CHANICAL

ANCHORS

GENERAL INFORMATION

SPIKE[®]

Pin Anchor

PRODUCT DESCRIPTION

The Spike is a, one-piece, vibration resistant anchor for use in concrete block or stone. Several head styles, including tamperproof versions, and anchor materials are available. The Spike anchor is formed with an "s" shaped configuration at the working end of the anchor to create an expansion mechanism. Since the anchor is pre-formed, there is no secondary tightening operation required which greatly reduces the overall cost of an anchor installation.

GENERAL APPLICATIONS AND U

• Available in corrosion resistance stainless

- Tamperproof applications
- · Cable trays and strut

- Pipe hanging
- Metal track attachments
- Concrete formwork

FEATURES AND BENEFITS

steel for exterior applications

- + Pre-expanded anchor design allows for easy installation
- + Mushroom and flat head Spike anchors are tamper-proof
- + Forming Spike, which is removable, can be used for temporary installations
- + Pipe and tie-wire Spike is a simple to install alternative to direct fastening (e.g. powder actuated)

APPROVALS AND LISTINGS

Tested in accordance with ASTM E488 and AC01 criteria

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 -Post-Installed Concrete Anchors. Pre-expanded anchors shall be Spike as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Carbon Steel (Mushroom Head, Flat Head, Pipe, Tie-Wire and Forming Spike)

Anchor Component	Component Material
Anchor Body	AISI 1038 Carbon Steel
Zinc Plating	ASTM B633, SC1, Type III (Fe/Zn5)

Stainless Steel (Mushroom Head)

Anchor Component	Component Material
Anchor Body	Type 316L Stainless Steel

SECTION CONTENTS

General Information	1
Material Specifications	1
Installation Specifications	2
Installation Instructions	2
Performance Data	3
Design Criteria	7
Design Criteria (Allowable Stress Design)	8
Ordering Information	10

FORMING SPIKE

HEAD STYLE

- Mushroom Head
- Flat Head
- Pipe (Coupler Head)
- Tie-Wire
- Forming

ANCHOR MATERIALS

- Zinc Plated Carbon Steel
- Type 316 Stainless Steel

ANCHOR SIZE RANGE (TYP.)

• 3/16" diameter through 1/2" diameters

SUITABLE BASE MATERIALS

- Normal-Weight Concrete
- Lightweight Concrete
- Grouted Concrete Masonry (CMU)

3/8"

3/8

7/16

7/32 3/4

Nominal Anchor Size, d

1/4"

1/4

5/16

7/64

1/2

MECHANICAL ANCHORS

SPIKE[®] Pin Anchor

INSTALLATION SPECIFICATIONS

Mushroom Head Carbon Steel Spike

Dimonsion	Nominal Anchor Size, d						
Dimension	3/16"	1/4"	3/8"	1/2"			
ANSI Drill Bit Size (in.)	3/16	1/4	3/8	1/2			
Fixture Clearance Hole (in.)	1/4	5/16	7/16	9/16			
Head Height (in.)	7/64	7/64	7/32	1/4			
Head Size, O.D. (in.)	7/16	1/2	3/4	1			

Flat Head Spike (80°– 82° Head)

Dimonsion	Nominal Anchor Size, d				
Dimension	3/16"	1/4"			
ANSI Drill Bit Size (in.)	3/16	1/4			
Fixture Clearance Hole (in.)	1/4	5/16			
Head Height (in.)	7/64	9/64			
Head Size, O.D. (in.)	3/8	1/2			

Pipe Spike

Head Height (in.)

Head Size, O.D. (in.)

Dimonsion	Nominal Anchor Size, d				
Dimension	1/4"	3/8"			
ANSI Drill Bit Size (in.)	3/16	1/4			
UNC Thread Size	1/4-20	3/8-16			
Head Height (in.)	1/2	5/8			
Head Size, O.D. (in.)	13/32	35/64			

3/16"

3/16

1/4

7/64

7/16

Mushroom Head Stainless Steel Spike

Dimension

ANSI Drill Bit Size (in.)

Fixture Clearance Hole (in.)

