ["Id", "Name", "Industry", "Phone"],

cacheMode: function(method) {
if (app.offlineTracker.get("offlineStatus") == "offline") {

return "cache-only";
}
else {

return (method == "read" ? "cache-first" : "server-first");
}

}
});

Notice that the app.models.Account model object extends Force.SObject, which is defined in SmartSync.js. Also,
the cacheMode() function queries a local offlineTracker object for the device's offline status. You can use the Cordova
library to determine offline status at any particular moment.

SmartSync can perform a fetch or a save operation on the model. It uses the app’s cacheMode value to determine whether to
perform an operation on the server or in the cache. Your cacheMode member can either be a simple string property or a
function returning a string.

Implementing a Model Collection
The model collection for this sample app extends Force.SObjectCollection.

// The AccountCollection Model
app.models.AccountCollection = Force.SObjectCollection.extend({

model: app.models.Account,
fieldlist: ["Id", "Name", "Industry", "Phone"],

setCriteria: function(key) {
this.key = key;

},

config: function() {
// Offline: do a cache query
if (app.offlineTracker.get("offlineStatus") == "offline") {

return {type:"cache", cacheQuery:{queryType:"like",
indexPath:"Name", likeKey: this.key+"%",
order:"ascending"}};

}
// Online
else {

// First time: do a MRU query
if (this.key == null) {

return {type:"mru", sobjectType:"Account",
fieldlist: this.fieldlist};

}
// Other times: do a SOQL query
else {

var soql = "SELECT " + this.fieldlist.join(",")
+ " FROM Account"
+ " WHERE Name like '" + this.key + "%'";

return {type:"soql", query:soql};
}

}

70

Using the SmartSync Data Framework in JavaScriptUsing SmartSync to Access Salesforce Objects

}
});

This model collection uses an optional key that is the name of the account to be fetched from the collection. It also defines a
config() function that determines what information is fetched. If the device is offline, the config() function builds a
cache query statement. Otherwise, if no key is specified, it queries the most recently used record ("mru"). If the key is specified
and the device is online, it builds a standard SOQL query that pulls records for which the name matches the key. The fetch
operation on the Force.SObjectCollection prototype transparently uses the returned configuration to automatically fill
the model collection with query records.

See querySpec for information on formatting a cache query.

Note: These code examples are part of the Account Editor sample app. See Account Editor Sample for a sample
description.

Offline Caching
To provide offline support, your app must be able to cache its models and collections. SmartSync provides a configurable
mechanism that gives you full control over caching operations.

Default Cache and Custom Cache Implementations
For its default cache, the SmartSync library defines StoreCache, a cache implementation that uses SmartStore. Both StoreCache
and SmartStore are optional components for SmartSync apps. If your application runs in a browser instead of the Mobile SDK
container, or if you don't want to use SmartStore, you must provide an alternate cache implementation. SmartSync requires
cache objects to support these operations:

• retrieve
• save
• save all
• remove
• find

SmartSync Caching Workflow
The SmartSync model performs all interactions with the cache and the Salesforce server on behalf of your app. Your app gets
and sets attributes on model objects. During save operations, the model uses these attribute settings to determine whether to
write changes to the cache or server, and how to merge new data with existing data. If anything changes in the underlying
data or in the model itself, the model sends event notifications. Similarly, if you request a fetch, the model fetches the data
and presents it to your app in a model collection.

71

Offline CachingUsing SmartSync to Access Salesforce Objects

SmartSync updates data in the cache transparently during CRUD operations. You can control the transparency level through
optional flags. Cached objects maintain "dirty" attributes that indicate whether they've been created, updated, or deleted locally.

Cache Modes
When you use a cache, you can specify a mode for each CRUD operation. Supported modes are:

DescriptionConstantMode

Read from, or write to, the
cache. Do not perform the
operation on the server.

Force.CACHE_MODE.CACHE_ONLY“cache-only”

Read from, or write to, the
server. Do not perform the
operation on the cache.

Force.CACHE_MODE.SERVER_ONLY“server-only”

For FETCH operations
only. Fetch the record from

Force.CACHE_MODE.CACHE_FIRST“cache-first”

the cache. If the cache
doesn't contain the record,
fetch it from the server and
then update the cache.

72

Offline CachingUsing SmartSync to Access Salesforce Objects

DescriptionConstantMode

Perform the operation on the
server, then update the
cache.

Force.CACHE_MODE.SERVER_FIRST“server-first”
(default)

To query the cache directly, use a cache query. SmartStore provides query APIs as well as its own query language, Smart SQL.
See Retrieving Data From a Soup.

Implementing Offline Caching
To support offline caching, SmartSync requires you to supply your own implementations of a few tasks:

• Tracking offline status and specifying the appropriate cache control flag for CRUD operations, as shown in the
app.models.Account example.

• Collecting records that were edited locally and saving their changes to the server when the device is back online. The
following example uses a SmartStore cache query to retrieve locally changed records, then calls the SyncPage function to
render the results in HTML.

sync: function() {
var that = this;
var localAccounts = new app.models.AccountCollection();
localAccounts.fetch({
config: {type:"cache", cacheQuery: {queryType:"exact",

indexPath:"__local__", matchKey:true}},
success: function(data) {
that.slidePage(new app.views.SyncPage({model: data}).render());
}
});
}

app.views.SyncPage = Backbone.View.extend({

template: _.template($("#sync-page").html()),

render: function(eventName) {
$(this.el).html(this.template(_.extend(

{countLocallyModified: this.model.length},
this.model.toJSON())));

this.listView = new app.views.AccountListView({el: $("ul",
this.el), model: this.model});

this.listView.render();
return this;

},
...
});

Using StoreCache For Offline Caching
The SmartSync.js library implements a cache named StoreCache that stores its data in SmartStore. Although SmartSync
uses StoreCache as its default cache, StoreCache is a stand-alone component. Even if you don’t use SmartSync, you can still
leverage StoreCache for SmartStore operations.

73

Implementing Offline CachingUsing SmartSync to Access Salesforce Objects

Note: Although StoreCache is intended for use with SmartSync, you can use any cache mechanism with SmartSync
that meets the requirements described in Offline Caching.

Construction and Initialization
StoreCache objects work internally with SmartStore soups. To create a StoreCache object backed by the soup soupName, use
the following constructor:

new Force.StoreCache(soupName [, additionalIndexSpecs, keyField])

soupName
Required. The name of the underlying SmartStore soup.

additionalIndexSpecs
Fields to include in the cache index in addition to default index fields. See Registering a Soup for formatting instructions.

keyField
Name of field containing the record ID. If not specified, StoreCache expects to find the ID in a field named "Id."

Soup items in a StoreCache object include four additional boolean fields for tracking offline edits:

• __locally_created__

• __locally_updated__

• __locally_deleted__

• __local__ (set to true if any of the previous three are true)

These fields are for internal use but can also be used by apps. StoreCache indexes each soup on the __local__ field and its
ID field. You can use the additionalIndexSpecs parameter to specify additional fields to include in the index.

To register the underlying soup, call init() on the StoreCache object. This function returns a jQuery promise that resolves
once soup registration is complete.

StoreCache Methods
init()

Registers the underlying SmartStore soup. Returns a jQuery promise that resolves when soup registration is complete.

retrieve(key [, fieldlist])

Returns a jQuery promise that resolves to the record with key in the keyField returned by the SmartStore. The promise
resolves to null when no record is found or when the found record does not include all the fields in the fieldlist parameter.

key
The key value of the record to be retrieved.

fieldlist
(Optional) A JavaScript array of required fields. For example:

["field1","field2","field3"]

74

Offline CachingUsing SmartSync to Access Salesforce Objects

save(record [, noMerge])

Returns a jQuery promise that resolves to the saved record once the SmartStore upsert completes. If noMerge is not
specified or is false, the passed record is merged with the server record with the same key, if one exists.

record

The record to be saved, formatted as:

{<field_name1>:"<field_value1>"[,<field_name2>:"<field_value2>",...]}

For example:

{Id:"007", Name:"JamesBond", Mission:"TopSecret"}

noMerge
(Optional) Boolean value indicating whether the passed record is to be merged with the matching server record.
Defaults to false.

saveAll(records [, noMerge])

Identical to save(), except that records is an array of records to be saved. Returns a jQuery promise that resolves to
the saved records.

records
An array of records. Each item in the array is formatted as demonstrated for the save() function.

noMerge
(Optional) Boolean value indicating whether the passed record is to be merged with the matching server record.
Defaults to false.

remove(key)

Returns a jQuery promise that resolves when the record with the given key has been removed from the SmartStore.

key
Key value of the record to be removed.

find(querySpec)

Returns a jQuery promise that resolves once the query has been run against the SmartStore. The resolved value is an
object with the following fields:

DescriptionField

All fetched recordsrecords

Function to check if more records can be retrievedhasMore

Function to fetch more recordsgetMore

Function to close the open cursor and disable further fetchcloseCursor

75

Offline CachingUsing SmartSync to Access Salesforce Objects

querySpec

A specification based on SmartStore query function calls, formatted as:

{queryType: "like" | "exact" | "range" | "smart"[, query_type_params]}

where query_type_params match the format of the related SmartStore query function call. See Retrieving Data
From a Soup on page 111.

Here are some examples:

{queryType:"exact", indexPath:"<indexed_field_to_match_on>",
matchKey:<value_to_match>, order:"ascending"|"descending",
pageSize:<entries_per_page>}

{queryType:"range", indexPath:"<indexed_field_to_match_on>",
beginKey:<start_of_Range>, endKey:<end_of_range>, order:"ascending"|"descending",
pageSize:<entries_per_page>}

{queryType:"like", indexPath:"<indexed_field_to_match_on>",
likeKey:"<value_to_match>", order:"ascending"|"descending",
pageSize:<entries_per_page>}

{queryType:"smart", smartSql:"<smart_sql_query>", order:"ascending"|"descending",
pageSize:<entries_per_page>}

Examples
The following example shows how to create, initialize, and use a StoreCache object.

var cache = new Force.StoreCache("agents", [{path:"Mission", type:"string"}]);
// initialization of the cache / underlying soup
cache.init()
.then(function() {

// saving a record to the cache
return cache.save({Id:"007", Name:"JamesBond", Mission:"TopSecret"});

})
.then(function(savedRecord) {

// retrieving a record from the cache
return cache.retrieve("007");

})
.then(function(retrievedRecord) {

// searching for records in the cache
return cache.find({queryType:"like", indexPath:"Mission", likeKey:"Top%",

order:"ascending", pageSize:1});
})
.then(function(result) {

// removing a record from the cache
return cache.remove("007");

});

The next example shows how to use the saveAll() function and the results of the find() function.

// initialization
var cache = new Force.StoreCache("agents", [{path:"Name", type:"string"}, {path:"Mission",
type:"string"}]);
cache.init()
.then(function() {

// saving some records
return cache.saveAll([{Id:"007", Name:"JamesBond"},{Id:"008", Name:"Agent008"}, {Id:"009",

76

Offline CachingUsing SmartSync to Access Salesforce Objects

Name:"JamesOther"}]);
})
.then(function() {

// doing an exact query
return cache.find({queryType:"exact", indexPath:"Name", matchKey:"Agent008",

order:"ascending", pageSize:1});
})
.then(function(result) {

alert("Agent mission is:" + result.records[0]["Mission"];
});

Conflict Detection
Model objects support optional conflict detection to prevent unwanted data loss when the object is saved to the server. You
can use conflict detection with any save operation, regardless of whether the device is returning from an offline state.

To support conflict detection, you specify a secondary cache to contain the original values fetched from the server. SmartSync
keeps this cache for later reference. When you save or delete, you specify a merge mode. The following table summarizes the
supported modes. To understand the mode descriptions, consider "theirs" to be the current server record, "yours" the current
local record, and "base” the record that was originally fetched from the server.

DescriptionConstantMode

Write "yours" to the server,
without comparing to

Force.MERGE_MODE.OVERWRITE“overwrite”

"theirs" or "base”. (This is
the same as not using
conflict detection.)

Merge "theirs" and "yours".
If the same field is changed

Force.MERGE_MODE.MERGE_ACCEPT_YOURS“merge-accept-yours”

both locally and remotely,
the local value is kept.

Merge "theirs" and "yours".
If the same field is changed

Force.MERGE_MODE.MERGE_FAIL_IF_CONFLICT“merge-fail-if-conflict”

both locally and remotely,
the operation fails.

Merge "theirs" and "yours".
If any field is changed

Force.MERGE_MODE.MERGE_FAIL_IF_CHANGED“merge-fail-if-changed”

remotely, the operation
fails.

If a save or delete operation fails, you receive a report object with the following fields:

77

Conflict DetectionUsing SmartSync to Access Salesforce Objects

ContainsField Name

Originally fetched attributesbase

Latest server attributestheirs

Locally modified attributesyours

List of fields changed between base and theirsremoteChanges

List of fields changed between base and yourslocalChanges

List of fields changed both in theirs and yours, with different
values

conflictingChanges

Diagrams can help clarify how merge modes operate.

MERGE_MODE.OVERWRITE
In the MERGE_MODE.OVERWRITE diagram, the client changes A and B, and the server changes B and C. Changes to B conflict,
whereas changes to A and C do not. However, the save operation blindly writes all the client’s values to the server, overwriting
any changes on the server.

MERGE_ACCEPT_YOURS
In the MERGE_MODE.MERGE_ACCEPT_YOURS diagram, the client changes A and B, and the server changes B and C. Client
changes (A and B) overwrites corresponding fields on the server, regardless of whether conflicts exist. However, fields that
the client leaves unchanged (C) do not overwrite corresponding server values.

MERGE_FAIL_IF_CONFLICT (Fails)
In the first MERGE_MODE.MERGE_FAIL_IF_CONFLICT diagram, both the client and the server change B. These conflicting
changes cause the save operation to fail.

78

Conflict DetectionUsing SmartSync to Access Salesforce Objects

MERGE_FAIL_IF_CONFLICT (Succeeds)
In the second MERGE_MODE.MERGE_FAIL_IF_CONFLICT diagram, the client changed A, and the server changed B. These
changes don’t conflict, so the save operation succeeds.

Mini-Tutorial: Conflict Detection
The following mini-tutorial demonstrates how merge modes affect save operations under various circumstances. It takes the
form of an extended example within an HTML context.

1. Set up the necessary caches:

var cache = new Force.StoreCache(soupName);
var cacheForOriginals = new Force.StoreCache(soupNameForOriginals);
var Account = Force.SObject.extend({sobjectType:"Account", fieldlist:["Id", "Name",
"Industry"], cache:cache, cacheForOriginals:cacheForOriginals});

2. Get an existing account:

var account = new Account({Id:<some actual account id>});
account.fetch();

3. Let's assume that the account has Name:"Acme" and Industry:"Software". Change the name to “Acme2.”

Account.set("Name", "Acme2");

4. Save to the server without specifying a merge mode, so that the default "overwrite" merge mode is used:

account.save(null);

The account’s Name is now "Acme2" and its Industry is "Software" Let's assume that Industry changes on the server to
"Electronics."

79

Mini-Tutorial: Conflict DetectionUsing SmartSync to Access Salesforce Objects

5. Change the account Name again:

Account.set("Name", "Acme3");

You now have a change in the cache (Name) and a change on the server (Industry).
6. Save again, using "merge-fail-if-changed" merge mode.

account.save(null, {mergeMode: "merge-fail-if-changed", error: function(err) {
// err will be a map of the form {base:…, theirs:…, yours:…, remoteChanges:["Industry"],

localChanges:["Name"], conflictingChanges:[]}
});

The error callback is called because the server record has changed.
7. Save again, using "merge-fail-if-conflict" merge mode. This merge succeeds because no conflict exists between the change

on the server and the change on the client.

account.save(null, {mergeMode: "merge-fail-if-conflict"});

The account’s Name is now "Acme3" (yours) and its Industry is "Electronics" (theirs). Let's assume that, meanwhile, Name
on the server changes to "NewAcme" and Industry changes to "Services."

8. Change the account Name again:

Account.set("Name", "Acme4");

9. Save again, using "merge-fail-if-changed" merge mode. The error callback is called because the server record has changed.

account.save(null, {mergeMode: "merge-fail-if-changed", error: function(err) {
// err will be a map of the form {base:…, theirs:…, yours:…, remoteChanges:["Name",

"Industry"], localChanges:["Name"], conflictingChanges:["Name"]}
});

10. Save again, using "merge-fail-if-conflict" merge mode:

account.save(null, {mergeMode: "merge-fail-if-changed", error: function(err) {
// err will be a map of the form {base:…, theirs:…, yours:…, remoteChanges:["Name",

"Industry"], localChanges:["Name"], conflictingChanges:["Name"]}
});

The error callback is called because both the server and the cache change the Name field, resulting in a conflict:
11. Save again, using "merge-accept-yours" merge mode. This merge succeeds because your merge mode tells the save()

function which Name value to accept. Also, since you haven’t changed Industry, that field doesn’t conflict.

account.save(null, {mergeMode: "merge-accept-yours"});

Name is “Acme4” (yours) and Industry is “Services” (theirs), both in the cache and on the server.

80

Conflict DetectionUsing SmartSync to Access Salesforce Objects

Tutorial: Creating a SmartSync Application
This tutorial demonstrates how to create a local hybrid app that uses the SmartSync Data Framework. It recreates the User
Search sample application that ships with Mobile SDK 2.0. User Search lets you search for User records in a Salesforce
organization and see basic details about them.

This sample uses the following web technologies:

• Backbone.js

• Ratchet

• HTML5

• JavaScript

Set Up Your Project
First, make sure you’ve installed Salesforce Mobile SDK using the NPM installer. For iOS instructions, see Installing and
Uninstalling Salesforce Mobile SDK for iOS on page 9. For Android instructions, see Installing and Uninstalling Salesforce
Mobile SDK for Android on page 28.

Also, download the ratchet.css file from http://maker.github.io/ratchet/.

1. Once you’ve installed Mobile SDK, create a local hybrid project for your platform.

a. For iOS: At the command terminal, enter the following command:

forceios create --apptype=hybrid_local --appname=UserSearch
--companyid=com.acme.UserSearch --organization=Acme --outputdir=.

The forceios script creates your project at ./UserSearch/UserSearch.xcode.proj.

b. For Android: At the command terminal or the Windows command prompt, enter the following command:

forcedroid create -—apptype="hybrid_local" --appname="UserSearch" --targetdir=.
--packagename="com.acme.usersearch"

The forcedroid script creates the project at ./UserSearch.

2. Follow the onscreen instructions to open the new project in Eclipse (for Android) or Xcode (for iOS).
3. Open the www folder.
4. Remove the inline.js file from the project.
5. Create a new folder. Name it css.
6. Copy the ratchet.css file into your new css folder.
7. In the www folder, open index.html in your code editor and delete all of its contents.

