- Low clean pressure drop for energy savings
- Aerodynamic vertical supports minimize air entry turbulence
- May be operated from 0 to 750 FPM face velocity in either airflow direction
- Moisture-resistant for humid air applications

Physical Data

Media: Moisture-resistant microfine fiberglass
Filter Pack: Mini-pleat panels
Media Support: Adhesive
Top \& Bottom Panels: Flameretardant plastic
Vertical Supports: Aerodynamic extruded vertical supports
Operating Limits: $160^{\circ} \mathrm{F}\left(71^{\circ} \mathrm{C}\right)$
\& 100\% RH continuous duty
Actual Header Size: Nominal size less 5/8" (e.g. a nominal 24" x 24 " filter is actually $233 / 8^{\prime \prime} \times 233 / 8^{\prime \prime}$)

SuperFlow V extended surface area and low pressure drop mini-pleat filters are designed for use in most commercial and industrial HVAC systems where high efficiency filtration is required. SuperFlow V filters are available in MERV 15 and MERV 14 efficiencies. They may be operated at face velocities from 0-750 FPM.

Construction

SuperFlow \vee filters are constructed of multiple mini-pleat panels bonded to flame-retardant plastic panels on top and bottom to make an unusually strong assembly that is both corrosion and moisture resistant. Aerodynamic extruded vertical supports minimize air entry turbulence. SuperFlow \vee filters are totally rigid, making them ideal for variable air volume (VAV) systems, as well as applications downstream of supply fans.

Low Pressure Drop

SuperFlow \vee mini-pleat filters have an exceptionally low clean pressure drop. Lower pressure drop means less energy is necessary to move air throughout the system, lowering utility costs and allowing high efficiency filters to be added to systems with reduced fan capacity.
Along with lowering clean pressure drop, the additional media area achieved by this filter's V-bank design also increases its atmospheric dust-holding capacity (DHC). Higher DHC means that, over the course of its useful life, the SuperFlow \checkmark filter will see smaller increases in pressure drop than a traditional box-style filter under similar conditions, for added energy savings and lower overall cost of ownership.

Installation Considerations

SuperFlow V filters may be installed in AAF holding frames or side access housings. Holding frames are riveted together to form a filter bank.
Smaller systems and systems with minimum upstream access space are best served using side access housings.
SuperFlow \vee filters are furnished with a peripheral header on the air entering side.

SuperFlow ${ }^{*}$ V Filter

Product Information - Standard Sizes \& Performance Data

Efficiency	Model Number	Nominal Size (inches) (WxHxD)	250 FPM		375 FPM		500 FPM		625 FPM	
			CFM	PD	CFM	PD	CFM	PD	CFM	PD
MERV 15	3161007-003	$24 \times 24 \times 12$	1000	0.18	1500	0.28	2000	0.41	2500	0.54
MERV 15	3161007-001	$24 \times 12 \times 12$	500	0.18	750	0.28	1000	0.41	1250	0.54
MERV 14	3161007-006	$24 \times 24 \times 12$	1000	0.12	1500	0.23	2000	0.34	2000	0.49
MERV 14	3161007-004	$24 \times 12 \times 12$	500	0.12	750	0.23	1000	0.34	1250	0.49

Performance Data

Initial Resistance vs. Filter Face Velocity

Tested in accordance with ASHRAE Standard 52.2.

All performance data based on ASHRAE Standard 52.2. Performance tolerance conforms to Section 6.4 of ANSI/AHRI Standard 850-2013.
SuperFlow $®$ is a registered trademark of AAF International in the U.S.