Tie-Wire Spike

Dimension	Nominal Anchor Size, d				
Dimension	3/16"	1/4"			
ANSI Drill Bit Size (in.)	3/16	1/4			
Tie-Wire Hole (in.)	3/16	9/32			
Head Height (in.)	37/64	41/64			
Head Width (in.)	9/64 x 7/16	3/16 x 9/16			

Forming Spike

Dimonsion	Nominal Anchor Size, d				
Differsion	3/16"	1/4"			
ANSI Drill Bit Size (in.)	3/16	1/4			
Fixture Clearance Hole (in.)	1/4	5/16			
Head Height (in.)	9/16	9/16			
Head Size, O.D. (in.)	13/32	1/2			

INSTALLATION INSTRUCTIONS

Mushroom/Flat Head Version Pipe Spike Version Tie-Wire Version Forming Spike Version Using the proper Using the proper Using the proper Using the proper diameter bit, drill a diameter bit, drill a diameter bit. drill a diameter bit. drill a hole into the base hole into the base hole into the base hole into the base 10 Ŵ material to a depth material to a depth material to a depth material to a depth 000 of at least one of at least one of at least one of at least one anchor diameter anchor diameter anchor diameter anchor diameter deeper than deeper than deeper than deeper than the embedment the embedment the embedment the embedment 111 required. required. required. required. D The tolerances of The tolerances of The tolerances of The tolerances of the drill bit used the drill bit used the drill bit used the drill bit used must meet the must meet the must meet the must meet the requirements of requirements of requirements of requirements of ANSI Standard ANSI Standard ANSI Standard ANSI Standard B212.15 B212.15 B212.15 B212.15 Remove dust and Remove dust and Remove dust and Remove dust and debris from the debris from the debris from the debris from the hole during drilling hole during drilling hole during drilling hole during drilling (e.g. dust extractor) (e.g. dust extractor) (e.g. dust extractor) (e.g. dust extractor) or following drilling or following drilling or following drilling or following drilling (e.g. suction, forced (e.g. suction, forced (e.g. suction, forced (e.g. suction, forced air) to extract loose air) to extract loose air) to extract loose air) to extract loose v ⊲ particles created by 4 particles created by particles created by particles created by drilling. drilling. drilling. drilling. 'n ¹ n e Drive the anchor Drive the anchor Drive the anchor Drive the anchor through the fixture into the hole through the fixture into the hole ₽. into the anchor until the head until the head into the anchor hole until the is firmly seated is firmly seated hole until the 4 head is firmly against the against the head is firmly base material. seated against the base material. seated against the Be sure the fixture. Be sure the Be sure the fixture. Be sure the anchor is driven anchor is driven anchor is driven anchor is driven to the required to the required to the required to the required embedment depth. embedment embedment embedment depth. depth. depth.

1-800-4 **DEWALT**

2

Technical Guide – Mechanical Anchors ©2021 Dewalt – Rev. A

PERFORMANCE DATA

Ultimate Load Capacities for Carbon Steel Spike in Normal-Weight Concrete^{1,2}

Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)									
Diameter d in. (mm)	Embedment	2,000 psi ((13.8 MPa)	3,000 psi	3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)		
	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)		
	7/8	520	1,080	560	1,270	660	1,310	690	1,350		
	(22.2)	(2.3)	(4.9)	(2.5)	(5.7)	(2.9)	(5.9)	(3.1)	(6.1)		
3/16	1	540	1,230	620	1,725	780	1,860	795	1,860		
(4.8)	(25.4)	(2.4)	(5.5)	(2.8)	(7.8)	(3.5)	(8.4)	(3.5)	(8.4)		
	1-1/4	780	1,800	900	2,000	1,060	2,155	1,120	2,310		
	(31.8)	(3.5)	(8.1)	(4.0)	(9.0)	(4.7)	(9.7)	(5.0)	(10.4)		
1/4	1	620	1,585	775	1,965	835	2,160	885	2,360		
	(25.4)	(2.8)	(7.1)	(3.4)	(8.8)	(3.7)	(9.7)	(3.9)	(10.6)		
(6.4)	1-1/4	830	1,815	1,100	2,020	1,210	2,220	1,320	2,585		
	(31.8)	(3.7)	(8.2)	(4.9)	(9.1)	(5.4)	(10.0)	(5.9)	(11.6)		
3/8	1-3/4	1,785	3,645	2,120	4,480	2,630	5,025	2,875	5,075		
(9.5)	(44.5)	(8.0)	(16.4)	(9.5)	(20.2)	(11.8)	(22.6)	(12.9)	(22.8)		
1/2	2-1/2	3,215	5,345	3,620	8,460	4,015	10,320	4,410	10,860		
(12.7)	(63.5)	(14.5)	(24.1)	(16.3)	(38.1)	(18.1)	(46.4)	(19.8)	(48.9)		

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Carbon Steel Spike in Normal-Weight Concrete^{1,2,3}

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Ultimate Load Capacities for Stainless Steel Spike in Normal-Weight Concrete^{1,2}