Edit the Application HTML File
To create your app’s basic structure, define an empty HTML page that contains references, links, and code infrastructure.

81

Tutorial: Creating a SmartSync ApplicationUsing SmartSync to Access Salesforce Objects

http://maker.github.io/ratchet/

1. In Xcode, edit index.html and add the following basic structure:

<!DOCTYPE html>
<html>
<head>
</head>
<body>
</body>

</html>

2. In the <head> element:

a. Turn off scaling to make the page look like an app rather than a web page.

<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0,
user-scalable=no;" />

b. Set the content type.

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

c. Add a link to the ratchet.css file to provide the mobile look:

<link rel="stylesheet" href="css/ratchet.css"/>

d. Include the necessary JavaScript files.

<script src="jquery/jquery-2.0.0.min.js"></script>
<script src="backbone/underscore-1.4.4.min.js"></script>
<script src="backbone/backbone-1.0.0.min.js"></script>
<script src="cordova-2.3.0.js"></script>
<script src="forcetk.mobilesdk.js"></script>
<script src="cordova.force.js"></script>
<script src="SmartSync.js"></script>

3. Now let’s start adding content to the body. In the <body> block, add a div tag to contain the app UI.

<body>
<div id="content"></div>

It’s good practice to keep your objects and classes in a namespace. In this sample, we use the app namespace to contain
our models and views.

4. In a <script> tag, create an application namespace. Let’s call it app.

<script>
var app = {

models: {},
views: {}

}

For the remainder of this procedure, continue adding your code in the <script> block.

82

Tutorial: Creating a SmartSync ApplicationUsing SmartSync to Access Salesforce Objects

5. Add an event listener and handler to wait for jQuery, and then call Cordova to start the authentication flow. Also, specify
a callback function, appStart, to handle the user’s credentials.

jQuery(document).ready(function() {
document.addEventListener("deviceready", onDeviceReady,false);

});

function onDeviceReady() {
cordova.require("salesforce/plugin/oauth").getAuthCredentials(appStart);

}

Once the application has initialized and authentication is complete, the Salesforce OAuth plugin calls appStart() and
passes it the user’s credentials. The appStart() function passes the credentials to SmartSync by calling Force.init(),
which initializes SmartSync. The appStart() function also creates a Backbone Router object for the application.

6. Add the appStart() function definition at the end of the <script> block.

function appStart(creds) {
Force.init(creds, null, null,

cordova.require("salesforce/plugin/oauth").forcetkRefresh);
app.router = new app.Router();
Backbone.history.start();

}

Here’s the complete application to this point.

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=1.0; user-scalable=no" />

<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<link rel="stylesheet" href="css/ratchet.css"/>
<script src="jquery/jquery-2.0.0.min.js"></script>
<script src="backbone/underscore-1.4.4.min.js"></script>
<script src="backbone/backbone-1.0.0.min.js"></script>
<script src="cordova-2.3.0.js"></script>
<script src="forcetk.mobilesdk.js"></script>
<script src="cordova.force.js"></script>
<script src="SmartSync.js"></script>

</head>
<body>
<div id="content"></div>
<script id="search-page" type="text/template">
<header class="bar-title">
<h1 class="title">Users</h1>

</header>

<div class="bar-standard bar-header-secondary">
<input type="search" class="search-key" placeholder="Search"/>

</div>

<div class="content">
<ul class="list">

</div>
</script>

<script id="user-list-item" type="text/template">
<img src="<%= SmallPhotoUrl %>" class="small-img" />
<div class="details-short">
<%= FirstName %> <%= LastName %>

83

Tutorial: Creating a SmartSync ApplicationUsing SmartSync to Access Salesforce Objects

Title<%= Title %>
</div>

</script>

<script>
var app = {

models: {},
views: {}

};

jQuery(document).ready(function() {
document.addEventListener("deviceready", onDeviceReady,false);

});

function onDeviceReady() {
cordova.require("salesforce/plugin/oauth").getAuthCredentials(appStart);

}

function appStart(creds) {
console.log(JSON.stringify(creds));
Force.init(creds, null, null,

cordova.require("salesforce/plugin/oauth").forcetkRefresh);
app.router = new app.Router();
Backbone.history.start();

} </script>
</body>

</html>

Create a SmartSync Model and a Collection
Now that we’ve configured the HTML infrastructure, let’s get started using SmartSync by extending two of its primary objects:

• Force.SObject

• Force.SObjectCollection

These objects extend Backbone.Model, so they support the Backbone.Model.extend() function. To extend an object
using this function, pass it a JavaScript object containing your custom properties and functions.

1. In the <body> tag, create a model object for the Salesforce User sObject. Extend Force.SObject to specify the sObject
type and the fields we are targeting.

app.models.User = Force.SObject.extend({
sobjectType: "User",
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",

"MobilePhone","City"]
})

2. Immediately after setting the User object, create a collection to hold user search results.
ExtendForce.SObjectCollection to indicate your new model (app.models.User) as the model for items in the
collection.

app.models.UserCollection = Force.SObjectCollection.extend({
model: app.models.User

});

84

Create a SmartSync Model and a CollectionUsing SmartSync to Access Salesforce Objects

Here’s the complete model code.

// Models
app.models.User = Force.SObject.extend({

sobjectType: "User",
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",

"MobilePhone","City"]
});

app.models.UserCollection = Force.SObjectCollection.extend({
model: app.models.User

});

Create a Template
Templates let you describe an HTML layout within another HTML page. You can define an inline template in your HTML
page by using a <script> tag of type “text/template”. Your JavaScript code can use the template as the page design when it
instantiates a new HTML page at runtime.

The search page template is simple. It includes a header, a search field, and a list to hold the search results.

1. Add a new script block. Place the block within the <body> block just after the “content” <div> tag.

<script id="search-page" type="text/template">
</script>

2. In the new <script> block, define the search page HTML template using Ratchet styles.

<script id="search-page" type="text/template">
<header class="bar-title">
<h1 class="title">Users</h1>

</header>

<div class="bar-standard bar-header-secondary">
<input type="search" class="search-key" placeholder="Search"/>

</div>

<div class="content">
<ul class="list">

</div>
</script>

Add the Search View
To create the view for a screen, you extend Backbone.View. In the search view extension, you load the template, define
sub-views and event handlers, and implement the functionality for rendering the views and performing a SOQL search query.

1. In the <body> block, create a Backbone.View extension named SearchPage in the app.views array.

app.views.SearchPage = Backbone.View.extend({
});

For the remainder of this procedure, add all code to the extend({}) block.

85

Create a TemplateUsing SmartSync to Access Salesforce Objects

2. Load the search-page template by calling the _.template() function. Pass it the raw HTML content of the search-page
script tag.

template: _.template($("#search-page").html()),

3. Instantiate a sub-view named UserListView to contain the list of search results. (You’ll define the
app.views.UserListView view later.)

initialize: function() {
this.listView = new app.views.UserListView({model: this.model});

},

4. Create a render() function for the search page view. Rendering the view consists simply of loading the template as the
app’s HTML content. Restore any criteria previously typed in the search field and render the sub-view inside the
element.

render: function(eventName) {
$(this.el).html(this.template());
$(".search-key", this.el).val(this.model.criteria);
this.listView.setElement($("ul", this.el)).render();
return this;

},

5. Add a keyup event handler that performs a search when the user types a character in the search field.

events: {
"keyup .search-key": "search"

},

search: function(event) {
this.model.criteria = $(".search-key", this.el).val();
var soql = "SELECT Id, FirstName, LastName, SmallPhotoUrl, Title FROM User WHERE Name

like '" + this.model.criteria + "%' ORDER BY Name LIMIT 25 ";
this.model.fetch({config: {type:"soql", query:soql}});

}

This function defines a SOQL query. It then uses the backing model to send that query to the server and fetch the results.

Here’s the complete extension.

app.views.SearchPage = Backbone.View.extend({
template: _.template($("#search-page").html()),

initialize: function() {
this.listView = new app.views.UserListView({model: this.model});

},

render: function(eventName) {
$(this.el).html(this.template());
$(".search-key", this.el).val(this.model.criteria);
this.listView.setElement($("ul", this.el)).render();
return this;

},

events: {
"keyup .search-key": "search"

},

search: function(event) {

86

Tutorial: Creating a SmartSync ApplicationUsing SmartSync to Access Salesforce Objects

this.model.criteria = $(".search-key", this.el).val();
var soql = "SELECT Id, FirstName, LastName, SmallPhotoUrl, Title FROM User WHERE

Name like '" + this.model.criteria + "%' ORDER BY Name LIMIT 25 ";
this.model.fetch({config: {type:"soql", query:soql}});

}
});

Add the Search Result List View
The view for the search result list doesn’t need a template. It is simply a container for list item views. It keeps track of these
views in the listItemViews member. If the underlying collection changes, it renders itself again.

1. In the <body> block, create the view for the search result list by extending Backbone.View. Let’s add an array for list
item views as well as an initialize() function.

app.views.UserListView = Backbone.View.extend({
listItemViews: [],
initialize: function() {

this.model.bind("reset", this.render, this);
},

For the remainder of this procedure, add all code to the extend({}) block.

2. Create the render() function to clean up any existing list item views by calling close() on each one.

render: function(eventName) {
_.each(this.listItemViews, function(itemView) { itemView.close(); });

3. In the render() function, create a new set of list item views for the records in the underlying collection. Each of these
views is just an entry in the list. You’ll define the app.views.UserListItemView later.

this.listItemViews = _.map(this.model.models, function(model) { return new
app.views.UserListItemView({model: model}); });

4. Append the list item views to the root DOM element.

$(this.el).append(_.map(this.listItemViews, function(itemView) { return
itemView.render().el;}));
return this;

}

Here’s the complete extension:

app.views.UserListView = Backbone.View.extend({

listItemViews: [],

initialize: function() {
this.model.bind("reset", this.render, this);

},
render: function(eventName) {

_.each(this.listItemViews, function(itemView) { itemView.close(); });
this.listItemViews = _.map(this.model.models, function(model) {

return new app.views.UserListItemView({model: model}); });
$(this.el).append(_.map(this.listItemViews, function(itemView) {

return itemView.render().el;}));
return this;

87

Add the Search Result List ViewUsing SmartSync to Access Salesforce Objects

}

});

Add the Search Result List Item View
To define the search result list item view, you design and implement the view of a single row in a list. Each list item displays
the following User fields:

• SmallPhotoUrl
• FirstName
• LastName
• Title

1. In the <body> block, create a template for a search result list item.

<script id="user-list-item" type="text/template">
<img src="<%= SmallPhotoUrl %>" class="small-img" />
<div class="details-short">
<%= FirstName %> <%= LastName %>

Title<%= Title %>

</div>
</script>

2. Immediately after the template, create the view for the search result list item. Once again, subclassBackbone.View and
indicate that the whole view should be rendered as a list by defining the tagName member. For the remainder of this
procedure, add all code in the extend({}) block.

app.views.UserListItemView = Backbone.View.extend({
tagName: "li",

});

3. Load template by calling _.template() with the raw content of the user-list-item script.

template: _.template($("#user-list-item").html()),

4. In the render() function, simply render the template using data from the model.

render: function(eventName) {
$(this.el).html(this.template(this.model.toJSON()));
return this;

},

5. Add a close() method to be called from the list view to do necessary cleanup and avoid memory leaks.

close: function() {
this.remove();
this.off();

}

Here’s the complete extension.

app.views.UserListItemView = Backbone.View.extend({
tagName: "li",

88

Add the Search Result List Item ViewUsing SmartSync to Access Salesforce Objects

template: _.template($("#user-list-item").html()),
render: function(eventName) {

$(this.el).html(this.template(this.model.toJSON()));
return this;

},
close: function() {

this.remove();
this.off();

}

});

Router
A Backbone router defines navigation paths among views. To learn more about routers, see What is a router?

1. Just before the closing tag of the <body> block, define the application router by extending Backbone.Router.

app.Router = Backbone.Router.extend({

});

For the remainder of this procedure, add all code in the extend({}) block.

2. Because the app supports only one screen, you need only one “route”. Add a routes object.

routes: {
"": "list"

},

3. Define an initialize() function that creates the search result collections and search page view.

initialize: function() {
Backbone.Router.prototype.initialize.call(this);

// Collection behind search screen
app.searchResults = new app.models.UserCollection();
app.searchView = new app.views.SearchPage({model: app.searchResults});

},

4. Define the list() function to handle the only item in this route. When the list screen displays, fetch the search results
and render the search view.

list: function() {
app.searchResults.fetch();
$('#content').html(app.searchView.render().el);

}

5. Run the application by double-clicking index.html to open it in a browser.

You’ve finished! Here’s the entire application:

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0;

user-scalable=no" />
<meta http-equiv="Content-type" content="text/html; charset=utf-8">

89

RouterUsing SmartSync to Access Salesforce Objects

http://backbonetutorials.com/what-is-a-router/

<link rel="stylesheet" href="css/ratchet.css"/>
<script src="jquery/jquery-2.0.0.min.js"></script>
<script src="backbone/underscore-1.4.4.min.js"></script>
<script src="backbone/backbone-1.0.0.min.js"></script>
<script src="cordova-2.3.0.js"></script>
<script src="forcetk.mobilesdk.js"></script>
<script src="cordova.force.js"></script>
<script src="SmartSync.js"></script>

</head>
<body>
<div id="content"></div>
<script id="search-page" type="text/template">
<header class="bar-title">
<h1 class="title">Users</h1>

</header>

<div class="bar-standard bar-header-secondary">
<input type="search" class="search-key" placeholder="Search"/>

</div>

<div class="content">
<ul class="list">

</div>
</script>

<script id="user-list-item" type="text/template">
<img src="<%= SmallPhotoUrl %>" class="small-img" />
<div class="details-short">
<%= FirstName %> <%= LastName %>

Title<%= Title %>

</div>
</script>

<script>
var app = {

models: {},
views: {}

};

jQuery(document).ready(function() {
document.addEventListener("deviceready", onDeviceReady,false);

});

function onDeviceReady() {
cordova.require("salesforce/plugin/oauth").getAuthCredentials(appStart);

}

function appStart(creds) {
console.log(JSON.stringify(creds));
Force.init(creds, null, null, cordova.require("salesforce/plugin/oauth").forcetkRefresh);

app.router = new app.Router();
Backbone.history.start();

}

// Models
app.models.User = Force.SObject.extend({

sobjectType: "User",
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",

"MobilePhone","City"]
});

app.models.UserCollection = Force.SObjectCollection.extend({
model: app.models.User

});

90

Tutorial: Creating a SmartSync ApplicationUsing SmartSync to Access Salesforce Objects

// Views

app.views.SearchPage = Backbone.View.extend({
template: _.template($("#search-page").html()),

initialize: function() {
this.listView = new app.views.UserListView({model: this.model});

},

render: function(eventName) {
$(this.el).html(this.template());
$(".search-key", this.el).val(this.model.criteria);
this.listView.setElement($("ul", this.el)).render();
return this;

},

events: {
"keyup .search-key": "search"

},

search: function(event) {
this.model.criteria = $(".search-key", this.el).val();
var soql = "SELECT Id, FirstName, LastName, SmallPhotoUrl, Title

FROM User WHERE Name like '" + this.model.criteria + "%'
ORDER BY Name LIMIT 25 ";

this.model.fetch({config: {type:"soql", query:soql}});
}

});

app.views.UserListView = Backbone.View.extend({

listItemViews: [],

initialize: function() {
this.model.bind("reset", this.render, this);

},
render: function(eventName) {

_.each(this.listItemViews, function(itemView) { itemView.close(); });
this.listItemViews = _.map(this.model.models, function(model) { return new

app.views.UserListItemView({model: model}); });
$(this.el).append(_.map(this.listItemViews, function(itemView) { return

itemView.render().el;}));
return this;

}

});

app.views.UserListItemView = Backbone.View.extend({
tagName: "li",
template: _.template($("#user-list-item").html()),
render: function(eventName) {

$(this.el).html(this.template(this.model.toJSON()));
return this;

},
close: function() {

this.remove();
this.off();

}

});

// Router
app.Router = Backbone.Router.extend({

routes: {
"": "list"

},

91

Tutorial: Creating a SmartSync ApplicationUsing SmartSync to Access Salesforce Objects

initialize: function() {
Backbone.Router.prototype.initialize.call(this);

// Collection behind search screen
app.searchResults = new app.models.UserCollection();
app.searchView = new app.views.SearchPage({model: app.searchResults});

console.log("here");
},

list: function() {
app.searchResults.fetch();
$('#content').html(app.searchView.render().el);

}
});

</script>
</body>

</html>

SmartSync Sample Apps
Salesforce Mobile SDK provides sample apps that demonstrate how to use SmartSync in hybrid apps. Account Editor is the
most full-featured of these samples. You can switch to one of the simpler samples by changing the startPage property in
the bootconfig.json file.

Running the Samples in iOS
In your Salesforce Mobile SDK for iOS installation directory, double-click the SalesforceMobileSDK.xcworkspace to
open it in Xcode. In Xcode, open HybridShared/sampleApps/smartsync/AccountEditor.html.

92

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

Running the Samples in Android
In Android, you can run the sample from the command prompt. In your Salesforce Mobile SDK for Android installation
directory, change to the hybrid/SampleApps/AccountEditor directory and run:

ant debug
ant installd

Note: If you get any errors saying that the local.properties file does not exist, run the following command
from the directory shown in the error message:

%ANDROID_SDK%/tools/android update project -p .

To run the sample in Eclipse, import the following projects into your workspace:

• forcedroid/native/SalesforceSDK

• forcedroid/hybrid/SmartStore

• forcedroid/hybrid/SampleApps/AccountEditor

After Eclipse finishes building, Control-click or right-click AccountEditor in the Package Explorer, then click Run As >
Android application.

93

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

94

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

User and Group Search Sample
User and group search is the simplest SmartSync sample app. Its single screen lets you search users and collaboration groups
and display matching records in a list.

To run the sample, edit external/shared/sampleApps/smartsync/bootconfig.json. Change startPage to
UserAndGroupSearch.html:

{
"remoteAccessConsumerKey":

"3MVG9Iu66FKeHhINkB1l7xt7kR8czFcCTUhgoA8Ol2Ltf1eYHOU4SqQRSEitYFDUpqRWcoQ2.dBv_a1Dyu5xa",
"oauthRedirectURI": "testsfdc:///mobilesdk/detect/oauth/done",
"oauthScopes": ["api","web"],
"isLocal": true,
"startPage": "UserAndGroupSearch.html",
"errorPage": "error.html",
"shouldAuthenticate": true,
"attemptOfflineLoad": true

}

To run the app from Xcode in iOS, click Run to launch the AccountEditor project. After you’ve logged in, type at least two
characters in the search box to see matching results.

Looking Under the Hood
Open UserAndGroupSearch.html in your favorite editor. Here are the key sections of the file:

• Script includes
• Templates
• Models
• Views
• Router

Script Includes
This sample includes the standard list of libraries for SmartSync applications.

