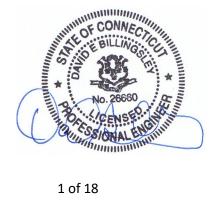


ENGINEERING REPORT PREPARED FOR

Barrette Outdoor Living

2401 Corporate Boulevard, Brooksville, FL 34604


CALCULATIONS FOR FULL AND HALF PRIVACY RAILING WITH PLATED POSTS-SCREWBOSS **IBC 2015 AND IRC 2015**

Protessional Certification. I hereby certify that these documents were prepared or approved billine, and that I am a duly licensed professional enginee under the laws of the State of Maryland.

David E. Billingsley, PE

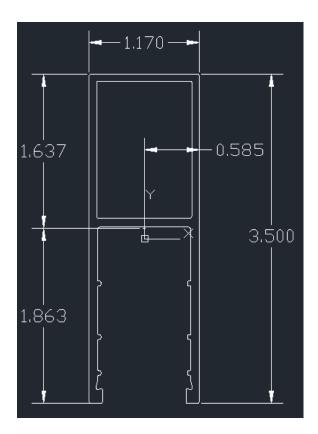
I. <u>INTRODUCTION.</u>

- THE PURPOSE OF THIS REPORT IS TO EVALUATE HALF PRIVACY AND FULL PRIVACY PANEL FOR WIND RESILIENCE AND RAILING LOADS
- EVALUATION WILL BE LIMITED TO 42" MAX. HIGH FOR HALF PRIVACY AND TO 72" MAX. HIGH FOR FULL PRIVACY
- EVALUATION WILL BE LIMITED TO 72" MAX. WIDTH FOR HALF PRIVACY AND TO 72" MAX. WIDTH FOR FULL PRIVACY
- POST AND RAILS WILL BE EVALUATED BASED ON THEIR RESILIENCE TO BENDING MOMENT
- MATERIAL:

6005-T5 – POSTS, RAILS & PLATES (F_{ty} = 34.8 ksi) PVC– INFILL SLATS (Fty = 6.2 ksi)

- POSTS WILL BE PLATED ON THE GROUND LEVEL ON CONCRETE OR DECK
- SEE PAGES 16 THROUGH 18 FOR REQUIRED POST SPACING
- CONNECTION AND DESIGN OF CONNECTION OF PRIVACY PANEL TO SUPPORTING STRUCTURE BY OTHERS

FOR APPLICATION EXPOSED TO THE WIND:


- RISK CATEGORY STRUCTURE II
- EXPOSURE B,C&D ANALIZED (SEE TABLE p.16-18)
- HEIGHT LESS THAN 15FT ABOVE GROUND
- THE WIND DESIGN FOR SOLID SIGNS PERFORMEND
- WIND SPEED :

ASCE 7-10 MAP - 115MPH TO 140MPH FOR VIRGINIA, MARYLAND, PENNSYLVANIA, CONNECTICUT & MASSACHUSSETTS.

II. <u>GEOMETRIC PROPERTIES OF RAILS, POSTS & INFILLS</u>

> Section properties of the selected face of TOP RAIL **EPN-0559**

🕖 Sec	tion Properties					
۵	Face<1>		Options Recalculate			
	Report coordinate values rela	ative to: default	•	ſ		1
	Section properties of the sel	ected face of EPN-0559				L
	Area = 0.7939 inches^2					L
	Centroid relative to output o X = 0.0000 Y = 0.1128 Z = 27.0000	oordinate system origin: (ii	nches)			L
	Moments of inertia of the ar Lxx = 0.8856 Lyx = 0.0000 Lzx = 0.0000	rea, at the centroid: (inches Lxy = 0.0000 Lyy = 0.1960 Lzy = 0.0000	^ 4) Lxz = 0.0000 Lyz = 0.0000 Lzz = 1.0817	H	hy	ł
	Polar moment of inertia of th	he area, at the centroid = 1.	0817 inches ^ 4			
	Angle between principal axe	s and part axes = 90.0000 d	legrees			E.
	Principal moments of inertia Ix = 0.1960 Iy = 0.8856	of the area, at the centroid	: (inches ^ 4)			1
	Moments of inertia of the ar LXX = 579.6688 LYX = 0.0000 LZX = 0.0000	rea, at the output coordinat LXY = 0.0000 LYY = 578.3691 LZY = 2.4171	e system: (inches ^ 4) LXZ = 0.0000 LYZ = 2.4171 LZZ = 1.0918	ł		
	Help	Print	Copy to Clipboard			