Anohor	Minimum	Minimum Concrete Compressive Strength (f ² c)								
Diameter d in. (mm)	Embedment	2,000 psi (13.8 MPa)		3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)		
	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
	7/8 (22.2)	490 (2.2)	920 (4.1)	560 (2.5)	1,155 (5.2)	660 (2.9)	1,220 (5.5)	690 (3.1)	1,290 (5.8)	
3/16 (4.8)	1 (25.4)	500 (2.3)	1,175 (5.3)	620 (2.8)	1,650 (7.4)	780 (3.5)	1,740 (7.8)	795 (3.5)	1,830 (8.2)	
	1-1/4 (31.8)	740 (3.3)	1,735 (7.8)	900 (4.0)	1,930 (8.7)	1,060 (4.7)	2,040 (9.2)	1,120 (5.0)	2,150 (9.7)	
1/4 (6.4)	1 (25.4)	620 (2.8)	1,565 (7.0)	775 (3.4)	1,845 (8.3)	835 (3.7)	2,095 (9.4)	885 (3.9)	2,250 (10.1)	
	1-1/4 (31.8)	795 (3.6)	1,765 (7.9)	1,080 (4.9)	1,965 (8.8)	1,175 (5.2)	2,145 (9.7)	1,280 (5.7)	2,325 (10.5)	
3/8 (9.5)	1-3/4 (44.5)	1,575 (7.1)	3,155 (14,2)	1,990 (9.0)	3,880 (17.5)	2,420 (10.9)	4,150 (18.7)	2,570 (11.6)	4,425 (19,9)	

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Stainless Steel Spike in Normal-Weight Concrete^{1,2,3}

Anchor	Minimum Concrete Compressive Strength (°c)								
Diameter d in. (mm)	Embedment	2,000 psi (13.8 MPa)		3,000 psi	(20.7 MPa)	4,000 psi	4,000 psi (27.6 MPa)		(34.5 MPa)
	Depth in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	7/8 (22.2)	125 (0.6)	230 (1.0)	140 (0.6)	290 (1.3)	165 (0.7)	305 (1.4)	170 (0.8)	325 (1.5)
3/16 (4.8)	1 (25.4)	125 (0.6)	295 (1.3)	155 (0.7)	415 (1.9)	195 (0.9)	435 (2.0)	200 (0.9)	460 (2.1)
	1-1/4 (31.8)	185 (0.8)	435 (2.0)	225 (1.0)	485 (2.2)	265 (1.2)	510 (2.3)	280 (1.7)	540 (2.4)
1/4 (6.4)	1 (25.4)	155 (0.7)	390 (1.8)	195 (0.9)	460 (2.1)	210 (0.9)	525 (2.4)	220 (1.0)	565 (2.5)
	1-1/4 (31.8)	200 (0.9)	440 (2.0)	270 (1.2)	490 (2.2)	295 (1.3)	535 (2.4)	320 (1.4)	580 (2.6)
3/8 (9.5)	1-3/4 (44.5)	395 (1.8)	790 (3.6)	500 (2.3)	970 (4.4)	605 (2.7)	1,040 (4.7)	645 (2.9)	1,105 (5.0)

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

AçD

MECHANICAL ANCHORS

SP

Ultimate Load Capacities for Carbon Steel Pipe Spike in Normal-Weight Concrete^{1,2}

Anchor		Minimum Embedment Depth in. (mm)	Minimum Concrete Compressive Strength (f'c)								
Diameter d in. (mm)	Drill Bit Diameter in.		2,000 psi (13.8 MPa)		3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)		
			Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
1/4 (6.4)	3/16	1-1/4 (31.8)	780 (3.5)	975 (4.4)	1,260 (5.7)	975 (4.4)	1,260 (5.7)	975 (4.4)	1,260 (5.7)	975 (4.4)	
3/8 (9.5)	1/4	1-3/4 (44.5)	1,100 (5.0)	1,815 (8.2)	1,660 (7.5)	2,020 (9.1)	2,000 (9.0)	2,100 (9.5)	2,000 (9.0)	2,180 (9.8)	

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Carbon Steel Pipe Spike in Normal-Weight Concrete^{1,2,3}

Anchor		Minimum			Minimu	m Concrete Con	npressive Stren	gth (f'c)		
Diameter	Drill Bit	Embedment	2,000 psi (13.8 MPa)		3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)	
a in. (mm)	Diameter in.	Depth in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4 (6.4)	3/16	1-1/4 (31.8)	195 (0.9)	245 (1.1)	315 (1.4)	245 (1.1)	315 (1.4)	245 (1.1)	315 (1.4)	245 (1.1)
3/8 (9.5)	1/4	1-3/4 (44.5)	275 (1.2)	455 (2.0)	415 (1.9)	505 (2.3)	500 (2.3)	525 (2.4)	500 (2.3)	545 (2.5)

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Ultimate Load Capacities for Carbon Steel Tie-Wire Spike in Normal-Weight Concrete^{1,2}

Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)								
Diameter	Embedment	3,000 psi (20.7 MPa)		4,000 psi ((27.6 MPa)	5,000 psi (34.5 MPa)				
a	Depth	Tension	Shear	Tension	Shear	Tension	Shear			
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.			
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)			
3/16	1-1/8	975	950	1,050	950	1,120	950			
(4.8)	(28.6)	(4.4)	(4.3)	(4.7)	(4.3)	(5.0)	(4.3)			
1/4	1-1/8	1,075	1,310	1,150	1,310	1,230	1,310			
(6.4)	(28.6)	(4.8)	(5.9)	(5.2)	(5.9)	(5.5)	(5.9)			

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Carbon Steel Tie-Wire Spike in Normal-Weight Concrete^{1,2,3}

Anchor	Minimum		Minimum Concrete Compressive Strength (f'c)								
Diameter	Embedment	3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi	5,000 psi (34.5 MPa)				
a in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)				
3/16 (4.8)	1-1/8 (28.6)	245 (1.1)	240 (1.1)	265 (1.2)	240 (1.1)	280 (1.3)	240 (1.1)				
1/4 (6.4)	1-1/8 (28.6)	270 (1.2)	330 (1.5)	290 (1.3)	330 (1.5)	310 (1.4)	330 (1.5)				

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

REV. A

TECHNICAL GUIDE - MECHANICAL ANCHORS ©2021 DEWALT

ASD

ASD

Ultimate Load Capacities for Carbon Steel Forming Spike in Normal-Weight Concrete^{1,2}

Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)									
Diameter	Embedment	2,000 psi (13.8 MPa)		3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)			
a in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)		
3/16 (4.8)	1-1/4 (31.8)	780 (3.5)	1,800 (8.1)	1,000 (4.5)	2,000 (9.0)	1,260 (5.7)	2,155 (9.7)	1,260 (5.7)	2,310 (10.4)		
1/4 (6.4)	1-1/4 (31.8)	830 (3.7)	1,815 (8.2)	1,200 (5.4)	2,020 (9.1)	1,410 (6.3)	2,220 (10.0)	1,410 (6.3)	2,585 (11.6)		

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Carbon Steel Forming Spike in Normal-Weight Concrete¹²³

Anchor	Minimum		Minimum Concrete Compressive Strength (f°c)										
Diameter	Embedment Depth in. (mm)	2,000 psi (13.8 MPa)		3,000 psi (20.7 MPa)		4,000 psi (27.6 MPa)		5,000 psi (34.5 MPa)					
d in. (mm)		Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)				
3/16 (4.8)	1-1/4 (31.8)	195 (0.9)	450 (2.0)	250 (1.1)	500 (2.3)	315 (1.4)	540 (2.4)	315 (1.4)	580 (2.6)				
1/4 (6.4)	1-1/4 (31.8)	210 (0.9)	455 (2.0)	300 (1.4)	505 (2.3)	355 (1.6)	555 (2.5)	355 (1.6)	645 (2.9)				

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Ultimate Load Capacities for Spike in Lightweight Concrete^{1,2,3}

Anchor	Minimum		Minimum Concrete Compressive Strength (f ² c)									
Diameter	Embedment	3,000 psi	(20.7 MPa)	4,000 psi	(27.6 MPa)	5,000 psi	5,000 psi (34.5 MPa)					
a in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)					
3/16	1-1/8	440	1,280	400	1,280	380	1,280					
(4.8)	(28.6)	(2.0)	(5.8)	(1.8)	(5.8)	(1.7)	(5.8)					
1/4	1-1/8	480	1,720	440	1,720	400	1,720					
(6.4)	(28.6)	(2.2)	(7.7)	(2.0)	(7.7)	(1.8)	(7.7)					
3/8	1-3/4	1,140	3,000	960	3,000	800	3,000					
(9.5)	(44.5)	(5.1)	(13.5)	(4.3)	(13.5)	(3.6)	(13.5)					
1/2	2-1/2	1,860	6,440	1,860	6,440	1,860	6,440					
(12.7)	(63.5)	(8.4)	(29.0)	(8.4)	(29.0)	(8.4)	(29.0)					

1. Tabulated load values are applicable to carbon and stainless steel anchors.

2. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

3. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Spike in Lightweight Concrete^{1,2,3,4}

Anchor	Minimum			Minimum Concrete Con	npressive Strength (f'c)		
Diameter	Embedment	3,000 psi	(20.7 MPa)	4,000 psi	(27.6 MPa)	5,000 psi ((34.5 MPa)
d	Depth	Tension	Shear	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
3/16	1-1/8	110	320	100	320	95	320
(4.8)	(28.6)	(0.5)	(1.4)	(0.5)	(1.4)	(0.4)	(1.4)
1/4	1-1/8	120	430	110	430	100	430
(6.4)	(28.6)	(0.5)	(1.9)	(0.5)	(1.9)	(0.5)	(1.9)
3/8	1-3/4	285	750	240	750	200	750
(9.5)	(44.5)	(1.3)	(3.4)	(1.1)	(3.4)	(0.9)	(3.4)
1/2	2-1/2	465	1,610	465	1,610	465	1,610
(12.7)	(63.5)	(2.1)	(7.2)	(2.1)	(7.2)	(2.1)	(7.2)

1. Tabulated load values are applicable to carbon and stainless steel anchors.

2. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Linear interpolation may be used to determine ultimate loads for intermediate compressive strengths.

4. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

Act

AşD

Ultimate and Allowable Load Capacities for Spike Anchors in Concrete Over Steel Deck^{1,2}

			ightweight Concrete Over Steel	Deck f'c ≥ 3,000 psi (20.7 MP	a)					
Anchor	Minimum		Minimum 1-1/2" Wide Deck, 20 Gage Minimum							
d	Depth	Ultima	ite Load	Allowable Load						
in.	in.	Tension	Shear	Tension	Shear					
(mm)	(mm)	lbs.	lbs.	lbs.	lbs.					
		(kN)	(kN)	(kN)	(kN)					
3/16	1-1/4	560	2,000	140	500					
(4.8)	(31.8)	(2.5)	(9.0)	(0.6)	(2.3)					
1/4	1-1/4	560	2,000	140	500					
(6.4)	(31.8)	(2.5)	(9.0)	(0.6)	(2.3)					
3/8	1-3/4	600	2,620	150	655					
(9.5)	(44.5)	(2.7)	(11.8)	(0.7)	(2.9)					
1/2	2-1/2	1,120	3,020	280	755					
(12.7)	(63.5)	(5.0)	(13.6)	(1.3)	(3.4)					

1. Tabulated load values are for carbon steel and stainless steel anchors installed in sand-lightweight concrete over steel deck. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using a safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Spacing distances shall be in accordance with the spacing table for lightweight concrete.

4. Anchors are permitted to be installed in the lower or upper flute of the steel deck provided the proper installation procedures are maintained. Minimum flute edge distance is 7/8-inch.

Ultimate and Allowable Load Capacities for Spike in Grouted Concrete Masonry^{1,2,3,4}

					f′m ≥ 1,500 p	si (10.4 MPa)			
Anchor	Minimum				Minimum 6 ¹	" Wide CMU			
Diameter	Embedment Depth in. (mm)		Ultimat	e Load	Allowable Load				
d		Carbon Steel Spike		Stainless Steel Spike		Carbon Steel Spike		Stainless Steel Spike	
in. (mm)		Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
	7/8	280	540	280	540	55	110	55	110
	(22.2)	(1.3)	(2.4)	(1.3)	(2.4)	(0.2)	(0.5)	(0.2)	(0.5)
3/16	1	410	590	310	590	80	120	60	120
(4.8)	(25.4)	(1.8)	(2.7)	(1.4)	(2.7)	(0.4)	(0.5)	(0.3)	(0.5)
	1-1/4	740	1,090	730	1,980	150	420	145	395
	(31.8)	(3.3)	(4.9)	(3.3)	(8.9)	(0.7)	(1.9)	(0.7)	(1.8)
	1	670	1,840	645	1,620	135	370	130	325
1/4	(25.4)	(3.0)	(8.3)	(2.9)	(7.3)	(0.6)	(1.7)	(0.6)	(1.5)
(6.4)	1-1/4	800	2,100	770	1,890	160	420	155	380
	(31.8)	(3.6)	(9.5)	(3.5)	(8.5)	(0.7)	(1.9)	(0.7)	(1.7)

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry cells may be grouted. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi)

2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

3. Linear interpolation may be used to determine allowable load capacities for intermediate embedments.

4. The tabulated values are for anchors installed at a minimum spacing and edge distance of 16 anchor diameters.

DESIGN CRITERIA

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{\mathbf{Nu}}{\mathbf{Nn}}\right) + \left(\frac{\mathbf{Vu}}{\mathbf{Vn}}\right)$$

 $\begin{array}{lll} \mbox{Where:} & \mbox{N_u} = \mbox{Applied Service Tension Load} \\ \mbox{N_n} = \mbox{Allowable Tension Load} \\ \end{array}$

 $\begin{array}{l} V_u = \text{Applied Service Shear Load} \\ V_n = \text{Allowable Shear Load} \end{array}$

LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES

≤ 1

Anchor Installed in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$s_{\text{cr}}=2.0h_{\text{v}}$	$F_{NS} = F_{VS} = 1.0$	$S_{min} = h_{v}$	$F_{NS} = F_{VS} = 0.50$
Edge Distance (a)	Tension	$c_{cr} = 14d$	$F_{NC} = 1.0$	$c_{min} = 5d$	$F_{\text{NC}} = 0.80$
Euge Distance (c)	Shear	c _{cr} = 14d	Fvc = 1.0	Cmin = 5d	Fvc = 0.50

Anchor Installed in Lightweight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	$S_{cr} = 3.0 h_{v}$	$F_{NS} = F_{VS} = 1.0$	$S_{min} = 1.5 h_{V}$	Fns = Fvs =0.50
Edge Distance (a)	Tension	$c_{cr} = 14d$	Fnc = 1.0	$C_{min} = 7d$	Fnc = 0.80
Euge Distance (c)	Shear	$c_{cr} = 14d$	F _{vc} = 1.0	$c_{min} = 7d$	$F_{VC} = 0.50$

 Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

Spacing, Tension (F_{NS}) & Shear (F_{VS})

Dia.	(in.)	_	3/16			1/4		3/8	1/2
h v (in.)	7/8	1	1-1/4	7/8	1	1-1/4	2-1/2	2-3/4
Scr ((in.)	1-3/4	2	2-1/2	1-3/4	2	2-1/2	5	5-1/2
Smin	(in.)	7/8	1	1-1/4	7/8	1	1-1/4	2-1/2	2-3/4
	7/8	0.50	-	-	0.50	-	-	-	-
	1	0.57	0.50	-	0.57	0.50	-	-	-
	1-1/4	0.71	0.63	0.50	0.71	0.63	0.50	-	-
	1-1/2	0.86	0.75	0.60	0.86	0.75	0.60	-	-
hes	1-3/4	1.00	0.88	0.70	1.00	0.88	0.70	-	-
(inc	2	1.00	1.00	0.80	1.00	1.00	0.80	-	-
ince	2-1/2	1.00	1.00	1.00	1.00	1.00	1.00	0.50	-
lista	2-3/4	1.00	1.00	1.00	1.00	1.00	1.00	0.55	0.50
-	3	1.00	1.00	1.00	1.00	1.00	1.00	0.60	0.55
	4	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.73
	5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91
	5-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension and shear, the critical spacing ($s_{\rm er}$) is equal to 2 embedment depths (2h_v) at which the anchor achieves 100% of load.

Minimum spacing (s_{min}) is equal to 1 embedment depth (h_v) at which the anchor achieves 50% of load.

Edge Distance, Tension (F_{NC})

Dia.	(in.)	3/16	1/4	3/8	1/2
Ccr ((in.)	2-5/8	3-1/2	5-1/4	7
Cmin (in.)		1	1-1/4	1-7/8	2-1/2
	1	0.50	-	-	-
	1-1/4	0.59	0.50	-	-
	1-7/8	0.78	0.64	0.50	-
	2	0.81	0.67	0.52	-
(Se	2-1/2	0.96	0.78	0.59	0.50
nche	2-5/8	1.00	0.81	0.61	0.51
ce (i	3	1.00	0.89	0.67	0.56
stan	3-1/2	1.00	1.00	0.74	0.61
Dis	4	1.00	1.00	0.81	0.67
	5	1.00	1.00	0.96	0.78
	5-1/4	1.00	1.00	1.00	0.81
	6	1.00	1.00	1.00	0.89
	7	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 5 anchor diameters (5d) at which the anchor achieves 50% of load.

Edge Distance, Shear (Fvc)

Dia.	(in.)	3/16	1/4	3/8	1/2			
Ccr	(in.)	2-5/8	3-1/2	5-1/4	7			
Cmin	(in.)	1	1-1/4	1-7/8	2-1/2			
	1	0.25	-	-	-			
	1-1/4	0.39	0.25	-	-			
	1-7/8	0.67	0.46	0.25	-			
	2	0.72	0.50	0.28	-			
(sc	2-1/2	0.94	0.67	0.39	0.25			
liche	2-5/8	1.00	0.71	0.42	0.27			
e (j	3	1.00	0.83	0.50	0.33			
tano	3-1/2	1.00	1.00	0.61	0.42			
Dis	4	1.00	1.00	0.72	0.50			
	5	1.00	1.00	0.94	0.67			
	5-1/4	1.00	1.00	1.00	0.71			
	6	1.00	1.00	1.00	0.83			
	7	1.00	1.00	1.00	1.00			

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 5 anchor diameters (5d) at which the anchor achieves 25% of load.