• jQuery—See http://jquery.com/.

• Underscore—Utility-belt library for JavaScript, required by backbone) See http://underscorejs.org/

• Backbone—Gives structure to web applications. Used by SmartSync Data Framework. See http://backbonejs.org/.

• cordova-2.3.0.js—Required for all hybrid application used the SalesforceMobileSDK.

• forcetk.mobilesdk.js—Force.com JavaScript library for making Rest API calls. Required by SmartSync.

• cordova.force.js—As of Mobile SDK 2.0, this file combines all Force.com Cordova plugins. Replaces the
SFHybridApp.js, SalesforceOAuthPlugin.js, and SmartStorePlugin.js files.

• SmartSync.js—The Mobile SDK SmartSync Data Framework.

• fastclick.js—Library used to eliminate the 300 ms delay between physical tap and firing of a click event. See
https://github.com/ftlabs/fastclick.

• stackrouter.js and auth.js—Helper JavaScript libraries used by all three sample applications.

Templates
Templates for this application include:

95

User and Group Search SampleUsing SmartSync to Access Salesforce Objects

http://jquery.com/
http://underscorejs.org/
http://backbonejs.org/
https://github.com/ftlabs/fastclick

• search-page—template for the entire search page
• user-list-item—template for user list items
• group-list-item—template for collaboration group list items

Models
This application defines a SearchCollection model.

SearchCollection subclasses the Force.SObjectCollection class, which in turn subclasses the Collection class
from the Backbone library. Its only method configures the SOSL query used by the fetch() method to populate the collection.

app.models.SearchCollection = Force.SObjectCollection.extend({
setCriteria: function(key) {

this.config = {type:"sosl", query:"FIND {" + key + "*} IN ALL FIELDS RETURNING "
+ "CollaborationGroup (Id, Name, SmallPhotoUrl, MemberCount), "

+ "User (Id, FirstName, LastName, SmallPhotoUrl, Title ORDER BY Name)
"

+ "LIMIT 25"
};

}
});

Views
User and Group Search defines three views:

SearchPage
The search page expects a SearchCollection as its model. It watches the search input field for changes and updates
the model accordingly.

events: {
"keyup .search-key": "search"

},

search: function(event) {
var key = $(".search-key", this.el).val();
if (key.length >= 2) {

this.model.setCriteria(key);
this.model.fetch();

}
}

ListView
The list portion of the search screen. ListView also expects a Collection as its model and creates ListItemView
objects for each record in the Collection.

ListItemView
Shows details of a single list item, choosing the User or Group template based on the data.

Router
The router does very little because this application defines only one screen.

96

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

User Search Sample
User Search is a more elaborate sample than User and Group search. Instead of a single screen, it defines two screens. If your
search returns a list of matches, User Search lets you tap on each of them to see a basic detail screen. Because it defines more
than one screen, this sample also demonstrates the use of a router.

To run the sample, edit external/shared/sampleApps/smartsync/bootconfig.json. Change startPage to
UserSearch.html:

{
"remoteAccessConsumerKey":

"3MVG9Iu66FKeHhINkB1l7xt7kR8czFcCTUhgoA8Ol2Ltf1eYHOU4SqQRSEitYFDUpqRWcoQ2.dBv_a1Dyu5xa",
"oauthRedirectURI": "testsfdc:///mobilesdk/detect/oauth/done",
"oauthScopes": ["api","web"],
"isLocal": true,
"startPage": "UserSearch.html",
"errorPage": "error.html",
"shouldAuthenticate": true,
"attemptOfflineLoad": true

}

In Xcode or Eclipse, launch the AccountEditor. Log in if prompted to do so. Unlike the User and Group Search example,
you need to type only a single character in the search box to begin seeing search results. That’s because this application uses
SOQL, rather than SOSL, to query the server.

When you tap an entry in the search results list, you see a basic detail screen.

Looking Under the Hood
Open the UserSearch.html file in your favorite editor. Here are the key sections of the file:

• Script includes
• Templates
• Models
• Views
• Router

Script Includes
This sample includes the standard list of libraries for SmartSync applications.

• jQuery—See http://jquery.com/.

• Underscore—Utility-belt library for JavaScript, required by backbone) See http://underscorejs.org/

• Backbone—Gives structure to web applications. Used by SmartSync Data Framework. See http://backbonejs.org/.

• cordova-2.3.0.js—Required for all hybrid application used the SalesforceMobileSDK.

• forcetk.mobilesdk.js—Force.com JavaScript library for making Rest API calls. Required by SmartSync.

• cordova.force.js—As of Mobile SDK 2.0, this file combines all Force.com Cordova plugins. Replaces the
SFHybridApp.js, SalesforceOAuthPlugin.js, and SmartStorePlugin.js files.

• SmartSync.js—The Mobile SDK SmartSync Data Framework.

• fastclick.js—Library used to eliminate the 300 ms delay between physical tap and firing of a click event. See
https://github.com/ftlabs/fastclick.

• stackrouter.js and auth.js—Helper JavaScript libraries used by all three sample applications.

97

User Search SampleUsing SmartSync to Access Salesforce Objects

http://jquery.com/
http://underscorejs.org/
http://backbonejs.org/
https://github.com/ftlabs/fastclick

Templates
Templates for this application include:

• search-page—template for the whole search page
• user-list-item—template for user list items
• user-page—template for user detail page

Models
This application defines two models: UserCollection and User.

UserCollection subclasses the Force.SObjectCollection class, which in turn subclasses the Collection class from
the Backbone library. Its only method configures the SOQL query used by the fetch() method to populate the collection.

app.models.UserCollection = Force.SObjectCollection.extend({
model: app.models.User,
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title"],

setCriteria: function(key) {
this.key = key;
this.config = {type:"soql", query:"SELECT " + this.fieldlist.join(",")

+ " FROM User"
+ " WHERE Name like '" + key + "%'"
+ " ORDER BY Name "
+ " LIMIT 25 "

};
}

});

User subclasses SmartSync’s Force.SObject class. The User model defines:

• An sobjectType field to indicate which type of sObject it represents (User, in this case).
• A fieldlist field that contains the list of fields to be fetched from the server

Here’s the code:

app.models.User = Force.SObject.extend({
sobjectType: "User",
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",

"MobilePhone","City"]
});

Views
This sample defines four views:

SearchPage
View for the entire search page. It expects a UserCollection as its model. It watches the search input field for changes
and updates the model accordingly in the search() function.

events: {
"keyup .search-key": "search"

},

search: function(event) {
this.model.setCriteria($(".search-key", this.el).val());
this.model.fetch();

}

98

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

UserListView
View for the list portion of the search screen. It also expects a UserCollection as its model and creates
UserListItemView objects for each user in the UserCollection object.

UserListItemView
View for a single list item.

UserPage
View for displaying user details.

Router
The router class handles navigation between the app’s two screens. This class uses a routes field to map those view to
router class method.

routes: {
"": "list",
"list": "list",
"users/:id": "viewUser"

},

The list page calls fetch() to fill the search result collections, then brings the search page into view.

list: function() {
app.searchResults.fetch();
// Show page right away - list will redraw when data comes in
this.slidePage(app.searchPage);

},

The user detail page calls fetch() to fill the user model, then brings the user detail page into view.

viewUser: function(id) {
var that = this;
var user = new app.models.User({Id: id});
user.fetch({

success: function() {
app.userPage.model = user;
that.slidePage(app.userPage);

}
});

}

Account Editor Sample
Account Editor is the most complex SmartSync-based sample application in Mobile SDK 2.0. It allows you to
create/edit/update/delete accounts online and offline, and also demonstrates conflict detection.

To run the sample:

1. If you’ve made changes to external/shared/sampleApps/smartsync/bootconfig.json, revert it to its origin
content.

2. Launch Account Editor.

This application contains three screens:

• Accounts search

99

Account Editor SampleUsing SmartSync to Access Salesforce Objects

• Accounts detail

• Sync

When the application first starts, you see the Accounts search screen listing the most recently used accounts. In this screen,
you can:

• Type a search string to find accounts whose names contain the given string.

• Tap an account to launch the account detail screen.

• Tap Create to launch an empty account detail screen.

• Tap Online to go offline. If you are already offline, you can tap the Offline button to go back online. (You can also go
offline by putting the device in airplane mode.)

To launch the Account Detail screen, tap an account record in the Accounts search screen. The detail screen shows you the
fields in the selected account. In this screen, you can:

• Tap a field to change its value.

• Tap Save to update or create the account. If validation errors occur, the fields with problems are highlighted.

If you’re online while saving and the server’s record changed since the last fetch, you receive warnings for the fields that
changed remotely.

Two additional buttons, Merge and Overwrite, let you control how the app saves your changes. If you tap Overwrite, the
app saves to the server all values currently displayed on your screen. If you tap Merge, the app saves to the server only the
fields you changed, while keeping changes on the server in fields you did not change.

• Tap Delete to delete the account.

• Tap Online to go offline, or tap Offline to go online.

To see the Sync screen, tap Online to go offline, then create, update, or delete an account. When you tap Offline again to
go back online, the Sync screen shows all accounts that you modified on the device.

Tap Process n records to try to save your local changes to the server. If any account fails to save, it remains in the list with a
notation that it failed to sync. You can tap any account in the list to edit it further or, in the case of a locally deleted record,
to undelete it.

Looking Under the Hood
To view the source code for this sample, open AccountEditor.html in an HTML or text editor.

Here are the key sections of the file:

• Script includes
• Templates
• Models
• Views
• Router

Script Includes
This sample includes the standard list of libraries for SmartSync applications.

• jQuery—See http://jquery.com/.
• Underscore—Utility-belt library for JavaScript, required by backbone. See http://underscorejs.org/.
• Backbone—Gives structure to web applications. Used by SmartSync Data Framework. See http://backbonejs.org/.
• cordova-2.3.0.js—Required for hybrid applications using the Salesforce Mobile SDK.

100

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

http://jquery.com/
http://underscorejs.org/
http://backbonejs.org/

• forcetk.mobilesdk.js—Force.com JavaScript library for making REST API calls. Required by SmartSync.
• cordova.force.js—As of Mobile SDK 2.0, this file combines all Force.com Cordova plugins. Replaces the

SFHybridApp.js, SalesforceOAuthPlugin.js, and SmartStorePlugin.js files.
• SmartSync.js—The Mobile SDK SmartSync Data Framework.
• fastclick.js—Library used to eliminate the 300 ms delay between physical tap and firing of a click event. See

https://github.com/ftlabs/fastclick.
• stackrouter.js and auth.js—Helper JavaScript libraries used by all three sample applications.

Templates
Templates for this application include:

• search-page
• sync-page
• account-list-item
• edit-account-page (for the Account detail page)

Models
This sample defines three models: AccountCollection, Account and OfflineTracker.

AccountCollection is a subclass of SmartSync’s Force.SObjectCollection class, which is a subclass of the Backbone
framework’s Collection class.

The AccountCollection.config() method returns an appropriate query to the collection. The query mode can be:

• Most recently used (MRU) if you are online and haven’t provided query criteria
• SOQL if you are online and have provided query criteria
• SmartSQL when you are offline

When the app calls fetch() on the collection, the fetch() function executes the query returned by config(). It then
uses the results of this query to populate AccountCollection with Account objects from either the offline cache or the
server.

AccountCollection uses the two global caches set up by the AccountEditor application: app.cache for offline storage,
and app.cacheForOriginals for conflict detection. The code shows that the AccountCollection model:

• Contains objects of the app.models.Account model (model field)
• Specifies a list of fields to be queried (fieldlist field)
• Uses the sample app’s global offline cache (cache field)
• Uses the sample app’s global conflict detection cache (cacheForOriginals field)
• Defines a config() function to handle online as well as offline queries

Here’s the code (shortened for readability):

app.models.AccountCollection = Force.SObjectCollection.extend({
model: app.models.Account,
fieldlist: ["Id", "Name", "Industry", "Phone", "Owner.Name", "LastModifiedBy.Name",

"LastModifiedDate"],
cache: function() { return app.cache},
cacheForOriginals: function() { return app.cacheForOriginals;},

config: function() {
// Offline: do a cache query
if (!app.offlineTracker.get("isOnline")) {

...
}

101

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

https://github.com/ftlabs/fastclick

// Online
else {

...
}

}
});

Account is a subclass of SmartSync’s Force.SObject class, which is a subclass of the Backbone framework’s Model class.
Code for the Account model shows that it:

• Uses a sobjectType field to indicate which type of sObject it represents (Account, in this case).
• Defines fieldlist as a method rather than a field, because the fields that it retrieves from the server are not the same

as the ones it sends to the server.
• Uses the sample app’s global offline cache (cache field).
• Uses the sample app’s global conflict detection cache (cacheForOriginals field).
• Supports a cacheMode() method that returns a value indicating how to handle caching based on the current offline status.

Here’s the code:

app.models.Account = Force.SObject.extend({
sobjectType: "Account",
fieldlist: function(method) {

return method == "read"
? ["Id", "Name", "Industry", "Phone", "Owner.Name", "LastModifiedBy.Name",

"LastModifiedDate"]
: ["Id", "Name", "Industry", "Phone"];

},
cache: function() { return app.cache;},
cacheForOriginals: function() { return app.cacheForOriginals;},
cacheMode: function(method) {

if (!app.offlineTracker.get("isOnline")) {
return Force.CACHE_MODE.CACHE_ONLY;

}
// Online
else {

return (method == "read" ? Force.CACHE_MODE.CACHE_FIRST :
Force.CACHE_MODE.SERVER_FIRST);

}
}

});

OfflineTracker is a subclass of Backbone’s Model class. This class tracks the offline status of the application by observing
the browser’s offline status. It automatically switches the app to offline when it detects that the browser is offline. However,
it goes online only when the user requests it.

Here’s the code:

app.models.OfflineTracker = Backbone.Model.extend({
initialize: function() {

var that = this;
this.set("isOnline", navigator.onLine);
document.addEventListener("offline", function() {

console.log("Received OFFLINE event");
that.set("isOnline", false);

}, false);
document.addEventListener("online", function() {

console.log("Received ONLINE event");
// User decides when to go back online

}, false);
}

});

102

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

Views
This sample defines five views:

• SearchPage
• AccountListView
• AccountListItemView
• EditAccountView
• SyncPage

A view typically provides a template field to specify its design template, an initialize() function, and a render() function.

Each view can also define an events field. This field contains an array whose key/value entries specify the event type and the
event handler function name. Entries use the following format:

"<event-type>[<control>]": "<event-handler-function-name>"

For example:

events: {
"click .button-prev": "goBack",
"change": "change",
"click .save": "save",
"click .merge": "saveMerge",
"click .overwrite": "saveOverwrite",
"click .toggleDelete": "toggleDelete"

},

SearchPage
View for the entire search screen. It expects an AccountCollection as its model. It watches the search input field for
changes (the keyup event) and updates the model accordingly in the search() function.

events: {
"keyup .search-key": "search"

},
search: function(event) {

this.model.setCriteria($(".search-key", this.el).val());
this.model.fetch();

}

AcountListView
View for the list portion of the search screen. It expects an AccountCollection as its model and creates
AccountListItemView object for each account in the AccountCollection object.

AccountListItemView
View for an item within the list.

EditAccountPage
View for account detail page. This view monitors several events:

Handler function nameTarget ControlEvent Type

goBackbutton-prevclick

changeNot set (can be any edit control)change

103

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

Handler function nameTarget ControlEvent Type

savesaveclick

saveMergemergeclick

saveOverwriteoverwriteclick

toggleDeletetoggleDeleteclick

A couple of event handler functions deserve special attention. The change() function shows how the view uses the
event target to send user edits back to the model:

change: function(evt) {
// apply change to model
var target = event.target;
this.model.set(target.name, target.value);
$("#account" + target.name + "Error", this.el).hide();

}

The toggleDelete() function handles a toggle that lets the user delete or undelete an account. If the user clicks to
undelete, the code sets an internal __locally_deleted__ flag to false to indicate that the record is no longer
deleted in the cache. Else, it attempts to delete the record on the server by destroying the local model.

toggleDelete: function() {
if (this.model.get("__locally_deleted__")) {

this.model.set("__locally_deleted__", false);
this.model.save(null, this.getSaveOptions(null, Force.CACHE_MODE.CACHE_ONLY));

}
else {

this.model.destroy({
success: function(data) {

app.router.navigate("#", {trigger:true});
},
error: function(data, err, options) {

var error = new Force.Error(err);
alert("Failed to delete account: " + (error.type === "RestError" ?

error.details[0].message :
"Remote change detected - delete aborted"));

}
});

}
}

SyncPage
View for the sync page. This view monitors several events:

Handler function nameControlEvent Type

goBackbutton-prevclick

syncsyncclick

104

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

To see how the all screen is rendered, look at the render method:

render: function(eventName) {

$(this.el).html(this.template(_.extend(
{countLocallyModified: this.model.length},
this.model.toJSON())));

this.listView.setElement($("ul", this.el)).render();

return this;

},

Let’s take a look at what happens when the user taps Process (the sync control).

The sync() function looks at the first locally modified Account in the view’s collection and tries to save it to the server.
If the save succeeds and there are no more locally modified records, the app navigates back to the search screen. Otherwise,
the app marks the account as having failed locally and then calls sync() again.

sync: function(event) {
var that = this;
if (this.model.length == 0 || this.model.at(0).get("__sync_failed__")) {

// we push sync failures back to the end of the list -
// if we encounter one, it means we are done
return;

}
else {

var record = this.model.shift();

var options = {
mergeMode: Force.MERGE_MODE.MERGE_FAIL_IF_CHANGED,
success: function() {

if (that.model.length == 0) {
app.router.navigate("#", {trigger:true});

}
else {

that.sync();
}

},
error: function() {

record = record.set("__sync_failed__", true);
that.model.push(record);
that.sync();

}
};
return record.get("__locally_deleted__") ? record.destroy(options) :

record.save(null, options);
}

});

Router
When the router is initialized, it sets up the two global caches used throughout the sample.

setupCaches: function() {
// Cache for offline support
app.cache = new Force.StoreCache("accounts", [{path:"Name", type:"string"}]);

// Cache for conflict detection
app.cacheForOriginals = new Force.StoreCache("original-accounts");

105

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

return $.when(app.cache.init(), app.cacheForOriginals.init());
},

Once the global caches are set up, it also sets up two AccountCollection objects: One for the search screen, and one for
the sync screen.

// Collection behind search screen
app.searchResults = new app.models.AccountCollection();

// Collection behind sync screen
app.localAccounts = new app.models.AccountCollection();
app.localAccounts.config = {type:"cache", cacheQuery: {queryType:"exact",
indexPath:"__local__", matchKey:true, order:"ascending", pageSize:25}};

Finally, it creates the view objects for the Search, Sync, and EditAccount screens.