Section Modulus:

 $Sx = Ix/Cx = 0.1960/(0.585) = 0.335 \text{ in}^3$ $Sy = Iy/Cy = 0.8856/(1.863) = 0.475 \text{ in}^3$

Section Properties Face<1> Options... Recalculate Report coordinate values relative to: -- default --• Section properties of the selected face of EPN-0670 Area = 0.819 inches^2 Centroid relative to output coordinate system origin: (inches) X=0.000 Y=0.000 Z=12.000
 Moments of inertia of the area, at the centroid: (inches ^ 4)

 Lox = 0.724
 Loy = 0.000
 Lox = 0.000

 Lyx = 0.000
 Lyy = 0.022
 Lyz = 0.000

 Lox = 0.000
 Loy = 0.000
 Loy = 0.000

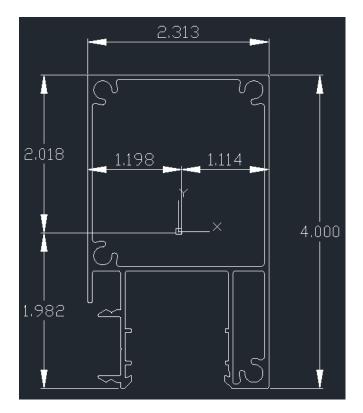
 Lox = 0.000
 Loy = 0.000
 Loy = 0.000
 be Polar moment of inertia of the area, at the centroid = 0.926 inches ^ 4 Angle between principal axes and part axes = 89.996 degrees Principal moments of inertia of the area, at the centroid: (inches ^ 4) fx = 0.202 fy = 0.724
 Moments of inertia of the area, at the output coordinate system: (inches ^ 4)

 LXX = 118.639
 LXY = 0.000
 LXZ = 0.000

 LXX = 0.000
 LYY = 118.117
 LYZ = 0.001

 LXX = 0.000
 LYY = 0.001
 LZZ = 0.026
 Print... Copy to Clipboard Help

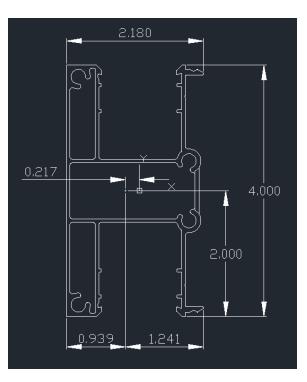
> Section properties of the selected face of MID RAIL **EPN-0670**



Section Modulus:

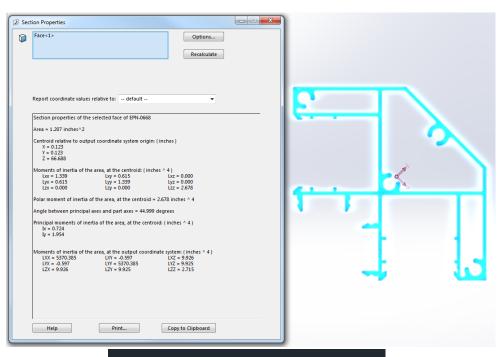
Sx = lx/Cx = 0.2020/(0.585) = 0.345 in³ Sy = ly/Cy = 0.724/(1.750) = 0.414 in³

Section Properties Face<1> Options... Recalculate Report coordinate values relative to: -- default --Section properties of the selected face of EPN-0667 Area = 1.039 inches^2 Centroid relative to output coordinate system origin: (inches) X=0.042 Y=-0.018 Z=71.688ا ا olar moment of inertia of the area, at the centroid = 2.761 inches ^ 4 angle between principal axes and part axes = 97.138 degrees r incipal moments of inertia of the area, at the centroid: (inches \wedge 4) $I_X=0.854$ $I_Y=1.906$ Print... Copy to Clipboard Help



Section Modulus:

Sx = Ix/Cx = 0.854/(1.198) = 0.713 in³ Sy = Iy/Cy = 1.906/(2.18) = 0.874 in³

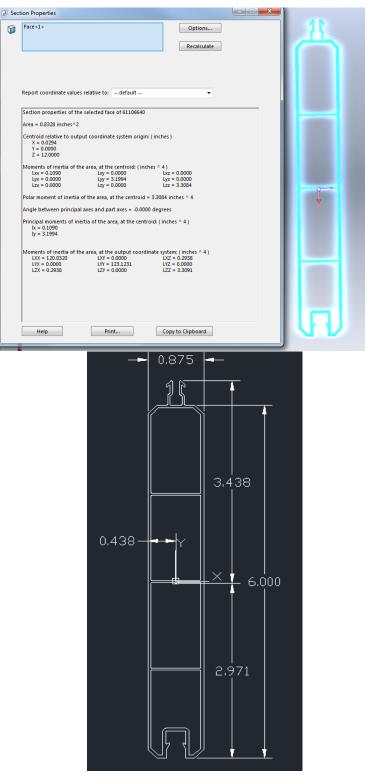

> Section properties of the selected face of LINE POST **EPN-0669**

1	Sec	tion Properties				
L C	Sec	Face <1> Face <1< Face <1 F	elected face of EPN-0669 t coordinate system origi area, at the centroid: { in by = 0.000 tyy = 0.713 by = 0.713 by = 0.000 the area, at the centroid	n: (inches) ches ^ 4) izz = 0.000 izz = 0.000 izz = 2.373 l= 2.373 inches ^ 4	Î	→
		Principal moments of inert k = 0.713 y = 1.660 Moments of inertia of the LXX = 0.000 LXX = 0.000 LZX = 0.000 Help		troid: (inches ^ 4) dinate system: (inches ^ 4) LVZ = 0.000 LVZ = 0.000 LZZ = 2.424 Copy to Clipboard	2	



Section Modulus:

 $\begin{aligned} Sx &= Ix/Cx = 0.713/ \ (1.241) = 0.575 \ in^3 \\ Sy &= Iy/Cy = 1.660/ \ (2.000) = 0.830 \ in^3 \end{aligned}$


Section properties of the selected face of CORNER POST EPN-0668

Section Modulus-based on principal Moment of Inertia: $Sx = Ix/Cx = 0.724/(1.619) = 0.447 \text{ in}^3$ $Sy = Iy/Cy = 1.954/(2.39) = 0.818 \text{ in}^3$

Section Modulus- Moment of the Inertia at the centroid parallel to coordinate system:

Sx = lx/Cx = 1.339/ (1.819) = 0.736 in³ Sy = ly/Cy = 1.339/ (1.819) = 0.736 in³ > Section properties of the selected face of HORIZONTAL INFILL 61106640

Section Modulus:

Sx = lx/Cx = 0.1090/ (0.438) = 0.249 in³ Sy = ly/Cy = 3.1994/ (3.438) = 0.931 in³

III. RESISTING MOMENT CALCULATION RAILS, POSTS & INFILLS

Elastic modulus

 $S = I/y (in^{3})$

- S Elastic modulus
- y Distance from the neutral axis

Resisting Moment (yield Moment)

 $M = S^*\sigma$ (kip-in)

- S Elastic modulus
- σ Yield strength
 - TOP RAIL EPN-0559

 S_x = I_x / C_x = 0.1960 in 4 / 0.585 in = 0.335 in 3

 $S_y = I_y / C_y = 0.8856 \text{ in}^4 / 1.863 \text{ in} = 0.475 \text{ in}^3$

M_x = 34.8 ksi * 0.335 in³ = 11.66 kip-in = 972 lb-ft

M_y = 34.8 ksi * 0.475 in³ = 16.53 kip-in = 1378 lb-ft

For 200lbs point load applied horizontally:

M=PL/4 = (200lb*68in/12)/4=283lb-ft

M_x/M=SF

972 lb-ft/283lb-ft=<mark>3.43</mark>>1.67 design OK

For 50lbs distributed load applied horizontally:

 $M=wl^2/8 = (50lb^*(68in/12)^2)/8=201lb-ft$

M_x/M=SF

972 lb-ft/201lb-ft=4.83>1.67 design OK

MID RAIL EPN-0670

 $S_x = I_x / C_x = 0.2020 \text{ in}^4 / 0.585 \text{ in} = 0.345 \text{ in}^3$ $S_y = I_y / C_y = 0.724 \text{ in}^4 / 1.750 \text{ in} = 0.414 \text{ in}^3$