AECHANICAL ANCHORS

TECHNICAL GUIDE - MECHANICAL ANCHORS © 2021 DEWALT - REV. A

LOAD ADJUSTMENT FACTORS FOR LIGHTWEIGHT CONCRETE

Spacing, Tension (F_{NS}) & Shear (F_{VS})

_									
Dia.	(in.)		3/16			1/4		3/8	1/2
h v (in.)	7/8	1	1-1/4	7/8	1	1-1/4	2-1/2	2-3/4
Scr ((in.)	2-5/8	3	3-3/4	2-5/8	3	3-3/4	7-1/2	8-1/4
Smin	(in.)	1-3/8	1-1/2	1-7/8	1-3/8	1-1/2	1-7/8	3-3/4	4-1/8
	1-3/8	0.50	-	-	0.50	-	-	-	-
	1-1/2	0.57	0.50	-	0.57	0.50	-	-	-
	1-7/8	0.71	0.63	0.50	0.71	0.63	0.50	-	-
	1-1/2	0.57	0.50	0.40	0.57	0.50	0.40	-	-
	2-5/8	1.00	0.88	0.70	1.00	0.88	0.70	-	-
(hes)	3	1.00	1.00	0.80	1.00	1.00	0.80	-	-
(inc	3-3/4	1.00	1.00	1.00	1.00	1.00	1.00	0.50	-
Ince	4	1.00	1.00	1.00	1.00	1.00	1.00	0.53	-
lista	4-1/8	1.00	1.00	1.00	1.00	1.00	1.00	0.55	0.50
-	5	1.00	1.00	1.00	1.00	1.00	1.00	0.67	0.61
	6	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.73
	7	1.00	1.00	1.00	1.00	1.00	1.00	0.93	0.85
	7-1/2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91
	8-1/4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension and shear, the critical spacing (s_{cr}) is equal to 3 embedment depths (3h_v) at which the anchor achieves 100% of load.

Minimum spacing (s_{min}) is equal to 1.5 embedment depth (1.5h,) at which the anchor achieves 50% of load.

Edge Distance, Tension (F_{NC})

Dia.	(in.)	3/16	1/4	3/8	1/2
Ccr ((in.)	2-5/8	3-1/2	5-1/4	7
Cmin (in.)		1-3/8	1-3/4	2-5/8	3-1/2
	1-3/8	0.50	-	-	-
	1-3/4	0.67	0.50	-	-
	2	0.76	0.57	-	-
(Sé	2-5/8	1.00	0.75	0.50	-
nche	3	1.00	0.86	0.57	-
ce (i	3-1/2	1.00	1.00	0.67	0.50
tan	4	1.00	1.00	0.76	0.57
Dis	5	1.00	1.00	0.95	0.71
	5-1/4	1.00	1.00	1.00	0.75
	6	1.00	1.00	1.00	0.86
	7	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension, the critical edge distance $(c_{\rm cr})$ is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 7 anchor diameters (7d) at which the anchor achieves 50% of load.

Edge Distance, Shear (Fvc)

Dia.	(in.)	3/16	1/4	3/8	1/2
Ccr ((in.)	2-5/8	3-1/2	5-1/4	7
Cmin	(in.)	1-3/8	1-3/4	2-5/8	3-1/2
	1-3/8	0.40	-	-	-
	1-3/4	0.60	0.40	-	-
	2	0.71	0.49	-	-
(Si	2-5/8	1.00	0.70	0.40	-
liche	3	1.00	0.83	0.49	-
ce (i	3-1/2	1.00	1.00	0.60	0.40
tanc	4	1.00	1.00	0.71	0.49
Dis	5	1.00	1.00	0.94	0.66
	5-1/4	1.00	1.00	1.00	0.70
	6	1.00	1.00	1.00	0.83
	7	1.00	1.00	1.00	1.00

Notes: For anchors loaded in shear, the critical edge distance ($c_{\rm cr}$) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 7 anchor diameters (7d) at which the anchor achieves 40% of load.

SPIKE® Pin Anchor

- REV. A

Mushroom Head Spike (Tamperproof)