// We keep a single instance of SearchPage / SyncPage and EditAccountPage
app.searchPage = new app.views.SearchPage({model: app.searchResults});
app.syncPage = new app.views.SyncPage({model: app.localAccounts});
app.editPage = new app.views.EditAccountPage();

The router has a routes field that maps actions to methods on the router class.

routes: {
"": "list",
"list": "list",
"add": "addAccount",
"edit/accounts/:id": "editAccount",
"sync":"sync"

},

The list action fills the search result collections by calling fetch() and brings the search page into view.

list: function() {
app.searchResults.fetch();
// Show page right away - list will redraw when data comes in
this.slidePage(app.searchPage);

},

The addAccount action creates an empty account object and bring the edit page for that account into view.

addAccount: function() {
app.editPage.model = new app.models.Account({Id: null});
this.slidePage(app.editPage);

},

The editAccount action fetches the specified Account object and brings the account detail page into view.

editAccount: function(id) {
var that = this;
var account = new app.models.Account({Id: id});
account.fetch({

success: function(data) {
app.editPage.model = account;
that.slidePage(app.editPage);

},
error: function() {

alert("Failed to get record for edit");
}

106

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

});
}

The sync action computes the localAccounts collection by calling fetch and brings the sync page into view.

sync: function() {
app.localAccounts.fetch();
// Show page right away - list will redraw when data comes in
this.slidePage(app.syncPage);

}

107

SmartSync Sample AppsUsing SmartSync to Access Salesforce Objects

Chapter 7

Securely Storing Data Offline

Mobile devices can lose connection at any time, and environments such as
hospitals and airplanes often prohibit connectivity. To handle these situations,
it’s important that your mobile apps continue to function when they go offline.

In this chapter ...

• Accessing SmartStore in Hybrid
Apps

The Mobile SDK uses SmartStore, a secure offline storage solution on your
device. SmartStore allows you to continue working even when the device is not• Adding SmartStore to Android Apps

• Offline Hybrid Development connected to the Internet. SmartStore stores data as JSON documents in a data
• SmartStore Soups structure called a soup. A soup is a simple one-table database of “entries” which

can be indexed in different ways and queried by a variety of methods.• Registering a Soup
• Retrieving Data From a Soup Mobile SDK 2.0 provides a StoreCache mechanism that works with SmartStore

soups to provide offline synchronization and conflict resolution services. You can• Smart SQL Queries
control these services by providing simple configuration settings. We recommend• Working With Cursors
that you use StoreCache to manage operations on Salesforce data. See Using• Manipulating Data
StoreCache For Offline Caching on page 73 and Conflict Detection on page
77

• Using the Mock SmartStore
• NativeSqlAggregator Sample App:

Using SmartStore in Native Apps Note: Pure HTML5 apps store offline information in a browser cache.
Browser caching isn’t part of the Mobile SDK, and we don’t document
it here. SmartStore uses storage functionality on the device. This strategy
requires a native or hybrid development path.

Sample Objects
The code snippets in this chapter use two objects, Account and Opportunity,
which come predefined with every Salesforce organization. Account and
Opportunity have a master-detail relationship; an Account can have more than
one Opportunity.

108

http://en.wikipedia.org/wiki/Soup_(Apple)

Accessing SmartStore in Hybrid Apps
Hybrid apps access SmartStore from JavaScript. In order to enable offline access in a hybrid mobile application, you need to
include a couple of JavaScript and CSS files in your Visualforce or HTML page.

• cordova-x.x.x.js — The Cordova library (formerly PhoneGap).

• cordova.force.js – Contains the JavaScript portion of Salesforce OAuth and SmartStore plugins. Also includes
methods that perform utility tasks, such as determining whether you’re offline.

Adding SmartStore to Android Apps
In Android apps, SmartStore is an optional component. It is not optional in iOS apps.

To use SmartStore in an Android app, you need to configure your project to include it. When you create a new Android project
with the forcedroid utility, include SmartStore by setting the optional – —usesmartstore=true parameter. See Creating
a New Android Project on page 30 for examples.

To add SmartStore to an existing Android project (hybrid or native):

1. Add the SmartStore library project to your project. In Eclipse, choose Properties from the Project menu. Select Android
from the left panel, then click Add on the right-hand side. Choose the hybrid/SmartStore project.

2. In your projectnameApp.java file, import the SalesforceSDKManagerWithSmartStore class instead of SalesforceSDKManager.
Replace this statement:

import com.salesforce.androidsdk.app.SalesforceSDKManager

with this one:

import com.salesforce.androidsdk.smartstore.app.SalesforceSDKManagerWithSmartStore

3. In your projectnameApp.java file, change your App class to extend the SalesforceSDKManagerWithSmartStore class rather
than SalesforceSDKManager.

Offline Hybrid Development
Developing a hybrid application inside the container requires a build/deploy step for every change. For that reason, we
recommend you develop your hybrid application directly in a browser, and only run your code in the container in the final
stages of testing. JavaScript development in a browser is easier because there is no build/compile step. Whenever you make
changes to the code, you can refresh the browser to see your changes.

We recommend using the Google Chrome browser because it comes bundled with developer tools that let you access the
internals of the your web applications. For more information, see Chrome Developer Tools: Overview.

109

Accessing SmartStore in Hybrid AppsSecurely Storing Data Offline

https://developers.google.com/chrome-developer-tools/docs/overview

SmartStore Soups
You store your offline data in SmartStore in one or more soups. A soup, conceptually speaking, is a logical collection of data
records—represented as JSON objects—that you want to store and query offline. In the Force.com world, a soup will typically
map to a standard or custom object that you wish to store offline, but that is not a hard and fast rule. You can store as many
soups as you want in an application, but remember that soups are meant to be self-contained data sets; there is no direct
correlation between them. In addition to storing the data itself, you can also specify indices that map to fields within the data,
for greater ease and customization of data queries.

Note:

SmartStore data is inherently volatile. Its lifespan is tied to the authenticated user as well as to OAuth token states.
When the user logs out of the app, SmartStore deletes all soup data associated with that user. Similarly, when the
OAuth refresh token is revoked or expires, the user’s app state is reset, and all data in SmartStore is purged. Carefully
consider the volatility of SmartStore data when designing your app. This warning is especially important if your org
sets a short lifetime for the refresh token.

Registering a Soup
In order to access a soup, you first need to register it. Provide a name, index specifications, and names of callback functions
for success and error conditions:

navigator.smartstore.registerSoup(soupName, indexSpecs, successCallback, errorCallback)

If the soup does not already exist, this function creates it. If the soup already exists, registering gives you access to the existing
soup. To find out if a soup already exists, use:

navigator.smartstore.soupExists(soupName, successCallback, errorCallback);

A soup is indexed on one or more fields found in its entries. Insert, update, and delete operations on soup entries are tracked
in the soup indices. Always specify at least one index field when registering a soup. For example, if you are using the soup as
a simple key/value store, use a single index specification with a string type.

indexSpecs
The indexSpecs array is used to create the soup with predefined indexing. Entries in the indexSpecs array specify how
the soup should be indexed. Each entry consists of a path:type pair. path is the name of an index field; type is either
“string”, “integer”, or “floating”. Index paths are case-sensitive and can include compound paths, such as Owner.Name.

Note: Performance can suffer if the index path is too deep. If index entries are missing any fields described in a
particular indexSpec, they will not be tracked in that index.

"indexSpecs":[
{

"path":"Name",
"type":"string"

}
{

110

SmartStore SoupsSecurely Storing Data Offline

"path":"Id",
"type":"string"

}
{

"path":"ParentId",
"type":"string"

}
{

"path":"lastModifiedDate",
"type":"integer"

}
]

Note: Currently, the Mobile SDK supports three index types: “string”, “integer”, and “floating”. These types apply
only to the index itself, and not to the way data is stored or retrieved. It’s OK to have a null field in an index column.

successCallback
The success callback function for registerSoup takes one argument (the soup name).

function(soupName) { alert("Soup " + soupName + " was successfully created"); };

A successful creation of the soup returns a successCallback that indicates the soup is ready. Wait to complete the transaction
and receive the callback before you begin any activity. If you register a soup under the passed name, the success callback function
returns the soup.

errorCallback
The error callback function for registerSoup takes one argument (the error description string).

function(err) { alert ("registerSoup failed with error:" + err); }

During soup creation, errors can happen for a number of reasons, including:

• An invalid or bad soup name
• No index (at least one index must be specified)
• Other unexpected errors, such as a database error

Retrieving Data From a Soup
SmartStore provides a set of helper methods that build query strings for you. To query a specific set of records, call the build*
method that suits your query specification. You can optionally define the index field, sort order, and other metadata to be used
for filtering, as described in the following table:

DescriptionParameter

This is what you’re searching for; for example a name, account number, or date.indexPath

Optional. Used to define the start of a range query.beginKey

Optional. Used to define the end of a range query.endKey

111

Retrieving Data From a SoupSecurely Storing Data Offline

DescriptionParameter

Optional. Either “ascending” or “descending.”order

Optional. If not present, the native plugin can return whatever page size it sees fit in the
resulting Cursor.pageSize.

pageSize

Note:

All queries are single-predicate searches. Only SmartSQL queries support joins.

Query Everything
buildAllQuerySpec(indexPath, order, [pageSize]) returns all entries in the soup, with no particular order. Use
this query to traverse everything in the soup.

order and pageSize are optional, and default to ascending and 10, respectively. You can specify:

• buildAllQuerySpec(indexPath)

• buildAllQuerySpec(indexPath, order)

• buildAllQuerySpec(indexPath, order, [pageSize])

However, you can’t specify buildAllQuerySpec(indexPath,[pageSize]).

See Working With Cursors for information on page sizes.

Note: As a base rule, set pageSize to the number of entries you want displayed on the screen. For a smooth scrolling
display, you might want to increase the value to two or three times the number of entries actually shown.

Query with a Smart SQL SELECT Statement
buildSmartQuerySpec(smartSql, [pageSize]) executes the query specified by smartSql. This function allows
greater flexibility than other query factory functions because you provide your own Smart SQL SELECT statement. See Smart
SQL Queries.

pageSize is optional and defaults to 10

Sample code, in various development environments, for a Smart SQL query that calls the SQL COUNT function:

Javascript:

var querySpec = navigator.smartstore.buildSmartQuerySpec("select count(*) from {employees}",
1);
navigator.smartstore.runSmartQuery(querySpec, function(cursor) {
// result should be [[n]] if there are n employees
});

iOS native:

SFQuerySpec* querySpec = [SFQuerySpec newSmartQuerySpec:@"select count(*) from {employees}"
withPageSize:1];
NSArray* result = [_store queryWithQuerySpec:querySpec pageIndex:0];
// result should be [[n]] if there are n employees

112

Retrieving Data From a SoupSecurely Storing Data Offline

Android native:

SmartStore store = SalesforceSDKManagerWithSmartStore.getInstance().getSmartStore();
JSONArray result = store.query(QuerySpec.buildSmartQuerySpec("select count(*) from
{employees}", 1), 0);
// result should be [[n]] if there are n employees

Query by Exact
buildExactQuerySpec(indexPath, matchKey, [pageSize]) finds entries that exactly match the given matchKey
for the indexPath value. Use this to find child entities of a given ID. For example, you can find Opportunities by Status.
However, you can’t specify order in the results.

Sample code for retrieving children by ID:

var querySpec = navigator.smartstore.buildExactQuerySpec(“sfdcId”, “some-sfdc-id”);
navigator.smartstore.querySoup(“Catalogs”, querySpec, function(cursor) {

// we expect the catalog to be in: cursor.currentPageOrderedEntries[0]
});

Sample code for retrieving children by parent ID:

var querySpec = navigator.smartstore.buildExactQuerySpec(“parentSfdcId”, “some-sfdc-id);
navigator.smartstore.querySoup(“Catalogs”, querySpec, function(cursor) {});

Query by Range
buildRangeQuerySpec(indexPath, beginKey, endKey, [order, pageSize]) finds entries whose indexPath
values fall into the range defined by beginKey and endKey. Use this function to search by numeric ranges, such as a range
of dates stored as integers.

order and pageSize are optional, and default to ascending and 10, respectively. You can specify:

• buildRangeQuerySpec(indexPath, beginKey, endKey)

• buildRangeQuerySpec(indexPath, beginKey, endKey, order)

• buildRangeQuerySpec(indexPath, beginKey, endKey, order, pageSize)

However, you can’t specify buildRangeQuerySpec(indexPath, beginKey, endKey, pageSize).

By passing null values to beginKey and endKey, you can perform open-ended searches:

• Passing null to endKey finds all records where the field at indexPath is >= beginKey.
• Passing null to beginKey finds all records where the field at indexPath is <= endKey.
• Passing null to both beginKey and endKey is the same as querying everything.

Query by Like
buildLikeQuerySpec(indexPath, likeKey, [order, pageSize]) finds entries whose indexPath values are
like the given likeKey. You can use “foo%” to search for terms that begin with your keyword, “%foo” to search for terms that
end with your keyword, and “%foo%” to search for your keyword anywhere in the indexPath value. Use this function for
general searching and partial name matches. order and pageSize are optional, and default to ascending and 10, respectively.

Note: Query by Like is the slowest of the query methods.

113

Retrieving Data From a SoupSecurely Storing Data Offline

Executing the Query
Queries run asynchronously and return a cursor to your JavaScript callback. Your success callback should be of the form
function(cursor). Use the querySpec parameter to pass your query specification to the querySoup method.

navigator.smartstore.querySoup(soupName,querySpec,successCallback,errorCallback);

Retrieving Individual Soup Entries by Primary Key
All soup entries are automatically given a unique internal ID (the primary key in the internal table that holds all entries in the
soup). That ID field is made available as the _soupEntryId field in the soup entry. Soup entries can be looked up by
_soupEntryId by using the retrieveSoupEntries method. Note that the return order is not guaranteed, and if entries
have been deleted they will be missing from the resulting array. This method provides the fastest way to retrieve a soup entry,
but it’s usable only when you know the _soupEntryId:

navigator.smartStore.retrieveSoupEntries(soupName, indexSpecs, successCallback, errorCallback)

Smart SQL Queries
Beginning with Salesforce Mobile SDK version 2.0, SmartStore supports a Smart SQL query language for free-form SELECT
statements. Smart SQL queries combine standard SQL SELECT grammar with additional descriptors for referencing soups
and soup fields. This approach gives you maximum control and flexibility, including the ability to use joins. Smart SQL
supports all standard SQL SELECT constructs.

Smart SQL Restrictions
Smart SQL supports only SELECT statements and only indexed paths.

Syntax
Syntax is identical to the standard SQL SELECT specification but with the following adaptations.

SyntaxUsage

{<soupName>:<path>}To specify a column

{<soupName>}To specify a table

{<soupName>:_soup}To refer to the entire soup entry JSON
string

{<soupName>:_soupEntryId}To refer to the internal soup entry ID

{<soupName>:_soupLastModifiedDate}To refer to the last modified date

Sample Queries
Consider two soups: one named Employees, and another named Departments. The Employees soup contains standard fields
such as:

• First name (firstName)
• Last name (lastName)
• Department code (deptCode)

114

Smart SQL QueriesSecurely Storing Data Offline

• Employee ID (employeeId)
• Manager ID (managerId)

The Departments soup contains:

• Name (name)
• Department code (deptCode)

Here are some examples of basic Smart SQL queries using these soups:

select {employees:firstName}, {employees:lastName}
from {employees} order by {employees:lastName}

select {departments:name}
from {departments}
order by {departments:deptCode}

Joins
Smart SQL also allows you to use joins. For example:

select {departments:name}, {employees:firstName} || ' ' || {employees:lastName}
from {employees}, {departments}
where {departments:deptCode} = {employees:deptCode}
order by {departments:name}, {employees:lastName}

You can even do self joins:

select mgr.{employees:lastName}, e.{employees:lastName}
from {employees} as mgr, {employees} as e
where mgr.{employees:employeeId} = e.{employees:managerId}

Aggregate Functions
Smart SQL support the use of aggregate functions such as:

• COUNT
• SUM
• AVG

For example:

select {account:name},
count({opportunity:name}),
sum({opportunity:amount}),
avg({opportunity:amount}),
{account:id},
{opportunity:accountid}

from {account},
{opportunity}

where {account:id} = {opportunity:accountid}
group by {account:name}

The NativeSqlAggregator sample app delivers a fully implemented native implementation of SmartStore, including SmartSQL
support for aggregate functions and joins. See NativeSqlAggregator Sample App: Using SmartStore in Native Apps on page
119.

115

Smart SQL QueriesSecurely Storing Data Offline

Working With Cursors
Queries can potentially have long result sets that are too large to load. Instead, only a small subset of the query results (a single
page) is copied from the native realm to the JavaScript realm at any given time. When you perform a query, a cursor object is
returned from the native realm that provides a way to page through a list of query results. The JavaScript code can then move
forward and back through the pages, causing pages to be copied to the JavaScript realm.

Note: For advanced users: Cursors are not snapshots of data; they are dynamic. If you make changes to the soup and
then start paging through the cursor, you will see those changes. The only data the cursor holds is the original query
and your current position in the result set. When you move your cursor, the query runs again. Thus, newly created
soup entries can be returned (assuming they satisfy the original query).

Use the following cursor functions to navigate the results of a query:

• navigator.smartstore.moveCursorToPageIndex(cursor, newPageIndex, successCallback,
errorCallback)—Move the cursor to the page index given, where 0 is the first page, and the last page is defined by
totalPages - 1.

• navigator.smartstore.moveCursorToNextPage(cursor, successCallback, errorCallback)—Move
to the next entry page if such a page exists.

• navigator.smartstore.moveCursorToPreviousPage(cursor, successCallback, errorCallback)—Move
to the previous entry page if such a page exists.

• navigator.smartstore.closeCursor(cursor, successCallback, errorCallback)—Close the cursor
when you’re finished with it.

Note: successCallback for those functions should expect one argument (the updated cursor).

Manipulating Data
In order to track soup entries for insert, update, and delete, SmartStore adds a few fields to each entry:

• _soupEntryId—This field is the primary key for the soup entry in the table for a given soup.

• _soupLastModifiedDate—The number of milliseconds since 1/1/1970.

◊ To convert to a JavaScript date, use new Date(entry._soupLastModifiedDate)

◊ To convert a date to the corresponding number of milliseconds since 1/1/1970, use date.getTime()

When inserting or updating soup entries, SmartStore automatically sets these fields. When removing or retrieving specific
entries, you can reference them by _soupEntryId.

Inserting or Updating Soup Entries
If the provided soup entries already have the _soupEntryId slots set, then entries identified by that slot are updated in the
soup. If an entry does not have a _soupEntryId slot, or the value of the slot doesn’t match any existing entry in the soup,
then the entry is added (inserted) to the soup, and the _soupEntryId slot is overwritten.