M_x = 34.8 ksi * 0.345 in³ = 12.01 kip-in = 1001 lb-ft

M_y = 34.8 ksi * 0.414 in³ = 14.41 kip-in = 1201 lb-ft

For 200lbs point load applied horizontally:

M=PL/4 = (200lb*68in/12)/4=283lb-ft

M_x/M=SF

1001 lb-ft/283lb-ft=3.53>1.67 design OK

For 50lbs distributed load applied horizontally:

M=wl²/8 = (50lb*(68in/12)²)/8=201lb-ft

M_x/M=SF

1001 lb-ft/201lb-ft=<mark>4.98</mark>>1.67 design OK

END POST EPN-0667

 $S_x = I_x / C_x = 0.854 \text{ in}^4 / 1.198 \text{ in} = 0.713 \text{ in}^3$

 $S_y = I_y / C_y = 1.906 \text{ in}^4 / 2.180 \text{ in} = 0.874 \text{ in}^3$

M_x = 34.8 ksi * 0.713 in³ = 24.81 kip-in = 2068 lb-ft

 $M_y = 34.8 \text{ ksi} * 0.874 \text{ in}^3 = 30.42 \text{ kip-in} = 2535 \text{ lb-ft}$

LINE POST EPN-0669

<u>The line post is the worst case scenario (corner and ends posts will sustain loads if line post does)</u>

This calculation is for post fixed at the bottom (core drill or concrete footing)

 $S_x = I_x / C_x = 0.713 \text{ in}^4 / 1.241 \text{ in} = 0.575 \text{ in}^3$

 $S_y = I_y / C_y = 1.660 \text{ in}^4 / 2.000 \text{ in} = 0.830 \text{ in}^3$

M_x = 34.8 ksi * 0.575 in³ = 20.01 kip-in = 1668 lb-ft

M_v = 34.8 ksi * 0.830 in³ = 28.88 kip-in = 2407 lb-ft

For 300lbs point load applied horizontally at 3.5ft above ground (6FT WIDE PANEL):

M=P*L = 300lb*3.5ft=1050lb-ft

M_x/M=SF

1668 lb-ft/1050lb-ft=1.59 design OK (1.50-1.75) yielding

For 30lbs/sf wind load – 90plf:

 $M=wl^2/3 = (180lb^*(3.5ft)^2)/3=735lb-ft$

M_x/M=SF

1668 lb-ft/735lb-ft=2.27>1.67 design OK

CORNER POST EPN-0669

 $S_x = I_x / C_x = 1.339 \text{ in}^4 / 1.819 \text{ in} = 0.736 \text{ in}^3$ $S_y = I_y / C_y = 1.339 \text{ in}^4 / 1.819 \text{ in} = 0.736 \text{ in}^3$

M_x = 34.8 ksi * 0.736 in³ = 25.61 kip-in = 2134 lb-ft

M_y = 34.8 ksi * 0.736 in³ = 25.61 kip-in = 2134 lb-ft

HORIZONTAL INFILL 61106640

 $S_x = I_x / C_x = 0.1090 \text{ in}^4 / 0.438 \text{ in} = 0.249 \text{ in}^3$

 $S_y = I_y / C_y = 3.1994 \text{ in}^4 / 3.438 \text{ in} = 0.931 \text{ in}^3$

M_x = 6.2 ksi * 0.249 in³ = 1.5438 kip-in = 128.7 lb-ft

M_y = 6.2 ksi * 0.931 in³ = 5.7722 kip-in = 481 lb-ft

For 50lbs distributed load applied horizontally at the middle (slat is 6" wide):

M=PL/4= (25lb*(68in/12)²)/8=37.5lb-ft

M_x/M=SF

128.7 lb-ft/37.5lb-ft=3.43 > 1.67 design OK

IV. <u>Result from testing – POST-PLATE connection</u>

First Setup:

Mixed material corner post point loaded @ 42" using newly designed 3/8" plate w/current mounting hardware. Loaded to 463lbf when the front two mounting screw threads pulled out of post.

Second Setup:

Mixed material corner post point loaded @ 42" using newly designed 3/8" plate w/ current mounting hardware. Loaded to 462lbf when the front two mounting screw threads pulled out of post.

Third Setup:

Mixed material end post point loaded @ 42" using newly designed 3/8" plate w/ current mounting hardware. Loaded to 544lbf when the front two mounting screw heads broke.