Carbon Steel Cat. No.	Stainless Steel Cat. No.	Anchor Size	Drill Diameter	Min. Embed.	Std. Box	Std. Carton	Wt./100
5502	6602	3/16" x 1"	3/16"	7/8"	100	1,000	1-1/4
5503	6603	3/16" x 1-1/4"	3/16"	7/8"	100	1,000	1-1/2
5504	6604	3/16" x 1-1/2"	3/16"	1-1/4"	100	1,000	1-3/4
5506	6606	3/16" x 2"	3/16"	1-1/4"	100	1,000	2
5508	-	3/16" x 2-1/2"	3/16"	1-1/4"	100	600	2
5510	-	3/16" x 3"	3/16"	1-1/4"	100	600	2-1/2
5511	-	3/16" x 3-1/2"	3/16"	1-1/4"	100	600	3-1/2
5512	-	3/16" x 4"	3/16"	1-1/4"	100	600	4
5522	-	1/4" x 1"	1/4"	7/8"	100	1,000	1-1/2
5523	6623	1/4" x 1-1/4"	1/4"	1"	100	1,000	2-1/4
5524	6624	1/4" x 1-1/2"	1/4"	1-1/4"	100	1,000	2-1/2
5526	6626	1/4" x 2"	1/4"	1-1/4"	100	600	3
5528	6628	1/4" x 2-1/2"	1/4"	1-1/4"	100	600	4
5530	6630	1/4" x 3"	1/4"	1-1/4"	100	600	4-1/2
5531	-	1/4" x 3-1/2"	1/4"	1-1/4"	100	600	4-1/2
5532	-	1/4" x 4"	1/4"	1-1/4"	100	600	5-1/2
5546	6646	3/8" x 2"	3/8"	1-3/4"	25	250	7-1/2
5548	6648	3/8" x 2-1/2"	3/8"	1-3/4"	25	150	9
5550	6650	3/8" x 3"	3/8"	1-3/4"	25	150	10
5551	-	3/8" x 3-1/2"	3/8"	1-3/4"	25	150	11
5552	-	3/8" x 4"	3/8"	1-3/4"	25	150	11
5554	-	3/8" x 5"	3/8"	1-3/4"	25	150	11
5556	-	3/8" x 6"	3/8"	1-3/4"	25	125	11
5569	-	1/2" x 2-3/4"	1/2"	2-1/2"	50	200	13
5571	-	1/2" x 3-1/2"	1/2"	2-1/2"	50	150	13
5572	-	1/2" x 4"	1/2"	2-1/2"	25	125	13
5574	-	1/2" x 5"	1/2"	2-1/2"	25	125	13
5577	-	1/2" x 6-1/2"	1/2"	2-1/2"	25	100	13
The publishe	d length is mea	sured from below the head t	o the end of the	anchor.			

Cat. No.	Anchor Size	Drill Diameter	Min. Embed.	Std. Box	Std. Carton	Wt./100
5608	3/16"x 2-1/2"	3/16"	1-1/4"	100	600	2
5610	3/16" x 3"	3/16"	1-1/4"	100	600	2-1/2
5612	3/16" x 4"	3/16"	1-1/4"	100	600	4
5624	1/4" x 1-1/2"	1/4"	1-1/4"	100	1,000	2-1/2
5626	1/4" x 2"	1/4"	1-1/4"	100	600	3
5628	1/4" x 2-1/2"	1/4"	1-1/4"	100	600	3-3/4
5630	1/4" x 3"	1/4"	1-1/4"	100	600	4-1/2
5631	1/4" x 3-1/2"	1/4"	1-1/4"	100	600	5
5632	1/4" x 4"	1/4"	1-1/4"	100	500	5-3/4
The published	d length is the overall ler	ngth of the anchor.				

Pipe Spike

Cat.No.	Anchor Size	Drill Diameter	Min. Embed.	Std. Box	Std. Carton	Wt./100
3755	1/4"	3/16"	1-1/4"	100	600	4
3758	3/8"	1/4"	1-3/4"	50	300	6
Designed for rod	hanging.					

Tie-Wire Spike

Catalog Number	Anchor Size	Drill Diameter	Minimum Embed.	Tie Wire Hole Size	Standard Box	Standard Carton	Wt./100
3756	3/16"	3/16"	1-1/8"	3/16"	100	600	2
3759	1/4"	1/4"	1-1/8"	9/32"	100	600	2-1/2
Designed for s	uspended ceilings	3.					

Forming Spike

Cat. No.	Anchor Size	Drill Diameter	Min. Embed.	Std. Box	Std. Carton	Wt./100		
3795	3/16" x 1-1/2"	3/16"	1-1/4"	100	600	2-1/2		
3796	3/16" x 2"	3/16"	1-1/4"	100	600	3		
3797	3/16" x 2-3/4"	3/16"	1-1/4"	100	600	4		
3794 1/4" x 2-3/4" 1/4" 1-1/4" 100 500 5								
Designed for con	crete forming. The publis	shed length is measured	from below the heat	ad to the end of t	he anchor.			

ORDERING INFORMATION

DEWALT

ENGINEERED BY POWERS

100	000	2	
100	600	2-1/2	
100	600	4	
100	1,000	2-1/2	
100	600	3]
100	600	3-3/4	
100	600	4-1/2	
100	600	5	
100	500	5-3/4	
			1
			-
			-
Std. Box	Std. Carton	Wt./100	
100	600	4	
50	300	6	
			-
			_
Standard	Standard		

ORDERING INFORMATION

TECHNICAL GUIDE - MECHANICAL ANCHORS ©2021 DEWALT - REV. A