116

Working With CursorsSecurely Storing Data Offline

Note: You must not manipulate the _soupEntryId or _soupLastModifiedDate value yourself.

Use the upsertSoupEntries method to insert or update entries:

navigator.smartStore.upsertSoupEntries(soupName, entries[], successCallback, errorCallback)

where soupName is the name of the target soup, and entries is an array of one or more entries that match the soup’s data
structure. The successCallback and errorCallback parameters function much like the ones for registerSoup.
However, the success callback for upsertSoupEntries indicates that either a new record has been inserted, or an existing
record has been updated.

Upserting with an External ID
If your soup entries mirror data from an external system, you might need to refer to those entities by their ID (primary key)
in the external system. For that purpose, we support upsert with an external ID. When you perform an upsert, you can designate
any index field as the external ID field. SmartStore will look for existing soup entries with the same value in the designated
field with the following results:

• If no field with the same value is found, a new soup entry will be created.
• If the external ID field is found, it will be updated.
• If more than one field matches the external ID, an error will be returned.

When creating a new entry locally, use a regular upsert. Set the external ID field to a value that you can later query when
uploading the new entries to the server.

When updating entries with data coming from the server, use the upsert with external ID. Doing so guarantees that you don’t
end up with duplicate soup entries for the same remote record.

In the following sample code, we chose the value new for the id field because the record doesn’t yet exist on the server. Once
we are online, we can query for records that exist only locally (by looking for records where id == "new") and upload them
to the server. Once the server returns the actual ID for the records, we can update their id fields locally. If you create products
that belong to catalogs that have not yet been created on the server, you will be able to capture the relationship with the catalog
through the parentSoupEntryId field. Once the catalogs are created on the server, update the local records’
parentExternalId fields.

The following code contains sample scenarios. First, it calls upsertSoupEntries to create a new soup entry. In the success
callback, the code retrieves the new record with its newly assigned soup entry ID. It then changes the description and calls
forcetk.mobilesdk methods to create the new account on the server and then update it. The final call demonstrates the
upsert with external ID. To make the code more readable, no error callbacks are specified. Also, because all SmartStore calls
are asynchronous, real applications should do each step in the callback of the previous step.

// Specify data for the account to be created
var acc = {id: "new", Name: "Cloud Inc", Description: "Getting started"};

// Create account in SmartStore
// This upsert does a "create" because the acc has no _soupEntryId field
navigator.smartstore.upsertSoupEntries("accounts", [acc], function(accounts) {

acc = accounts[0];
// acc should now have a _soupEntryId field (and a _lastModifiedDate as well)

});

// Update account's description in memory
acc["Description"] = "Just shipped our first app ";

// Update account in SmartStore
// This does an "update" because acc has a _soupEntryId field
navigator.smartstore.upsertSoupEntries("accounts", [acc], function(accounts) {

117

Manipulating DataSecurely Storing Data Offline

acc = accounts[0];
});

// Create account on server (sync client -> server for entities created locally)
forcetkClient.create("account", {"Name": acc["Name"], "Description": acc["Description"]},
function(result) {

acc["id"] = result["id"];
// Update account in SmartStore
navigator.smartstore.upsertSoupEntries("accounts", [acc]);

});

// Update account's description in memory
acc["Description"] = "Now shipping for iOS and Android";

// Update account's description on server
// Sync client -> server for entities existing on server
forcetkClient.update("account", acc["id"], {"Description": acc["Description"]});

///// Later, there is an account (with id: someSfdcId) that you want to get locally

///// There might be an older version of that account in the SmartStore already

// Update account on client
// sync server -> client for entities that might or might not exist on client
forcetkClient.retrieve("account", someSfdcId, "id,Name,Description", function(result) {

// Create or update account in SmartStore (looking for an account with the same sfdcId)
navigator.smartstore.upsertSoupEntriesWithExternalId("accounts", [result], "id");

});

Removing Soup Entries
Entries are removed from the soup asynchronously and your callback is called with success or failure. The soupEntryIds is
a list of the _soupEntryId values from the entries you wish to delete.

navigator.smartStore.removeFromSoup(soupName, soupEntryIds, successCallback, errorCallback)

Removing a Soup
To remove a soup, call removeSoup(). Note that once a user signs out, the soups get deleted automatically.

navigator.smartstore.removeSoup(soupName,successCallback,errorCallback);

Using the Mock SmartStore
To facilitate developing and testing code that makes use of the SmartStore while running outside the container, you can use
an emulated SmartStore. The MockSmartStore is a JavaScript implementation of the SmartStore that stores the data in local
storage (or optionally just in memory).

Note: The MockSmartStore doesn’t encrypt data and is not meant to be used in production applications.

Inside the PhoneGap directory, there’s a local directory containing the following files:

• MockCordova.js—A minimal implementation of Cordova functions meant only for testing plugins outside the container.

118

Using the Mock SmartStoreSecurely Storing Data Offline

• MockSmartStore.js—A JavaScript implementation of the SmartStore meant only for development and testing outside
the container.

• MockSmartStorePlugin.js—A JavaScript helper class that intercepts SmartStore Cordova plugin calls and handles
them using a MockSmartStore.

• CordovaInterceptor.js—A JavaScript helper class that intercepts Cordova plugin calls.

When writing an application using SmartStore, make the following changes to test your app outside the container:

• Include MockCordova.js instead of cordova-x.x.x.js.

• Include MockSmartStore.js after cordova.force.js.

To see a MockSmartStore example, check out Cordova/local/test.html.

Same-origin Policies
Same-origin policy permits scripts running on pages originating from the same site to access each other’s methods and properties
with no specific restrictions; it also blocks access to most methods and properties across pages on different sites. Same-origin
policy restrictions are not an issue when your code runs inside the container, because the container disables same-origin policy
in the webview. However, if you call a remote API, you need to worry about same-origin policy restrictions.

Fortunately, browsers offer ways to turn off same-origin policy, and you can research how to do that with your particular
browser. If you want to make XHR calls against Force.com from JavaScript files loaded from the local file system, you should
start your browser with same-origin policy disabled. The following article describes how to disable same-origin policy on
several popular browsers: Getting Around Same-Origin Policy in Web Browsers.

Authentication
For authentication with MockSmartStore, you will need to capture access tokens and refresh tokens from a real session and
hand code them in your JavaScript app. You’ll also need these tokens to initialize the forcetk.mobilesdk JavaScript toolkit.

NativeSqlAggregator Sample App: Using SmartStore in Native Apps
The NativeSqlAggregator app demonstrates how to use SmartStore in a native app. It also demonstrates the ability to make
complex SQL-like queries, including aggregate functions, such as SUM and COUNT, and joins across different soups within
SmartStore.

Creating a Soup
The first step to storing a Salesforce object in SmartStore is to create a soup for the object. The function call to register a soup
takes two arguments - the name of the soup, and the index specs for the soup. Indexing supports three types of data: string,
integer, and floating decimal. The following example illustrates how to initialize a soup for the Account object with indexing
on Name, Id, and OwnerId fields.

Android:

SalesforceSDKManagerWithSmartStore sdkManager =
SalesforceSDKManagerWithSmartStore.getInstance();

SmartStore smartStore = sdkManager.getSmartStore();

IndexSpec[] ACCOUNTS_INDEX_SPEC = {
new IndexSpec("Name", Type.string),
new IndexSpec("Id", Type.string),

119

NativeSqlAggregator Sample App: Using SmartStore in Native
Apps

Securely Storing Data Offline

http://romkey.com/2011/04/23/getting-around-same-origin-policy-in-web-browsers

new IndexSpec("OwnerId", Type.string)
};

smartStore.registerSoup("Account", ACCOUNTS_INDEX_SPEC);

iOS:

SFSmartStore *store = [SFSmartStore sharedStoreWithName:kDefaultSmartStoreName];

NSArray *keys = [NSArray arrayWithObjects:@"path", @"type", nil];
NSArray *nameValues = [NSArray arrayWithObjects:@"Name", kSoupIndexTypeString, nil];
NSDictionary *nameDictionary = [NSDictionary dictionaryWithObjects:nameValues
forKeys:keys];
NSArray *idValues = [NSArray arrayWithObjects:@"Id", kSoupIndexTypeString, nil];
NSDictionary *idDictionary = [NSDictionary dictionaryWithObjects:idValues forKeys:keys];
NSArray *ownerIdValues = [NSArray arrayWithObjects:@"OwnerId", kSoupIndexTypeString,
nil];
NSDictionary *ownerIdDictionary = [NSDictionary dictionaryWithObjects:ownerIdValues
forKeys:keys];
NSArray *accountIndexSpecs = [[NSArray alloc] initWithObjects:nameDictionary,
idDictionary, ownerIdDictionary, nil];

[store registerSoup:@"Account" withIndexSpecs:accountIndexSpecs];

Storing Data in a Soup
Once the soup is created, the next step is to store data in the soup. In the following example, account represents a single
record of the object Account. On Android, account is of type JSONObject. On iOS, its type is NSDictionary.

Android:

SmartStore smartStore = sdkManager.getSmartStore();
smartStore.upsert(“Account”, account);

iOS:

SFSmartStore *store = [SFSmartStore sharedStoreWithName:kDefaultSmartStoreName];
[store upsertEntries:[NSArray arrayWithObject:account] toSoup:@"Account"];

Running Queries Against SmartStore
Beginning with Mobile SDK 2.0, you can run advanced SQL-like queries against SmartStore that span multiple soups. The
syntax of a SmartStore query is similar to standard SQL syntax, with a couple of minor variations. A colon (“:”) serves as the
delimiter between a soup name and an index field. A set of curly braces encloses each <soup-name>:<field-name> pair.
See Smart SQL Queries on page 114.

Here’s an example of an aggregate query run against SmartStore:

SELECT {Account:Name},
COUNT({Opportunity:Name}),
SUM({Opportunity:Amount}),
AVG({Opportunity:Amount}), {Account:Id}, {Opportunity:AccountId}

FROM {Account}, {Opportunity}
WHERE {Account:Id} = {Opportunity:AccountId}
GROUP BY {Account:Name}

120

NativeSqlAggregator Sample App: Using SmartStore in Native
Apps

Securely Storing Data Offline

This query represents an implicit join between two soups, Account and Opportunity. It returns:

• Name of the Account
• Number of opportunities associated with an Account
• Sum of all the amounts associated with each Opportunity of that Account
• Average amount associated with an Opportunity of that Account
• Grouping by Account name

The code snippet below demonstrates how to run such queries from within a native app. In this example, smartSql is the
query and pageSize is the requested page size. The pageIndex argument specifies which page of results you want returned.

Android:

QuerySpec querySpec = QuerySpec.buildSmartQuerySpec(smartSql, pageSize);
JSONArray result = smartStore.query(querySpec, pageIndex);

iOS:

SFSmartStore *store = [SFSmartStore sharedStoreWithName:kDefaultSmartStoreName];
SFQuerySpec *querySpec = [SFQuerySpec newSmartQuerySpec:queryString
withPageSize:pageSize];
NSArray *result = [store queryWithQuerySpec:querySpec pageIndex:pageIndex];

121

NativeSqlAggregator Sample App: Using SmartStore in Native
Apps

Securely Storing Data Offline

Chapter 8

Authentication, Security, and Identity in Mobile Apps

Secure authentication is essential for enterprise applications running on mobile
devices. OAuth2 is the industry-standard protocol that allows secure

In this chapter ...

• OAuth Terminology authentication for access to a user's data, without handing out the username and
• Creating a Connected App password. It is often described as the valet key of software access: a valet key only

allows access to certain features of your car: you cannot open the trunk or glove
compartment using a valet key.

• Connected Apps
• OAuth2 Authentication Flow

Mobile app developers can quickly and easily embed the Salesforce OAuth2
implementation. The implementation uses an HTML view to collect the

• Portal Authentication Using OAuth
2.0 and Force.com Sites

username and password, which are then sent to the server. A session token is
returned and securely stored on the device for future interactions.

A Salesforce connected app is the primary means by which a mobile device connects
to Salesforce. A connected app gives both the developer and the administrator
control over how the app connects and who has access. For example, a connected
app can be restricted to certain users, can set or relax an IP range, and so forth.

122

OAuth Terminology
Access Token

A value used by the consumer to gain access to protected resources on behalf of the user, instead of using the user’s
Salesforce credentials. The access token is a session ID, and can be used directly.

Authorization Code

A short-lived token that represents the access granted by the end user. The authorization code is used to obtain an access
token and a refresh token.

Connected App

An application external to Salesforce that uses the OAuth protocol to verify both the Salesforce user and the external
application. Replaces remote access application.

Consumer Key

A value used by the consumer to identify itself to Salesforce. Referred to as client_id.

Refresh Token

A token used by the consumer to obtain a new access token, without having the end user approve the access again.

Remote Access Application (DEPRECATED)

A remote access application is an application external to Salesforce that uses the OAuth protocol to verify both the Salesforce
user and the external application. Remote access applications have been deprecated in favor of connected apps.

Creating a Connected App
Before a mobile device can connect with the service, you’ll need to create a connected app. The connected app includes a
consumer key, a prerequisite to all development scenarios in this guide.

1. Log into your Database.com or Force.com instance.
2. In Setup, navigate to Create > Apps.
3. Under Connected Apps, click New.
4. For Connected App Name, enter a name, such as Test Client

5. Under Developer Name, enter your developer ID.
6. For Callback URL, enter sfdc://success

Note: The Callback URL does not have to be a valid URL; it only has to match what the app expects in this
field. You can use any custom prefix, such as sfdc://.

7. For Contact Email, enter your email address.
8. For Selected OAuth Scopes, choose the permissions settings for your app. For descriptions, see Scope Parameter

Values.
9. Click Save.

123

OAuth TerminologyAuthentication, Security, and Identity in Mobile Apps

https://help.salesforce.com/HTViewHelpDoc?id=remoteaccess_oauth_scopes.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=remoteaccess_oauth_scopes.htm&language=en_US

Note: After you create a new connected app, wait a few minutes for the token to propagate before running your app.

Tip: The detail page for your connected app displays a consumer key. It’s a good idea to copy the key, as you’ll need
it later.

Connected Apps
A Connected App is an application that integrates with salesforce.com using APIs. Connected Apps use standard SAML and
OAuth protocols to authenticate, provide Single Sign-On, and provide tokens for use with Salesforce APIs. In addition to
standard OAuth capabilities, Connected Apps allow administrators to set various security policies and have explicit control
over who may use the applications.

Connected Apps begin with a developer defining OAuth metadata about the application, including:

• Basic descriptive and contact information for the Connected App

• The OAuth scopes and callback URL for the Connected App

• Optional IP ranges where the Connected App might be running

• Optional information about mobile policies the Connected App can enforce

In return, the developer is provided an OAuth client Id and client secret for the Connected App. The developer can then
package the app and provide it to a Salesforce administrator.

The administrator can install the Connected App into their organization and use profiles, permission sets, and IP range
restrictions to control which users can access the application. Management is done from a detail page for the Connected App.
The administrator can also uninstall the Connected App and install a newer version. When the app is updated, the developer
can notify administrators that there is a new version available for the app.

About PIN Security
Salesforce Connected Apps have an additional layer of security via PIN protection on the app. This PIN protection is for the
mobile app itself, and isn’t the same as the PIN protection on the device or the login security provided by the Salesforce
organization.

In order to use PIN protection, the developer must select the Implements Screen Locking & Pin Protection checkbox when
creating the Connected App. Mobile app administrators then have the options of enforcing PIN protection, customizing
timeout duration, and setting PIN length.

Note: Because PIN security is implemented in the mobile device’s operating system, only native and hybrid mobile
apps can use PIN protection; HTML5 Web apps can’t use PIN protection.

In practice, PIN protection can be used so that the mobile app locks up if it’s isn’t used for a specified number of minutes.
When a mobile app is sent to the background, the clock continues to tick.

To illustrate how PIN protection works:

1. User turns on phone and enters PIN for the device.
2. User starts mobile app (Connected App).

124

Connected AppsAuthentication, Security, and Identity in Mobile Apps

3. User enters login information for Salesforce organization.
4. User enters PIN code for mobile app.
5. User works in the app, then sends it to the background by opening another app (or receiving a call, and so on).
6. The mobile app times out.
7. User re-opens the app, and the app PIN screen displays (for the mobile app, not the device).
8. User enters app PIN and can resume working.

OAuth2 Authentication Flow
The authentication flow depends on the state of authentication on the device.

First Time Authentication Flow
1. User opens a mobile application.
2. An authentication dialog/window/overlay appears.
3. User enters username and password.
4. App receives session ID.
5. User grants access to the app.
6. App starts.

Ongoing Authentication
1. User opens a mobile application.
2. If the session ID is active, the app starts immediately. If the session ID is stale, the app uses the refresh token from its

initial authorization to get an updated session ID.
3. App starts.

PIN Authentication (Optional)
1. User opens a mobile application after not using it for some time.
2. If the elapsed time exceeds the configured PIN timeout value, a passcode entry screen appears. User enters the PIN.

Note: PIN protection is a function of the mobile policy and is used only when it’s enabled in the Salesforce
connected app definition. It can be shown whether you are online or offline, if enough time has elapsed since you
last used the application. See About PIN Security on page 124.

3. App re-uses existing session ID.
4. App starts.

OAuth 2.0 User-Agent Flow
The user-agent authentication flow is used by client applications residing on the user’s mobile device. The authentication is
based on the user-agent’s same-origin policy.

In the user-agent flow, the client application receives the access token in the form of an HTTP redirection. The client
application requests the authorization server to redirect the user-agent to another web server or local resource accessible to the
user-agent, which is capable of extracting the access token from the response and passing it to the client application. Note

125

OAuth2 Authentication FlowAuthentication, Security, and Identity in Mobile Apps

that the token response is provided as a hash (#) fragment on the URL. This is for security, and prevents the token from being
passed to the server, as well as to other servers in referral headers.

This user-agent authentication flow doesn't utilize the client secret since the client executables reside on the end-user's computer
or device, which makes the client secret accessible and exploitable.

Warning: Because the access token is encoded into the redirection URI, it might be exposed to the end-user and
other applications residing on the computer or device.

If you are authenticating using JavaScript, call window.location.replace(); to remove the callback from the
browser’s history.

1. The client application directs the user to Salesforce to authenticate and authorize the application.
2. The user must always approve access for this authentication flow. After approving access, the application receives the

callback from Salesforce.

After obtaining an access token, the consumer can use the access token to access data on the end-user’s behalf and receive a
refresh token. Refresh tokens let the consumer get a new access token if the access token becomes invalid for any reason.

OAuth 2.0 Refresh Token Flow
After the consumer has been authorized for access, they can use a refresh token to get a new access token (session ID.) This
is only done after the consumer already has received a refresh token using either the Web server or user-agent flow. It is up
to the consumer to determine when an access token is no longer valid, and when to apply for a new one. Bearer flows can only
be used after the consumer has received a refresh token.

