Building an ontology of behaviour change interventions

Susan Michie Director of Centre for Behaviour Change,

University College London, UK

The Human Behaviour-Change Project

Human Behaviour-Change Project

Participating organisations

≜UCL

www.humanbehaviourchange.org

🔰 @HBCProject

A Collaborative Award funded by the

wellcome^{trust}

Acknowledgements: The collaboration

Human Behaviour-Change Project

	Behavioural science	Computer science	System architecture
Grant-holders	Susan Michie ¹ Marie Johnston ³ Robert West ¹ Mike Kelly ⁴	John Shawe-Taylor ¹ Pol MacAonghusa ²	James Thomas ¹
Researchers	Alison Wright ¹ Ailbhe Finnerty ¹ Marta Marques ¹ Emma Norris ¹	Debasis Ganguly ² Lea Deleris ²	Alison O'Mara-Eves ¹ Gillian Stokes ¹ Patrick O'Driscoll ¹

Project Manager: Leonor Fontoura²; Administrator: Candice Moore¹; Consultants: Janna Hastings, Julian Everett, PhD Students: Paulina Schenk¹, Anneliese Arno¹, Gaurav Singh¹, Tobias Baumann¹

¹UCL ²IBM Research Dublin ³Aberdeen University ⁴Cambridge University

The primary goal of Behavioural Science

han Behaviour-

Change Project

To develop an understanding of human behaviour to answer variants of the 'big question'

When it comes to behaviour change interventions: what works, compared with what, for what behaviours, how well, for how long, with whom, in what setting, and why?

The problem

The problem

Messy evidence gets turned into well organised, useful scientific insights

Change Project

Up to date estimates of the effectiveness of behaviour change interventions

Unpacking reasons for heterogeneity in intervention effectiveness

Generating new testable hypotheses about behaviour change

Ontology

Human Behaviour-Change Project

In information science, a system for representing knowledge in the form of:

1. A set of unique identifiers of 'entities'

- 2. Labels and definitions for these
- 3. Specification of relationships between them ('is a', 'part of', 'positively influences' ...)

Arp R, Smith B, & Spear AD (2015). Building ontologies with basic formal ontology. Cambridge: MIT Press.

Causal connections between entities within a behaviour change intervention scenario

Upper level entities in BCIO

HE

Upper level entities in BCIO

HE

Use of ontologies: in the HBCP

- Human Behaviour-Change Project
- 1. To annotate intervention reports, building the knowledge base for the HBCP
- 2. To facilitate algorithms performing reasoning and inference about data on the effectiveness of interventions
- 3. To help users frame questions to ask of the knowledge system?
 - e.g. ontology may serve to structure drop-down menu options in the query interface

In other research projects

- Human Behaviour-Change Project
- 1. In systematic reviews to classify features of the included BCI evaluations and examine the impact of these features on intervention effectiveness
- 2. To provide consistent terminology facilitating better reporting of all aspects of intervention evaluations
- 3. To provide prompts to encourage researchers/practitioners to consider all aspects of intervention and evaluation design ahead of conducting their studies
- 4. For authors to self-annotate their evaluation reports, facilitating easier automated research synthesis efforts and "living systematic reviews"
- 5. In authoring tools for researchers to use when preparing reports on interventions

Approaches to developing ontologies

- Top down
 - Build on previous research efforts to develop ontologies
 - Reuse of existing ontologies and/or controlled vocabularies where relevant
- Bottom-up
 - Examine relevant published reports, noting down all aspects of relevant entities/attributes/processes
 - Annotate reports to extend coverage and identify unclear definitions in early versions of the ontology

Developing the ontology: general

- 1. Establish domain and scope of the ontology
- 2. Identify entity types and relationship types that need to be represented
 - a. From research reports and models of behaviour change
- 3. Decide on labels and definitions
- 4. Establish relationships between entity types
- 5. Test against applicability, usability and comprehensiveness
- 6. Repeat steps 2 4 to modify and add entity types and relationships as needed

Human Behaviour-Change Project

External consultation

- Ontology experts
- Stakeholder review

More detailed steps

- 1. Define ontology entity (e.g 'population')
- 2. Research
 - a. how entity described in behaviour change evaluation reports
 - b. terms from existing ontologies
- 3. Map out initial ontology structure
- 4. Test with annotations of intervention papers and revise
- 5. Repeat stages 3 & 4 until ontology terms stable
- 6. Ontology expert review and revise
- 7. Stakeholder review and revise
- 8. Mass Annotation (300 papers), checking inter-rater reliability
- 9. Publish in OBO Foundry
 - Ontologies will always be under revision and open for discussion

Developing lower levels of the BCIO

Human Behaviour-Change Project

Search existing ontologies for relevant terms [via Ontology Lookup Service, Bioportal] Search for existing taxonomies or controlled vocabularies that can be employed

Look at key dimensions of the entity as reported in a small sample (50-60) BCI reports

Critically appraise existing resources: Do they

- Provide definitions for all terms?
- Use expert consensus?
- Use data driven approaches?
- Have a maintenance strategy?

If new dimensions still emerging, do 10 more

Initial draft of the ontology

Scoping Review to answer ...