The following are the steps for the refresh token authentication flow. More detail about each step follows:

1. The consumer uses the existing refresh token to request a new access token.
2. After the request is verified, Salesforce sends a response to the client.

126

OAuth 2.0 Refresh Token FlowAuthentication, Security, and Identity in Mobile Apps

Note:

Mobile SDK apps can use the SmartStore feature to store data locally for offline use. SmartStore data is inherently
volatile. Its lifespan is tied to the authenticated user as well as to OAuth token states. When the user logs out of the
app, SmartStore deletes all soup data associated with that user. Similarly, when the OAuth refresh token is revoked
or expires, the user’s app state is reset, and all data in SmartStore is purged. Carefully consider the volatility of
SmartStore data when designing your app. This warning is especially important if your org sets a short lifetime for
the refresh token.

Scope Parameter Values
The scope parameter enables you to fine-tune what the client application can access in a Salesforce organization. The valid
values for scope are:

DescriptionValue

Allows access to the current, logged-in user’s account over the APIs, such as the REST API
or Bulk API. This also includes the chatter_api, allowing access to Chatter API resources.

api

Allows access to only the Chatter API resources.chatter_api

Allows access to all data accessible by the logged-in user. full does not return a refresh
token. You must explicitly request the refresh_token scope to get a refresh token.

full

Allows access only to the identity URL service.id

Allows a refresh token to be returned if you are eligible to receive one.refresh_token

Allows access to Visualforce pages.visualforce

Allows the ability to use the access_token on the Web. This also includes visualforce,
allowing access to Visualforce pages.

web

Using Identity URLs
In addition to the access token, an identity URL is also returned as part of a token response, in the id parameter.

The identity URL is both a string that uniquely identifies a user, as well as a RESTful API that can be used to query (with a
valid access token) for additional information about the user. Salesforce returns basic personalization information about the
user, as well as important endpoints that the client can talk to, such as photos for the user, and API endpoints it can access.

The format of the URL is: https://login.salesforce.com/id/orgID/userID, where orgId is the ID of the
Salesforce organization that the user belongs to, and userID is the Salesforce user ID.

Note: For Sandbox, login.salesforce.com is replaced with test.salesforce.com.

The URL must always be HTTPS.

127

Scope Parameter ValuesAuthentication, Security, and Identity in Mobile Apps

Identity URL Parameters
The following parameters can be used with the access token and identity URL. They are used in an authorization request
header or in a request with the oauth_token parameter. For more details, see “Using the Access Token” in the Salesforce
Help.

DescriptionParameter

See “Using the Access Token” in the Salesforce Help.Access token

This parameter is optional. Specify the format of the returned
output. Valid values are:

Format

• urlencoded

• json

• xml

Instead of using the format parameter, the client can also
specify the returned format in an accept-request header using
one of the following:

• Accept: application/json

• Accept: application/xml

• Accept: application/x-www-form-urlencoded

Note the following:

• Wildcard accept headers are allowed. */* is accepted and
returns JSON.

• A list of values is also accepted and is checked left-to-right.
For example:
application/xml,application/json,application/html,*/*
returns XML.

• The format parameter takes precedence over the accept
request header.

This parameter is optional. Specify a SOAP API version
number, or the literal string, latest. If this value isn’t

Version

specified, the returned API URLs contains the literal value
{version}, in place of the version number, for the client to
do string replacement. If the value is specified as latest, the
most recent API version is used.

This parameter is optional, and is only accepted in a header,
not as a URL parameter. Specify the output to be better

PrettyPrint

formatted. For example, use the following in a header:
X-PrettyPrint:1. If this value isn’t specified, the returned
XML or JSON is optimized for size rather than readability.

This parameter is optional. Specify a valid JavaScript function
name. This parameter is only used when the format is specified

Callback

as JSON. The output is wrapped in this function name
(JSONP.) For example, if a request to
https://server/id/orgid/userid/ returns
{"foo":"bar"}, a request to

128

OAuth2 Authentication FlowAuthentication, Security, and Identity in Mobile Apps

DescriptionParameter

https://server/id/orgid/userid/?callback=baz
returns baz({"foo":"bar"});.

Identity URL Response
After making a valid request, a 302 redirect to an instance URL is returned. That subsequent request returns the following
information in JSON format:

• id—The identity URL (the same URL that was queried)
• asserted_user—A boolean value, indicating whether the specified access token used was issued for this identity
• user_id—The Salesforce user ID
• username—The Salesforce username
• organization_id—The Salesforce organization ID
• nick_name—The community nickname of the queried user
• display_name—The display name (full name) of the queried user
• email—The email address of the queried user
• status—The user’s current Chatter status.

◊ created_date:xsd datetime value of the creation date of the last post by the user, for example,
2010-05-08T05:17:51.000Z

◊ body: the body of the post

• photos—A map of URLs to the user’s profile pictures

Note: Accessing these URLs requires passing an access token. See “Using the Access Token” in the Salesforce
Help.

◊ picture

◊ thumbnail

• urls—A map containing various API endpoints that can be used with the specified user.

Note: Accessing the REST endpoints requires passing an access token. See “Using the Access Token” in the
Salesforce Help.

◊ enterprise (SOAP)
◊ metadata (SOAP)
◊ partner (SOAP)
◊ profile

◊ feeds (Chatter)
◊ feed-items (Chatter)
◊ groups (Chatter)
◊ users (Chatter)
◊ custom_domain—This value is omitted if the organization doesn’t have a custom domain configured and propagated

• active—A boolean specifying whether the queried user is active
• user_type—The type of the queried user
• language—The queried user’s language
• locale—The queried user’s locale

129

OAuth2 Authentication FlowAuthentication, Security, and Identity in Mobile Apps

• utcOffset—The offset from UTC of the timezone of the queried user, in milliseconds
• last_modified_date—xsd datetime format of last modification of the user, for example, 2010-06-28T20:54:09.000Z

The following is a response in XML format:

<?xml version="1.0" encoding="UTF-8"?>
<user xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<id>http://na1.salesforce.com/id/00Dx0000001T0zk/005x0000001S2b9</id>
<asserted_user>true</asserted_user>
<user_id>005x0000001S2b9</user_id>
<organization_id>00Dx0000001T0zk</organization_id>
<nick_name>admin1.2777578168398293E12foofoofoofoo</nick_name>
<display_name>Alan Van</display_name>
<email>admin@2060747062579699.com</email>
<status>

<created_date xsi:nil="true"/>
<body xsi:nil="true"/>

</status>
<photos>

<picture>http://na1.salesforce.com/profilephoto/005/F</picture>
<thumbnail>http://na1.salesforce.com/profilephoto/005/T</thumbnail>

</photos>
<urls>

<enterprise>http://na1.salesforce.com/services/Soap/c/{version}/00Dx0000001T0zk
</enterprise>
<metadata>http://na1.salesforce.com/services/Soap/m/{version}/00Dx0000001T0zk
</metadata>
<partner>http://na1.salesforce.com/services/Soap/u/{version}/00Dx0000001T0zk
</partner>
<rest>http://na1.salesforce.com/services/data/v{version}/
</rest>
<sobjects>http://na1.salesforce.com/services/data/v{version}/sobjects/
</sobjects>
<search>http://na1.salesforce.com/services/data/v{version}/search/
</search>
<query>http://na1.salesforce.com/services/data/v{version}/query/
</query>
<profile>http://na1.salesforce.com/005x0000001S2b9
</profile>

</urls>
<active>true</active>
<user_type>STANDARD</user_type>
<language>en_US</language>
<locale>en_US</locale>
<utcOffset>-28800000</utcOffset>
<last_modified_date>2010-06-28T20:54:09.000Z</last_modified_date>
</user>

The following is a response in JSON format:

{"id":"http://na1.salesforce.com/id/00Dx0000001T0zk/005x0000001S2b9",
"asserted_user":true,
"user_id":"005x0000001S2b9",
"organization_id":"00Dx0000001T0zk",
"nick_name":"admin1.2777578168398293E12foofoofoofoo",
"display_name":"Alan Van",
"email":"admin@2060747062579699.com",
"status":{"created_date":null,"body":null},
"photos":{"picture":"http://na1.salesforce.com/profilephoto/005/F",

"thumbnail":"http://na1.salesforce.com/profilephoto/005/T"},
"urls":

{"enterprise":"http://na1.salesforce.com/services/Soap/c/{version}/00Dx0000001T0zk",
"metadata":"http://na1.salesforce.com/services/Soap/m/{version}/00Dx0000001T0zk",
"partner":"http://na1.salesforce.com/services/Soap/u/{version}/00Dx0000001T0zk",
"rest":"http://na1.salesforce.com/services/data/v{version}/",

130

OAuth2 Authentication FlowAuthentication, Security, and Identity in Mobile Apps

"sobjects":"http://na1.salesforce.com/services/data/v{version}/sobjects/",
"search":"http://na1.salesforce.com/services/data/v{version}/search/",
"query":"http://na1.salesforce.com/services/data/v{version}/query/",
"profile":"http://na1.salesforce.com/005x0000001S2b9"},

"active":true,
"user_type":"STANDARD",
"language":"en_US",
"locale":"en_US",
"utcOffset":-28800000,
"last_modified_date":"2010-06-28T20:54:09.000+0000"}

After making an invalid request, the following are possible responses from Salesforce:

Error CodeRequest Problem

403 (forbidden) — HTTPS_RequiredHTTP

403 (forbidden) — Missing_OAuth_TokenMissing access token

403 (forbidden) — Bad_OAuth_TokenInvalid access token

403 (forbidden) — Wrong_OrgUsers in a different organization

404 (not found) — Bad_IdInvalid or bad user or organization ID

404 (not found) — InactiveDeactivated user or inactive organization

404 (not found) — No_AccessUser lacks proper access to organization or information

404 (not found) — No_Site_EndpointRequest to the endpoint of a site

406 (not acceptable) — Invalid_VersionInvalid version

406 (not acceptable) — Invalid_CallbackInvalid callback

Setting a Custom Login Server
For special cases--for example, if you’re a Salesforce partner using Trialforce--you might need to redirect your customer login
requests to a non-standard login URI. For iOS apps, you set the Custom Host in your app’s iOS settings bundle. If you’ve
configured this setting, it will be used as the default connection.

In Android, login hosts are known as server connections. Prior to Mobile SDK v. 1.4, server connections for Android apps
were hard-coded in the SalesforceSDK project. In v. 1.4 and later, the host list is defined in the res/xml/servers.xml
file. The SalesforceSDK library project uses this file to define production and sandbox servers.

You can add your servers to the runtime list by creating your own res/xml/servers.xml file in your application project.
The root XML element for this file is <servers>. This root can contain any number of <server> entries. Each <server>
entry requires two attributes: name (an arbitrary human-friendly label) and url (the web address of the login server.)

Here’s an example of a servers.xml file.

<?xml version="1.0" encoding="utf-8"?>
<servers>
<server name="XYZ.com Login" url="https://<username>.cloudforce.com"/>

</servers>

131

Setting a Custom Login ServerAuthentication, Security, and Identity in Mobile Apps

Server Whitelisting Errors
If you get a whitelist rejection error, you’ll need to add your custom login domain to the ExternalHosts list for your project.
This list is defined in the <project_name>/<platform_path>/config.xml file. Add those domains (e.g. cloudforce.com)
to the app’s whitelist in the following files:

For Mobile SDK 2.0:

• iOS: /Supporting Files/config.xml

• Android: /res/xml/config.xml

Revoking OAuth Tokens
When a user logs out of an app, or the app times out or in other ways becomes invalid, the logged-in users’ credentials are
cleared from the mobile app. This effectively ends the connection to the server. Also, Mobile SDK revokes the refresh token
from the server as part of logout.

Revoking Tokens
To revoke OAuth 2.0 tokens, use the revocation endpoint:

https://login.salesforce.com/services/oauth2/revoke

Construct a POST request that includes the following parameters using the application/x-www-form-urlencoded
format in the HTTP request entity-body. For example:

POST /revoke HTTP/1.1
Host: https://login.salesforce.com/services/oauth2/revoke
Content-Type: application/x-www-form-urlencoded

token=currenttoken

If an access token is included, we invalidate it and revoke the token. If a refresh token is included, we revoke it as well as any
associated access tokens.

The authorization server indicates successful processing of the request by returning an HTTP status code 200. For all error
conditions, a status code 400 is used along with one of the following error responses.

• unsupported_token_type—token type not supported
• invalid_token—the token was invalid

For Sandbox, use test.salesforce.com instead of login.salesforce.com.

Handling Refresh Token Revocation in Android Native Apps
Beginning with Salesforce Mobile SDK version 1.5, native Android apps can control what happens when a refresh token is
revoked by an administrator. The default behavior in this case is to automatically log out the current user. As a result of this
behavior:

• Any subsequent REST API calls your app makes will fail.

• The system discards your user’s account information and cached offline data.

• The system forces the user to navigate away from your page.

• The user must log into Salesforce again to continue using your app.

132

Revoking OAuth TokensAuthentication, Security, and Identity in Mobile Apps

These side effects provide a secure response to the administrator’s action, but they might or might not be suitable for your
application. In your code you can choose whether to accept the default behavior or implement your own response. In either
case, continue reading to determine whether you need to adapt your code.

Token Revocation Events

When a token revocation event occurs, the ClientManager object sends an Android-style notification. The intent action
for this notification is declared in the ClientManager.ACCESS_TOKEN_REVOKE_INTENT constant.
TokenRevocationReceiver, a utility class, is designed to respond to this intent action. To provide your own handler,
you’ll extend this class and override the onReceive() method. See Token Revocation: Active Handling.

SalesforceActivity.java, SalesforceListActivity.java, SalesforceExpandableListActivity.java,
and SalesforceDroidGapActivity.java implement ACCESS_TOKEN_REVOKE_INTENT event listeners. These listeners
automatically take logged out users to the login page when the refresh token is revoked. A toast message notifies the user of
this occurrence.

Token Revocation: Passive Handling
You can let the SDK handle all token revocation events with no active involvement on your part. However, even if you take
this passive approach, you might still need to change your code. You do not need to change your code if:

• Your app contains any services, or
• All of your activities extend SalesforceActivity, SalesforceListActivity, or

SalesforceExpandableListActivity.

If your app fails to satisfy at least one of these conditions, implement the following code changes.

1. (For legacy apps written before the Mobile SDK 1.5 release) In the ClientManager constructor, set the
revokedTokenShouldLogout parameter to true.

Note: This step is not necessary for apps that are new in Mobile SDK 1.5 or later.

2. In any activity that does not extend SalesforceActivity, SalesforceListActivity, or
SalesforceExpandableListActivity, amend the code as follows.

a. Declare a new variable:

private TokenRevocationReceiver tokenRevocationReceiver;

b. In the onCreate() method add the following code:

tokenRevocationReceiver = new TokenRevocationReceiver(this);

c. In the onResume() method add the following code:

registerReceiver(tokenRevocationReceiver, new
IntentFilter(ClientManager.ACCESS_TOKEN_REVOKE_INTENT));

d. In the onPause() method add the following code:

unregisterReceiver(tokenRevocationReceiver);

133

OAuth2 Authentication FlowAuthentication, Security, and Identity in Mobile Apps

Token Revocation: Active Handling
If you choose to implement your own token revocation event handler, be sure to fully analyze the security implications of your
customized flow, and then test it thoroughly. Be especially careful with how you dispose of cached user data. Because the user’s
access has been revoked, that user should no longer have access to sensitive data.

To provide custom handling of token revocation events:

1. The starting point for implementing your own response is the
SalesforceSDKManager.shouldLogoutWhenTokenRevoked() method. By default, this method returns true.
Override this method to return false in your SalesforceSDKManager subclass.

@Override
public boolean shouldLogoutWhenTokenRevoked() {
return false;
}

2. The ClientManager constructor provides a boolean parameter, revokedTokenShouldLogout. Set this parameter to
false. You can do this by calling shouldLogoutWhenTokenRevoked() on your SalesforceSDKManager subclass.

3. Implement your handler by extending TokenRevocationReceiver and overriding the onReceive() method.
4. Regardless of whether your activity subclasses SalesforceActivity, perform step 2 in Token Revocation: Passive

Handling on page 133.

Portal Authentication Using OAuth 2.0 and Force.com Sites
The Salesforce Spring '13 Release adds enhanced flexibility for portal authentication. If your app runs in a Salesforce portal,
you can use OAuth 2.0 with a Force.com site to obtain API access tokens on behalf of portal users. In this configuration you
can

• Authenticate portal users via Auth providers and SAML, rather than a SOAP API login() call

• Avoid handling user credentials in your app

• Customize the login screen provided by the Force.com site

Here's how to get started.

1. Associate a Force.com site with your portal. The site generates a unique URL for your portal. See Associating a Portal
with Force.com Sites.

2. Create a custom login page on the Force.com site. See Managing Force.com Site Login and Registration Settings.
3. Use the unique URL that the site generates as the redirect domain for your users' login requests.

The OAuth2 service recognizes your custom host name and redirects the user to your Site login page if the user is not yet
authenticated.

For example, rather than redirecting to https://login.salesforce.com:

https://login.salesforce.com/services/oauth2/authorize?response_type=
code&client_id=<your_client_id>&redirect_uri=<your_redirect_uri>

134

Portal Authentication Using OAuth 2.0 and Force.com SitesAuthentication, Security, and Identity in Mobile Apps

http://help.salesforce.com/help/doc/en/sites_customer_portal_setup.htm
http://help.salesforce.com/help/doc/en/sites_customer_portal_setup.htm
http://help.salesforce.com/help/doc/en/sites_login_and_registration_settings.htm

redirect to your unique Force.com Site url, such as https://mysite.secure.force.com:

https://mysite.secure.force.com/services/oauth2/authorize?response_type=
code&client_id=<your_client_id>&redirect_uri=<your_redirect_uri>

For more information and a demonstration video, see OAuth for Portal Users on the Force.com Developer Relations Blogs
page.

135

Portal Authentication Using OAuth 2.0 and Force.com SitesAuthentication, Security, and Identity in Mobile Apps

http://blogs.developerforce.com/developer-relations/2013/02/oauth-for-portal-users.html

Chapter 9

Migrating from the Previous Release

If you developed code with Salesforce Mobile SDK 1.5, follow these instructions
to update your app to version 2.0.

In this chapter ...

• Migrating Android Applications
• Migrating iOS Applications

136

Migrating Android Applications
Perform these tasks to upgrade your Android applications from Salesforce Mobile SDK 1.5.3 to version 2.0.0.

Upgrading Native Android Apps
• In your app’s Eclipse workspace, replace the existing SalesforceSDK project with the 2.0 SalesforceSDK project. If your

app uses SmartStore, replace the existing SmartStore project in Eclipse with the 2.0 SmartStore project.

1. Right-click your project and select Properties.

2. Click the Android tab and replace the existing SalesforceSDK entry at the bottom (in the library project section) with
the new SalesforceSDK project in your workspace. Repeat this step with the SmartStore project if your app uses
SmartStore.

• Change your class that extends ForceApp or ForceAppWithSmartStore to extend Application instead. We’ll call
this class SampleApp in the remaining steps.

• Create a new class that implements KeyInterface. Name it KeyImpl (or another name of your choice.) Move the
getKey() implementation from SampleApp into KeyImpl.

• We’ve renamed ForceApp to SalesforceSDKManager and ForceAppWithSmartStore to
SalesforceSDKManagerWithSmartStore.

◊ Replace all occurrences of ForceApp with SalesforceSDKManager

◊ Replace all occurrences of ForceAppWithSmartStore with SalesforceSDKManagerWithSmartStore.

◊ Update the app's class imports to reflect this change.

◊ Replace all occurrences of ForceApp.APP with SalesforceSDKManager.getInstance().

◊ Replace all occurrences of ForceAppWithSmartStore.APP with
SalesforceSDKManagerWithSmartStore.getInstance().

• In the onCreate() method of SampleApp, add the following line of code.

SalesforceSDKManager.initNative(getApplicationContext(), new KeyImpl(),
<mainActivityClass>.class);

where <mainActivityClass> is the class to be launched when the login flow completes.

Note:

◊ If your app supplies its own login activity, you can pass it as an additional argument to the initNative()
method call.

◊ If your app uses SmartStore, call initNative() on SalesforceSDKManagerWithSmartStore instead
of SalesforceSDKManager.

• Remove overridden methods of ForceApp from SampleApp, such as getKey(), getMainActivityClass(), and
any other overridden methods.

• You’re no longer required to create a LoginOptions object. The Salesforce Mobile SDK now automatically reads these
options from an XML file, bootconfig.xml, which resides in the res/values folder of your project.

137

Migrating Android ApplicationsMigrating from the Previous Release

◊ Create a file called bootconfig.xml under the res/values folder of your project. Move your app's login options
configuration from code to bootconfig.xml. See res/values/bootconfig.xml in the SalesforceSDK project
or in one of the sample native apps for an example.

• NativeMainActivity has been renamed to SalesforceActivity and moved to a new package named
com.salesforce.androidsdk.ui.sfnative.

◊ If any of your app's classes extend NativeMainActivity, replace all references to NativeMainActivity with
SalesforceActivity.

◊ Update the app's class imports to reflect this change.

• We’ve moved SmartStore to a new package named com.salesforce.androidsdk.smartstore. If your app uses
SmartStore project, update the app's class imports and other code references to reflect this change.

Upgrading Hybrid Android Apps
• In your app’s Eclipse workspace, replace the existing SalesforceSDK project with the 2.0 SalesforceSDK project. If your

app uses SmartStore, replace the existing SmartStore project in Eclipse with the 2.0 SmartStore project.

1. Right-click your project and select Properties.

2. Click the Android tab and replace the existing SalesforceSDK entry at the bottom (in the library project section) with
the new SalesforceSDK project in your workspace. Repeat this step with the SmartStore project if your app uses
SmartStore.

• Change your class that extends ForceApp or ForceAppWithSmartStore to extend Application instead. We’ll call
this class SampleApp in the remaining steps.

• Create a new class that implements KeyInterface. Name it KeyImpl (or any other name of your choice.) Move the
getKey() implementation from SampleApp into KeyImpl.

• We’ve renamed ForceApp to SalesforceSDKManager and ForceAppWithSmartStore to
SalesforceSDKManagerWithSmartStore.

◊ Replace all occurrences of ForceApp with SalesforceSDKManager

◊ Replace all occurrences of ForceAppWithSmartStore with SalesforceSDKManagerWithSmartStore.

◊ Update the app's class imports to reflect this change.

◊ Replace all occurrences of ForceApp.APP with SalesforceSDKManager.getInstance().

◊ Replace all occurrences of ForceAppWithSmartStore.APP with
SalesforceSDKManagerWithSmartStore.getInstance().

• In the onCreate() method of SampleApp, add the following line of code.

SalesforceSDKManager.initHybrid(getApplicationContext(), new KeyImpl());

Note:

◊ If your app supplies its own login activity, you can pass it as an additional argument to the initHybrid()
method call.

◊ If your app uses SmartStore, call initHybrid() on SalesforceSDKManagerWithSmartStore instead
of SalesforceSDKManager.

138

Migrating Android ApplicationsMigrating from the Previous Release

• Remove overridden methods of ForceApp from SampleApp, such as getKey(), getMainActivityClass(), and
any other overridden methods.

• You’re no longer required to create a LoginOptions object. The Salesforce Mobile SDK now automatically reads these
options from an XML file, bootconfig.xml, which resides in the res/values folder of your project.

◊ Create a file called bootconfig.xml under the res/values folder of your project. Move your app's login options
configuration from code to bootconfig.xml. See res/values/bootconfig.xml in the SalesforceSDK project
or in one of the sample native apps for an example.

• NativeMainActivity has been renamed to SalesforceActivity and moved to a new package named
com.salesforce.androidsdk.ui.sfnative.

◊ If any of your app's classes extend NativeMainActivity, replace all references to NativeMainActivity with
SalesforceActivity.

◊ Update the app's class imports to reflect this change.

• We’ve moved SmartStore to a new package named com.salesforce.androidsdk.smartstore. If your app uses the
SmartStore project, update the app's class imports and other code references to reflect this change.

• We’ve replaced bootconfig.js with bootconfig.json. Convert your existing bootconfig.js to the new
bootconfig.json format. See the hybrid sample apps for examples.

• The SalesforceSDK Cordova plugins—SFHybridApp.js, cordova.force.js, and
SalesforceOAuthPlugin.js—have been combined into a single file named filecordova.force.js.

◊ Replace these Cordova plugin files with cordova.force.js.

◊ Replace all references to SFHybridApp.js, cordova.force.js, and SalesforceOAuthPlugin.js with
cordova.force.js.

• forcetk.js has now been renamed to forcetk.mobilesdk.js. Replace the existing copy of forcetk.js with the
latest version of forcetk.mobilesdk.js. Update all references to forcetk.js to the new name.

• The bootstrap.html file is no longer required and can safely be removed.

• We’ve moved SalesforceDroidGapActivity and SalesforceGapViewClient to a new package named
com.salesforce.androidsdk.ui.sfhybrid. If your app references these classes, update those references and related
class imports.

Migrating iOS Applications
Perform these tasks to upgrade your iOS applications from Salesforce Mobile SDK 1.5 to version 2.0.

Upgrading Native iOS Apps
As with all upgrades, you have two choices for upgrading your existing app:

• Create a new project using the Mobile SDK 2.0 template app for your app type (native, hybrid), then move your existing
code and artifacts into the new app.

• Incorporate Mobile SDK 2.0 artifacts into your existing app.

For 2.0, we strongly recommend that you take the first approach. Even if you opt for the second approach, you can profit from
creating a sample app to see the change of work flow in the AppDelegate class. For both native and hybrid cases, the parent

139

Migrating iOS ApplicationsMigrating from the Previous Release

app delegate classes—SFNativeRestAppDelegate and SFContainerAppDelegate, respectively—are no longer supported.
Your app's AppDelegate class now orchestrates the startup process.

• Remove SalesforceHybridSDK.framework, which has been replaced.

• Update your Mobile SDK library and resource dependencies, from the SalesforceMobileSDK-iOS-Package repo.

◊ Remove SalesforceSDK

◊ Add SalesforceNativeSDK (in the Dependencies/ folder)

◊ Add SalesforceSDKCore (in the Dependencies/ folder)

◊ Update SalesforceOAuth (in the Dependencies/ folder)

◊ Update SalesforceSDKResources.bundle (in the Dependencies/ folder)

◊ Update RestKit (in the Dependencies/ThirdParty/RestKit/ folder)

◊ Update SalesforceCommonUtils (in the Dependencies/ThirdParty/SalesforceCommonUtils folder)

◊ Update openssl (libcrypto.a and libssl.a, in the Dependencies/ThirdParty/openssl folder)

◊ Update sqlcipher (in the Dependencies/ThirdParty/sqlcipher folder)

• Update your AppDelegate class. Make your AppDelegate.h and AppDelegate.m files conform to the new design
patterns. Here are some key points:

◊ In AppDelegate.h, AppDelegate should no longer inherit from SFNativeRestAppDelegate.

◊ In AppDelegate.m, AppDelegate now has primary responsibility for navigating the auth flow and root view controller
staging. It also handles boundary events when the user logs out or switches login hosts.

Note: The design patterns in the new AppDelegate are just suggestions. Mobile SDK no longer requires a
specific flow. Use an authentication flow (with the updated SFAuthenticationManager singleton) that
suits your needs, relative to your app startup and boundary use cases.)

◊ The only prerequisites for using authentication are the SFAccountManager configuration settings at the top of
[AppDelegate init]. Make sure that those settings match the values specified in your connected app. Also, make
sure that this configuration is set before the first call to [SFAuthenticationManager
loginWithCompletion:failure:].

Upgrading Hybrid iOS Apps
In Mobile SDK 2.0, hybrid configuration during bootstrap moves to native code. Take a look at SFHybridViewController
to see the new configuration. (You can also see this change in AppDelegate in the hybrid template app.)

New app templates are now available through the forceios NPM package. To install the templates, first install node.js. See
the forceios README at npmjs.org for more information on installing the templates and using them to create apps.

Even if you're not porting your previous contents into a 2.0 application shell, it's still a good idea to create a new hybrid app
from the template and follow along.

• Remove SalesforceHybridSDK.framework. We’ve replaced this project.

• Update your Mobile SDK library and resource dependencies from the SalesforceMobileSDK-iOS-Package repo. The
following modules are new additions to your Mobile SDK 1.5 application.

◊ SalesforceHybridSDK (in the Dependencies/ folder)

◊ SalesforceOAuth (in the Dependencies/ folder)

◊ SalesforceSDKCore (in the Dependencies/ folder)

140

Migrating iOS ApplicationsMigrating from the Previous Release

https://github.com/forcedotcom/SalesforceMobileSDK-iOS-Package
https://npmjs.org
https://github.com/forcedotcom/SalesforceMobileSDK-iOS-Package

◊ SalesforceSDKResources.bundle (in the Dependencies/ folder)

◊ Cordova (in the Dependencies/Cordova/ folder)

◊ SalesforceCommonUtils (in the Dependencies/ThirdParty/SalesforceCommonUtils folder)

◊ openssl (libcrypto.a and libssl.a, in the Dependencies/ThirdParty/openssl folder)

◊ sqlcipher (in the Dependencies/ThirdParty/sqlcipher folder)

◊ libxml2.dylib (System library)

• Update hybrid dependencies in your app's www/ folder.

Note: If you’re updating a Visualforce app, only the bootconfig.js change is required. Your hybrid app does
not use the other files.

◊ Migrate your bootconfig.js configuration to the new bootconfig.json format.

◊ Remove SalesforceOAuthPlugin.js, SFHybridApp.js, cordova.force.js, and forcetk.js.

◊ If you're not using them, you can remove SFTestRunnerPlugin.js, qunit.css, and qunit.js.

◊ Add cordova.force.js (in the HybridShared/libs/ folder).

◊ If you’re using forceTk, add forcetk.mobilesdk.js (in the HybridShared/libs/ folder).

◊ If you’re using jQuery, update jQuery (in the HybridShared/external/ folder).

◊ Add SmartSync.js (in the HybridShared/libs/ folder).

◊ Add backbone-1.0.0.min.js and underscore-1.4.4.min.js (in the HybridShared/external/backbone/
folder).

◊ Add jQuery if you haven’t already (in the HybridShared/external/jquery/ folder).

◊ If you'd like to use the new SmartSync Data Framework:

- Add SmartSync.js (in the HybridShared/libs/ folder).

- Add backbone-1.0.0.min.js and underscore-1.4.4.min.js (in the
HybridShared/external/backbone/ folder).

- If you haven’t already, add jQuery, (in the HybridShared/external/jquery/ folder).

• Update your AppDelegate—Make your AppDelegate.h and AppDelegate.m files conform to the new design patterns.
If you’ve never changed your AppDelegate class, you can simply copy the new template app’s AppDelegate.h and
AppDelegate.m files over the old ones. Here are some key points:

◊ In AppDelegate.h:

- AppDelegate no longer inherits SFContainerAppDelegate.

- There's a new viewController property on SFHybridViewController.

◊ In AppDelegate.m, AppDelegate now assumes primary responsibility for navigating the bootstrapping and
authentication flow. This responsibility includes handling boundary events when the user logs out or switches login
hosts.

141

Migrating iOS ApplicationsMigrating from the Previous Release

Chapter 10

Reference

Reference documentation is hosted on GitHubIn this chapter ...

• For iOS: http://forcedotcom.github.com/SalesforceMobileSDK-iOS/
Documentation/SalesforceSDK/index.html

• REST API Resources
• iOS Architecture

• For Android:
http://forcedotcom.github.com/SalesforceMobileSDK-Android/index.html

• Android Architecture

142

http://forcedotcom.github.com/SalesforceMobileSDK-iOS/Documentation/SalesforceSDK/index.html
http://forcedotcom.github.com/SalesforceMobileSDK-iOS/Documentation/SalesforceSDK/index.html
http://forcedotcom.github.com/SalesforceMobileSDK-Android/index.html

REST API Resources
The Salesforce Mobile SDK simplifies using the REST API by creating wrappers. All you need to do is call a method and
provide the correct parameters; the rest is done for you. This table lists the resources available and what they do. For more
information, see the REST API Developer’s Guide.

DescriptionURIResource
Name

Lists summary information about each Salesforce
version currently available, including the version,
label, and a link to each version's root.

/Versions

Lists available resources for the specified API version,
including resource name and URI.

/vXX.X/Resources
by
Version

Lists the available objects and their metadata for your
organization's data.

/vXX.X/sobjects/Describe
Global

Describes the individual metadata for the specified
object. Can also be used to create a new record for
a given object.

/vXX.X/sobjects/SObject/SObject
Basic
Information

Completely describes the individual metadata at all
levels for the specified object.

/vXX.X/sobjects/SObject/describe/SObject
Describe

Accesses records based on the specified object ID.
Retrieves, updates, or deletes records. This resource
can also be used to retrieve field values.

/vXX.X/sobjects/SObject/id/SObject
Rows

Creates new records or updates existing records
(upserts records) based on the value of a specified
external ID field.

/vXX.X/sobjects/SObjectName/fieldName/fieldValueSObject
Rows by
External
ID

Set, reset, or get information about a user password.
/vXX.X/sobjects/User/user id/password

SObject
User
Password /vXX.X/sobjects/SelfServiceUser/self service

user id/password

Executes the specified SOQL query./vXX.X/query/?q=soqlQuery

Executes the specified SOSL search. The search
string must be URL-encoded.

/vXX.X/search/?s=soslSearch

iOS Architecture
At a high level, the current facilities that the native SDK provides to consumers are:

143

REST API ResourcesReference

http://developer.force.com/REST

• OAuth authentication capabilities

• REST API communication capabilities

• SmartStore secure storage and retrieval of app data

Note: SmartStore is not currently exposed to native template apps, but is included in the binary distribution.

The Salesforce native SDK is essentially one library, with dependencies on (and providing exposure to) the following additional
libraries:

• libRestKit.a — Third-party underlying libraries for facilitating REST API calls.

◊ RestKit in turn depends on libxml2.dylib, which is part of the standard iOS development environment

• libSalesforceOAuth.a — Underlying libraries for managing OAuth authentication.

• libsqlite3.dylib — Library providing access to SQLite capabilities. This is also a part of the standard iOS development
environment.

• fmdb — Objective-C wrapper around SQLite.

Note: This wrapper is not currently exposed to native template apps, but is included in the binary distribution.

Native iOS Objects
The following objects let you access Salesforce data in your native app:

• SFRestAPI

• SFRestAPI (Blocks)

• SFRestRequest

SFRestAPI

SFRestAPI is the entry point for making REST requests, and is generally accessed as a singleton, via [SFRestAPI
sharedInstance].

You can easily create many standard canned queries from this object, such as:

SFRestRequest* request = [[SFRestAPI sharedInstance] requestForUpdateWithObjectType:@"Contact"

objectId:contactId
fields:updatedFields];

You can then initiate the request with the following:

[[SFRestAPI sharedInstance] send:request delegate:self];

144

Native iOS ObjectsReference

SFRestAPI (Blocks)
This is a category extension of the SFRestAPI class that allows you to specify blocks as your callback mechanism. For example:

NSMutableDictionary *fields = [NSMutableDictionary dictionaryWithObjectsAndKeys:
@"John", @"FirstName",
@"Doe", @"LastName",
nil];

[[SFRestAPI sharedInstance] performCreateWithObjectType:@"Contact"
fields:fields
failBlock:^(NSError *e) {
NSLog(@"Error: %@", e);
}
completeBlock:^(NSDictionary *d) {

NSLog(@"ID value for object: %@", [d objectForKey:@"id"]);
}];

SFRestRequest

In addition to the canned REST requests provided by SFRestAPI, you can also create your own:

NSString *path = @"/v23.0";
SFRestRequest* request = [SFRestRequest requestWithMethod:SFRestMethodGET path:path
queryParams:nil];

SFRestAPI (QueryBuilder)

This category extension provides utility methods for creating SOQL and SOSL query strings. Examples:

NSString *soqlQuery =
[SFRestAPI SOQLQueryWithFields:[NSArray arrayWithObjects:@"Id", @"Name", @"Company",
@"Status", nil]

sObject:@"Lead"
where:nil
limit:10];

NSString *soslQuery =
[SFRestAPI SOSLSearchWithSearchTerm:@"all of these will be escaped:~{]"

objectScope:[NSDictionary dictionaryWithObject:@"WHERE isactive=true ORDER BY
lastname

asc limit 5"
forKey:@"User"]];

Other Objects
Though you won’t likely leverage these objects directly, their purpose in the SDK is worth noting.

• RKRequestDelegateWrapper—The intermediary between SFRestAPI and the RestKit libraries.
RKRequestDelegateWrapper wraps the functionality of RestKit communications, providing convenience methods
for determining the type of HTTP post, handling data transformations, and interpreting responses.

• SFSessionRefresher—Tightly-coupled with SFRestAPI, providing an abstraction around functionality for automatically
refreshing a session if any REST requests fail due to session expiration.

Android Architecture
The SalesforceSDK is provided as a library project. You need to reference the SalesforceSDK project from your application
project. See the Android developer documentation.

145

Android ArchitectureReference

http://developer.android.com

Java Code
Java sources are under /src.