Human Behaviour-Change Project

- 1) What existing ontologies exist related to human behaviour change?
- 2) What methods were used to develop these ontologies?
- 3) What is the quality of these ontologies?

Pre-registration of review: PROSPERO (CRD42017079990)

PROSPERO

International prospective register of systematic reviews

NHS National Institute for Health Research

Advancing methods to develop behaviour change interventions: a review of relevant ontologies

Emma Norris, Ailbhe Finnerty, Janna Hastings, Gillian Stokes, Susan Michie

Scoping Review Methods

Human Behaviour-Change Project

- 1) Electronic bibliographic databases: ACM Digital, IEEE Explore, PsycINFO, PubMed, Scopus, Web of Science
 - Keywords: ontology, health and behaviour.
- 2) **Key ontology sources**: Ontology repositories (e.g OBO Foundry, BioPortal), Cochrane's PICO ontology and medical vocabularies (e.g SnoMED CT)
- 3) **Expert consultation**

Inclusion criteria: relevant topic, describing development of ontology, downloadable ontology, English language

What existing ontologies exist related to human behaviour change?

Example: Health Behaviour Change Ontology: Bickmore et al. 2011; J Biomed Inform.

- Developed for automated behaviour change counselling
- Focused on understanding client-patient relationship
- X incomplete representationof theories & conceptsX not updated

What methods were used to develop identified ontologies?

Incorporating ex	ting existing resources Techniques			
Taxonomies	Terminologies	Ontologies	User feedback	Data-driven
3/16	5/16	11/16	7/16	5/16

What methods were used to develop identified ontologies?

Exposure Ontology Mattingly et al. (2012). *Environmental Science* & Technology

HE

What is the quality of these ontologies?

Criteria for ontol	ogy adequacy			Criterion on content
Uses unique identifiers (URIs) for each class	Clear definitions for all terms	Well-organised, hierarchical structure	Maintained (usually by a community)	Comprehensive for human behaviour change interventions
12/16 (75%)	10/16 (62.5%)	14/16 (87.5%)	10/16 (62.5%)	0/16 (0%)

- 9/16 identified ontologies available on OBO Foundry = higher quality
- Need for comprehensive, high quality ontology for BCIs

Repeated batches of annotations and revisions

- What are different ways construct has been operationalised / best practice? Search existing ontologies for terms that need adding
- Team peer review

From manual to automatic annotation

- To develop the automated feature extraction system, we need a "training set" of reports, manually annotated in terms of the BCIO entities
 - Provides a "ground truth" against which the accuracy of the automated feature extraction system can be compared

Annotations in practice

Human Behaviour-Change Project

- Two researchers annotate the same batch of intervention reports for a given lower level ontology
 - e.g. Population, setting
- Online, using EPPI Reviewer software
- Once annotations agreed, resulting data is exported as a JSON file

2.3 Self-monitoring of behavior

The text messages are timed around a user's quit date and provide advice on quitting smoking. Messages are based on social cognitive theory^{8,18} and are consistent with the U.S. Public Health Service Clinical Practice Guidelines,¹⁷ which recommend calling a quitline and considering the use of approved quit-smoking medications. Messages are interactive and prompt users to track smoking, report on cravings, and provide smoking status.

HB CP

Using annotations in ontology development

- The two annotators compare their coding
 - Resolve differences
 - Where do differences arise from?
 - Clarity of definitions?
 - Overlap between supposedly different categories?
 - Were there elements of a report that didn't seem to fit the ontology?
- Enhance ontology as required
- Try out refined ontology by using to annotate another batch of reports

Ou	tcome behaviour
[Ailb	he Finnerty] Outcome value intervention 1 (most complex)
Sever	1-day point prevalence abstinence rates at end of treatment and at the
1-mo	nth, 6-month, and 12-month follow-ups for the ST condition were 33.3%
30,19	6, 24.7%, and 24.7%, respectively, and, for the CBT-D condition, were
37,69	6, 39.5%, 24.4%, and 32.5%, respectively.
Brow	n 2001.pdf: Page 8: " 32.5%"
[Emr	na Norris] Outcome value intervention 1 (most complex)
Sever	h-day point prevalence abstinence rates at end of treatment and at the
1-mo	nth, 6-month, and 12-month follow-ups for the ST condition were 33.3%
30.19	6, 24.7%, and 24.7%, respectively, and, for the CBT-D condition, were
37.69	6, 39.5%, 24.4%, and 32.5%, respectively.
Brow	n 2001.pdf: Page 8: "32.5%"
[Ailb	he Finnerty] Outcome value control
Seven	I-day point prevalence abstinence rates at end of treatment and at the
1-mo	nth, 6-month, and 12-month follow-ups for the ST condition were 33.3%
30.19	6, 24.7%, and 24.7%, respectively, and, for the CBT-D condition, were
37.69	6, 39.5%, 24.4%, and 32.5%, respectively.
Brow	n 2001.pdf: Page 8: "24.7%"
[Emr	na Norris] Outcome value control
Seven	h-day point prevalence abstinence rates at end of treatment and at the
1-mo	nth, 6-month, and 12-month follow-ups for the ST condition were 33.3%
30.19	6, 24.7%, and 24.7%, respectively, and, for the CBT-D condition, were
37.69	4.39.5% 24.4% and 32.5% respectively.