Java Code

DescriptionPackage Name

SDK application classes (SalesforceSDKManager)com.salesforce.androidsdk.app

OAuth support classescom.salesforce.androidsdk.auth

Native implementation of Salesforce Mobile SDK PhoneGap plugincom.salesforce.androidsdk.phonegap

Classes for REST requests/responsescom.salesforce.androidsdk.rest

Security-related helper classes (e.g. passcode manager)com.salesforce.androidsdk.security

SmartStore and supporting classescom.salesforce.androidsdk.smartstore

Activities (e.g. login)com.salesforce.androidsdk.ui

App activity base classescom.salesforce.androidsdk.ui.sfhybrid

App activity base classescom.salesforce.androidsdk.ui.sfnative

Miscellaneous utility classescom.salesforce.androidsdk.util

com.salesforce.androidsdk.app

DescriptionClass

Abstract subclass of application; you must supply a concrete
subclass in your project.

SalesforceSDKManager

Helper class for upgradesUpgradeManager

Helper class for UUID generationUUIDManager

com.salesforce.androidsdk.auth

DescriptionClass

Watcher responsible for cleanup when account is removed
from settings application

AccountWatcher

Service taking care of authenticationAuthenticatorService

Generic HTTP access layerHttpAccess

Manages login hostsLoginServerManager

Helper class for common OAuth2 requestsOAuth2

146

Java CodeReference

com.salesforce.androidsdk.phonegap

DescriptionClass

Abstract super class for all Salesforce pluginsForcePlugin

Helper class to encapsulate the version reported by the
JavaScript code

JavaScriptPluginVersion

PhoneGap plugin for Salesforce OAuthSalesforceOAuthPlugin

PhoneGap plugin to get information about the SDK containerSDKInfoPlugin

PhoneGap plugin to run javascript tests in containerTestRunnerPlugin

com.salesforce.androidsdk.rest

DescriptionClass

Factory of RestClient, kicks off login flow if neededClientManager

Authenticated client to talk to a Force.com serverRestClient

Force.com REST request wrapperRestRequest

REST response wrapperRestResponse

com.salesforce.androidsdk.security

DescriptionClass

Helper class for encryption/decryption/hash computationsEncryptor

Inactivity timeout manager, kicks off passcode screen if neededPasscodeManager

com.salesforce.androidsdk.smartstore.app

This package is part of the SmartStore library project.

DescriptionClass

Super class for all force applications that use the SmartStore
(lives in SmartStore library project)

SalesforceSDKManagerWithSmartStore

Upgrade manager for applications that use the SmartStore
(lives in SmartStore library project)

UpgradeManagerWithSmartStore

com.salesforce.androidsdk.smartstore.phonegap

This package is part of the SmartStore library project.

DescriptionClass

PhoneGap plugin for SmartStoreSmartStorePlugin

147

Android ArchitectureReference

DescriptionClass

Represents a query cursorStoreCursor

com.salesforce.androidsdk.smartstore.store

This package is part of the SmartStore library project.

DescriptionClass

Helper class to access the database underlying SmartStoreDBHelper

Helper class to manage regular database creation and version
management

DBOpenHelper

Represents an index specificationIndexSpec

Represents a query specificationQuerySpec

Helper class for parsing and running SmartSqlSmartSqlHelper

Searchable/secure store for JSON documentsSmartStore

com.salesforce.androidsdk.ui

DescriptionClass

Custom dialog allowing user to pick a different login hostCustomServerUrlEditor

Login screenLoginActivity

Main activity of native application should extend or duplicate
the functionality of this class

SalesforceActivity

Helper class to manage a WebView instance that is going
through the OAuth login process

OAuthWebviewHelper

Passcode (PIN) screenPasscodeActivity

Main activity for hybrid applicationsSalesforceDroidGapActivity

WebView client used in hybrid applicationsSalesforceGapViewClient

Class that allows references to resources defined outside the SDKSalesforceR

Choose login host screenServerPickerActivity

com.salesforce.androidsdk.ui.sfhybrid

DescriptionClass

Defines the main activity for a Cordova-based applicationSalesforceDroidGapActivity

Defines the web view client for a Cordova-based applicationSalesforceGapViewClient

148

Android ArchitectureReference

com.salesforce.androidsdk.ui.sfnative

DescriptionClass

Main activity of native applications. All native activities are
encouraged to extend one of the classes in this package, or else
duplicate the functionality of one of these classes.

SalesforceActivity

Main activity of native applications, based on the Android
ListActivity class. All native activities are encouraged to

SalesforceListActivity

extend one of the classes in this package, or else duplicate the
functionality of one of these classes.

Main activity of native applications, based on the Android
ExpandableListActivity class. All native activities are

SalesforceExpandableListActivity

encouraged to extend one of the classes in this package, or else
duplicate the functionality of one of these classes.

com.salesforce.androidsdk.util

DescriptionClass

Super class for activty test classesBaseActivityInstrumentationTestCase

Class to track activity events using a queue, allowing for tests
to wait for certain events to turn up

EventsListenerQueue

Used to register and receive events generated by the SDK
(used primarily in tests)

EventsObservable

Observer of SDK events EventsObserver

Super class for tests of an application using the Salesforce
Mobile SDK

SalesforceSDKManagerInstrumentationTestCase

Super class for tests of hybrid applicationHybridInstrumentationTestCase

Super class to run tests written in JavaScriptJSTestCase

Test runner that runs tests using a time run capJUnitReportTestRunner

Helper methods for loggingLogUtil

Super class for tests of native applicationNativeInstrumentationTestCase

Test runner that limits the lifetime of the test runTimeLimitedTestRunner

Libraries
Libraries are under /libs.

DescriptionLibrary Name

Open source mobile development framework; used in hybrid applications
(*)

cordova-2.3.0.jar

149

LibrariesReference

DescriptionLibrary Name

Open source extension to SQLite that provides transparent 256-bit AES
encryptiong of database files (**)

sqlcipher.jar

Native libraries required by sqlcipher on Intel-based devicesx86/*.so

Native libaries required by sqlcipher on ARM-based devices (**)armeabi/*.so

Java libraries required by sqlciphercommons-code.jar, guava-r09.jar

(*) denotes files required for hybrid application.

(**) denotes files required for SmartStore.

Resources
Resources are under /res.

drawable-hdpi

UseFile

Server picker screensf__edit_icon.png

Login screensf__highlight_glare.png

Application iconsf__icon.png

drawable-ldpi

UseFile

Application iconsf__icon.png

drawable-mdpi

UseFile

Server picker screensf__edit_icon.png

Login screensf__highlight_glare.png

Application iconsf__ic_refresh_sync_anim0.png

Application iconsf__icon.png

drawable

UseFile

Login screensf__header_bg.png

150

ResourcesReference

UseFile

Login screensf__progress_spinner.xml

Login screensf__toolbar_background.xml

drawable-xlarge

UseFile

Login screen (tablet)sf__header_bg.png

Login screen (tablet)sf__header_drop_shadow.xml

Login screen (tablet)sf__header_left_border.xml

Login screen (tablet)sf__header_refresh.png

Login screen (tablet)sf__header_refresh_press.png

Login screen (tablet)sf__header_refresh_states.xml

Login screen (tablet)sf__header_right_border.xml

Login screen (tablet)sf__login_content_header.xml

Login screen (tablet)sf__nav_shadow.png

Login screen (tablet)sf__oauth_background.png

Login screen (tablet)sf__oauth_container_dropshadow.9.png

Login screen (tablet)sf__progress_spinner.xml

Login screen (tablet)sf__refresh_loader.png

Login screen (tablet)sf__toolbar_background.xml

drawable-xlarge-port

UseFile

Login screen (tablet)sf__oauth_background.png

layout

UseFile

Server picker screensf__custom_server_url.xml

Login screensf__login.xml

Pin screensf__passcode.xml

Server picker screen (deprecated)sf__server_picker.xml

Server picker screensf__server_picker_list.xml

151

Android ArchitectureReference

layout-land

UseFile

PIN screensf__passcode.xml

layout-xlarge

UseFile

Header (tablet)sf__header_bottom.xml

Header (tablet)sf__header_separator.xml

Login screen (tablet)sf__login.xml

Login screen (tablet)sf__login_header.xml

PIN screen (tablet)sf__passcode.xml

Server picker screen (tablet)sf__server_picker.xml

Server picker screen (tablet)sf__server_picker_header.xml

menu

UseFile

Add connection dialogsf__clear_custom_url.xml

Login menu (phone)sf__login.xml

values

UseFile

Connected app configuration settingsbootconfig.xml

Colorssf__colors.xml

Dimensionssf__dimens.xml

SDK stringssf__strings.xml

Stylessf__style.xml

Other strings (app name)strings.xml

values-xlarge

UseFile

Colors (tablet)sf__colors.xml

Dimensions (tablet)sf__dimens.xml

152

Android ArchitectureReference

UseFile

Styles (tablet)styles.xml

xml

UseFile

Preferences for account used by applicationauthenticator.xml

Plugin configuration file for PhoneGap. Required for hybrid.config.xml

Server configuration.servers.xml

153

Android ArchitectureReference

Index

A

Account Editor sample 99
AccountWatcher class 39
Android architecture 145–146, 149–150
Android development 27, 33
Android hybrid development 54
Android hybrid sample apps 54
Android project 30
Android requirements 28
Android sample app 32, 52
Android template app 49
Android template app, deep dive 49
Android, native development 33
Apex controller 60
Application flow, iOS 13
Architecture, Android 145–146, 149–150
Audience 2
authentication

Force.com Sites
134

and portal authentication 134
portal 134
portal authentication 134

Authentication 122
Authentication flow 125
Authorization 124

B

Backbone framework 67
Base64 encoding 41
BLOBs 109, 118

C

caching, offline 71
Callback URL 123
ClientManager class 41, 46
com.salesforce.androidsdk.rest package 46
Connected apps 122, 124
Consumer key 123
Container 53

D

Database.com 6
Delete soups 110–111, 116
Describe global 143
Developer Edition 6
Developer.force.com 6
Developing HTML apps 62
Developing HTML5 apps 63
Development 5
Development requirements, Android 28
Development, Android 27, 33

Development, hybrid 53

E

encoding, Base64 41
Encryptor class 41
Events

Refresh token revocation 133–134

F

Files
JavaScript 55

Flow 125–126
Force.com 6
ForcePlugin class 43

G

GitHub 7
Glossary 123

H

HTML5 62–63
HTML5 development 2, 5
Hybrid Android development 54
Hybrid applications

JavaScript files 55
Javascript library compatibility 56
Versioning 56

Hybrid development 2, 5, 53
Hybrid iOS sample 54
hybrid sample apps 54

I

Identity URLs 127
installation, Mobile SDK 6
Installing the SDK 9, 28
interface

KeyInterface 39
iOS application, creating 10
iOS architecture 9, 28, 143–144
iOS development 8
iOS Hybrid sample app 54
iOS hybrid sample apps 54
iOS sample app 12, 26
iOS Xcode template 12
IP ranges 124

J

JavaScript 63
Javascript library compatiblity 56
Javascript library version 60 154

Index

JavaScript, files 55

K

KeyInterface interface 39

L

List objects 143
List resources 143
localStorage 109, 118
LoginActivity class 42

M

MainActivity class 50
Manifest, TemplateApp 51
Metadata 143
Migrating

1.5 to 2.0 136
migration

Android applications 137
iOS applications 139

Mobile container 53
Mobile Container 9
Mobile development 1
Mobile Development 9
Mobile policies 124
Mobile SDK installation 9, 28
Mobile SDK Packages 7
Mobile SDK Repository 7

N

Native Android development 33
Native Android UI classes 42
Native Android utility classes 42
Native apps

Android 132
Native development 2, 5
Native iOS application 10
Native iOS architecture 9, 28, 143–144
Native iOS development 8
Native iOS project template 12
New features 7
NPM 7

O

OAuth
custom login host 131

OAuth2 122, 125
offline caching 71, 73
Offline storage 108–110

P

Packages 7
Parameters, scope 127
PasscodeManager class 40
Password 143

PIN protection 124
Prerequisites 5
project template, Android 49
Project, Android 30

Q

Queries, Smart SQL 114
Query 143
Querying a soup 110–111, 116
querySpec 110–111, 116

R

Reference documentation 142
refresh token 58
Refresh token

Revocation 133–134
Refresh token flow 126
Refresh token revocation 132
Refresh token revocation events 133–134
registerSoup 110–111, 116
Releases 7
Remote access 123
Remote access application 123
REST 143
REST API

supported operations 18
REST APIs 17
REST APIs, using 46
REST request 21
REST Resources 143
RestAPIExplorer 26
RestClient class 41, 46
RestRequest class 46
RestResponse class 46
Restricting user access 124
Revoking tokens 132
RootViewController class 16

S

Salesforce mobile 2
SalesforceActivity class 41
SalesforceSDKManager class 38
SalesforceSDKManager.shouldLogoutWhenTokenRevoked() method
132
Sample app, Android 32, 52
Sample app, iOS 26
sample apps

SmartSync 92
Sample iOS app 12
Scope parameters 127
SDK prerequisites 5
SDK version 60
SDKLibController 60
Search 143
Security 122
session management 58
SFRestAPI (QueryBuilder) category 24
shouldLogoutWhenTokenRevoked() method 132 155

Index

Sign up 6
Smart SQL 114
SmartStore

soups 110
SmartStore extensions 109, 118
SmartStore functions 110–111, 116
SmartSync

conflict detection 77, 79
JavaScript 69
model collections 67–68
model objects 67
models 67
offline caching 71
offline caching, implementing 73
tutorial 67, 81, 84–85, 87–89, 119
User and Group Search sample 95
User Search sample 97
using in JavaScript 69

SmartSync sample apps 92
SmartSync samples

Account Editor 99
SObject information 143
soups 110
Soups 110–111, 116
Source code 7
StoreCache 73
storing files 109, 118
supported operations, REST API 18

T

Template app, Android 49
template project, Android 49

TemplateApp sample project 49
TemplateApp, manifest 51
Terminology 123
Tokens, revoking 132
tutorial

conflict detection 79
SmartSync 67, 81, 84–85, 87–89, 119
SmartSync, setup 81

U

UI classes (Android native) 41
UI classes, native Android 42
UpgradeManager class 42
upsertSoupEntries 110–111, 116
URLs, indentity 127
User-agent flow 125
Utility classes, native Android 42

V

Version 143
Versioning 56
Versions 7

W

What’s new in this release 7

X

Xcode project template 12

156

Index

	Introduction to Mobile Development
	Intended Audience
	About Native, HTML5, and Hybrid Development
	Enough Talk; I’m Ready
	Development Prerequisites
	Choosing Between Database.com and Force.com
	Sign Up for Force.com
	Sign Up for Database.com

	Mobile SDK Installation
	Mobile SDK NPM Packages
	Mobile SDK GitHub Repository

	Keeping Up With the Mobile SDK
	What’s New in This Release

	Native iOS Development
	iOS Native Quick Start
	Native iOS Requirements
	Installing and Uninstalling Salesforce Mobile SDK for iOS
	Creating a Native iOS App in Xcode
	Running the Xcode Project Template App

	Developing a Native iOS App
	About Login and Passcodes
	About Memory Management
	Overview of Application Flow
	AppDelegate Class
	About View Controllers
	RootViewController Class
	About Salesforce REST APIs
	Supported Operations
	SFRestAPI Interface
	SFRestDelegate Protocol
	Creating REST Requests
	Sending a REST Request
	SFRestRequest Class
	Using SFRestRequest Methods
	SFRestAPI (Blocks) Category
	SFRestAPI (QueryBuilder) Category

	iOS Sample Applications

	Native Android Development
	Android Native Quick Start
	Native Android Requirements
	Installing and Uninstalling Salesforce Mobile SDK for Android
	Creating a New Android Project
	Android Template Application

	Setting Up Sample Projects in Eclipse
	Android Project Files

	Developing a Native Android App
	The create_native Script
	Android Application Structure
	Native API Packages
	Overview of Native Classes
	SalesforceSDKManager Class
	KeyInterface Interface
	AccountWatcher Class
	PasscodeManager Class
	Encryptor class
	SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity Classes
	UI Classes
	ClientManager and RestClient Classes
	LoginActivity Class
	Other UI Classes
	UpgradeManager Class
	Utility Classes
	ForcePlugin Class

	Using Passcodes
	Resource Handling
	Using REST APIs
	Android Template App: Deep Dive
	TemplateApp Class
	MainActivity Class
	TemplateApp Manifest

	Android Sample Applications

	Introduction to Hybrid Development
	iOS Hybrid Development
	iOS Hybrid Sample Application

	Android Hybrid Development
	Hybrid Sample Applications

	JavaScript Files for Hybrid Applications
	Versioning and Javascript Library Compatibility
	Managing Sessions in Hybrid Applications
	Example: Serving the Appropriate Javascript Libraries

	HTML5 Development
	HTML5 Development Requirements
	Delivering HTML5 Content With Visualforce
	Accessing Salesforce Data: Controllers vs. APIs

	Using SmartSync to Access Salesforce Objects
	About Backbone Technology
	Models and Model Collections
	Models
	Model Collections

	Using the SmartSync Data Framework in JavaScript
	Offline Caching
	Implementing Offline Caching
	Using StoreCache For Offline Caching

	Conflict Detection
	Mini-Tutorial: Conflict Detection

	Tutorial: Creating a SmartSync Application
	Set Up Your Project
	Edit the Application HTML File
	Create a SmartSync Model and a Collection
	Create a Template
	Add the Search View
	Add the Search Result List View
	Add the Search Result List Item View
	Router

	SmartSync Sample Apps
	User and Group Search Sample
	User Search Sample
	Account Editor Sample

	Securely Storing Data Offline
	Accessing SmartStore in Hybrid Apps
	Adding SmartStore to Android Apps
	Offline Hybrid Development
	SmartStore Soups
	Registering a Soup
	Retrieving Data From a Soup
	Smart SQL Queries
	Working With Cursors
	Manipulating Data
	Using the Mock SmartStore
	NativeSqlAggregator Sample App: Using SmartStore in Native Apps

	Authentication, Security, and Identity in Mobile Apps
	OAuth Terminology
	Creating a Connected App
	Connected Apps
	About PIN Security

	OAuth2 Authentication Flow
	OAuth 2.0 User-Agent Flow
	OAuth 2.0 Refresh Token Flow
	Scope Parameter Values
	Using Identity URLs
	Setting a Custom Login Server
	Revoking OAuth Tokens
	Handling Refresh Token Revocation in Android Native Apps
	Token Revocation Events
	Token Revocation: Passive Handling
	Token Revocation: Active Handling

	Portal Authentication Using OAuth 2.0 and Force.com Sites

	Migrating from the Previous Release
	Migrating Android Applications
	Migrating iOS Applications

	Reference
	REST API Resources
	iOS Architecture
	Native iOS Objects

	Android Architecture
	Java Code
	Libraries
	Resources

	Index