Test inter-rater reliability of annotations

- To assess whether human coders consistently apply the ontology to published intervention evaluations
- Iterative process
 - revising annotation guidance and the lower level ontology, and
 - coding further batches of papers, until achieve good inter-rater reliability

Annotate papers for a different behaviour

- Purpose: to check how well the lower ontology functions for a broader range of BCIs
 - e.g. smoking and physical activity
 - Test comprehensiveness of coverage
- Are there issues that become apparent when annotating for physical activity that weren't apparent when annotating smoking papers?
- Research solutions as required and revise accordingly

Annotation challenges

- Human Behaviour-Change Project
- Missing information in description of studies limits what can be annotated
 - More recent reports are better specified demonstrates the value added by reporting guidelines (e.g. TIDiER, Hoffman et al, 2014); CONSORT for non-pharmacological trials, Boutron et al, 2017)
- Poorly reported information in reports
 - Limits ability to classify
 - Renders studies non-comparable with others
- A small minority of pdfs can't be annotated using the software

Change Project

External stakeholder review

- Two over-arching questions:
 - 1. Comprehensive coverage?
 - 2. Priorities for feature extraction?
- 1. Comprehensiveness of coverage:
 - Share sections of the relevant part of the ontology (e.g. for population, may show "socioeconomic factors" section of the ontology)
 - Key questions:
 - Are there any attributes missing in this category?
 - Are there any terms or definitions for which you would suggest changes?
 - Comments on comprehensiveness subjected to thematic analysis by two coders

2. Priorities for feature extraction

Change Project

- Perceived importance (to inform priority setting) assessed with two tasks
- Open ended question:
 - If you were trying the understand the effectiveness of behaviour change interventions, what characteristics of the target populations would you be most interested in?
 - Results subjected to thematic analysis
- Rating task:
 - Think of behaviour you're familiar with. How important do you think participants' age/gender is to understanding variation in the effectiveness of behaviour change interventions?
 - Rated from 1 (not important) 5 (very important)

Share draft of the lower level ontology

- Upload draft with relevant documentation to Open Science Framework
 - Invite feedback
- Publish paper and ontology on OBO Foundry

Linking with developing Cochrane PICO Ontology

Human Behaviour-Change Project

Trusted evidence. Informed decisions. Better health.

http://linkeddata.cochrane.org/pico-ontology

PICO ontology

- Patient, Population or Problem
 - What are the characteristics of the patient or population (demographics, risk factors, pre-existing conditions, etc)?
 - What is the condition or disease of interest?
- Intervention
 - What is the intervention under consideration for this patient or population?
- Comparison
 - What is the alternative to the intervention (e.g. placebo, different drug, surgery)?
- Outcome
 - What are the relevant outcomes (e.g. quality of life, change in clinical status, morbidity, adverse effects, complications)?

Michie et al. Implementation Science (2017) 12:121 DOI 10.1186/s13012-017-0641-5

Implementation Science

Open Access

Human Behaviour-Change Project

STUDY PROTOCOL

The Human Behaviour-Change Project: harnessing the power of artificial intelligence and machine learning for evidence synthesis and interpretation

Susan Michie^{1*}, James Thomas², Marie Johnston³, Pol Mac Aonghusa⁴, John Shawe-Taylor⁵, Michael P. Kelly⁶, Léa A. Deleris⁴, Ailbhe N. Finnerty¹, Marta M. Marques¹, Emma Norris¹, Alison O'Mara-Eves² and Robert West⁷

The Human Behaviour-Change Project

Human Behaviour-Change Project

Questions and discussion

www.humanbehaviourchange.org

Slides not used

The Behaviour Change Intervention (BCI) Knowledge System

Collaborations, connected services and data sources

Human Behaviour-Change Project

More info from Prof James Thomas james.thomas@ucl.ac.uk

The Human Behaviour-Change Project

Brings together behavioural science, computer science and information science to create and evaluate a Behaviour Change Intervention (BCI) Knowledge System:

- 1. An ontology of BCI interventions and evaluation reports
- 2. A largely automated feature extraction system to read BCI evaluation reports, using Natural Language Processing
- 3. A BCI database containing information from evaluation reports structured according to the ontology
- 4. Reasoning and machine learning algorithms to synthesise this information in response to user queries
- 5. An interface for computers and human users to interact with the system

A mini-ontology

What ontologies can do

- 1. Improve clarity of thinking and reporting
- 2. Generate new ideas and testable hypotheses
- 3. Identify information gaps and promotes lateral thinking
- 4. Facilitate interoperability across domains of knowledge and knowledge representations
- 5. Provide a powerful and intuitive basis for automated querying and reasoning

Desirable qualities

Change Project

- Clear definitions for all terms i.e. non-overlapping terms without redundancy
- Well-organised, hierarchical structure
- Comprehensive coverage of the area
- Granularity
 - appropriate to how information represented in evaluation reports and to types of question likely to be asked of the Knowledge System