Forth Setup:

Mixed material end post point loaded @ 42" using newly designed 3/8" plate w/ current mounting hardware. Loaded to 526lbf when the front two mounting screw threads pulled out of post.

The corner post will be omitted in the calculations since is braced in four directions!

V. <u>WIND CALCULATION</u>

115MPH wind

• 6ft (68in o.c. posts) wide by 3.5ft high

/ (WIND SPEED)	115.00 (MPH)	
Kz (see table 29.3-1)	0.85	
Kd (DIR. FCTR)	0.85	
(EXPOSURE CAT.)	С	
Kzt (TOPO. FCTR)	1.00	
G (GUST EFCT FCTR)	0.85	
E (RATIO OF SOLID TO GROSS AREA)	1.00	
Cf (see fig 29.4-1)	1.45	
qz (VELOCITY P.) (LB/FT²)	24.46	
F (DESIGN WIND FORCE) (LB)	598.29	
L (LENGTH BETWEEN CL OF POST)	5.67 (FT)	
H (HEIGHT OF FENCE FROM GROUND)	3.50 (FT)	
Af (SOLID AREA NORMAL TO WIND)	19.85 (FT ²)	
A (GROSS AREA)	19.85 (FT ²)	
DESIGN WIND FORCE	30.15 (LB/FT ²	,
SHEER FORCE CENTER POST	598.29 (LB))
SHEER FORCE END POST	299.14 (LB)	
MOMENT AT CENTER POST BASE (FREE TO ROTATE)	1047.01 (FT*LB)	12564.08 (IN*LB)
MOMENT AT END POST BASE (FREE TO ROTATE)	523.50 (FT*LB)	. ,
MOMENT AT CENTER POST BASE (NO ROTATION)	698.00 (FT*LB)	· · ·
MOMENT AT END POST BASE (NO ROTATION)	, 349.00 (FT*LB)	. ,
· · · · · · · · · · · · · · · · · · ·	149.57 (LB)	. ,

The maximum allowable Moment at the bottom of the line post:

 $M_1=P*L=((544+526)/2)*3.5ft = 1872.5lb-ft$

From above table, the Moment is M₂=698 lb-ft

 $M_1/M_2 = SF$

1872.5lb-ft /698 lb-ft = 2.68 >1.67 design OK

211 Tom while (extra post added on stand				
WIND DESIGN FOR SOLID FENCES				
V (WIND SPEED)	115.00	(MPH)		
Kz (see table 29.3-1)	0.85			
Kd (DIR. FCTR)	0.85			
(EXPOSURE CAT.)	C			
Kzt (TOPO. FCTR)	1.00			
G (GUST EFCT FCTR)	0.85			
E (RATIO OF SOLID TO GROSS AREA)	1.00			
Cf (see fig 29.4-1)	1.45			
qz (VELOCITY P.) (LB/FT²)	24.46			
F (DESIGN WIND FORCE) (LB)	511.92			
FENCE INPUT				
L (LENGTH BETWEEN CL OF POST)	2.83	(FT)		
H (HEIGHT OF FENCE FROM GROUND)	6.00	(FT)		
Af (SOLID AREA NORMAL TO WIND)	16.98	(FT ²)		
A (GROSS AREA)	16.98	(FT ²)		
DESIGN WIND FORCE	30.15	(LB/FT ²)		
SHEER FORCE CENTER POST	511.92	(LB)		
SHEER FORCE END POST	255.96	(LB)		
MOMENT AT CENTER POST BASE (FREE TO ROTATE)	1535.75	(FT*LB)	18428.95	(IN*LB)
MOMENT AT END POST BASE (FREE TO ROTATE)	767.87	(FT*LB)	9214.48	(IN*LB)
MOMENT AT CENTER POST BASE (NO ROTATION)	1023.83	(FT*LB)	12285.97	(IN*LB)
MOMENT AT END POST BASE (NO ROTATION)	511.92	(FT*LB)		(IN*LB)
MAX SHEAR AT END OF CHANNEL	127.98	(LB)		

• 2ft-10in wide (extra post added on standard 6ft (5ft-8in)) by 6ft high

The maximum allowable Moment at the bottom of the line post:

 $M_1 = P*L = ((544+526)/2)*3.5ft = 1872.5lb-ft$

From above table, the Moment is $M_2=1023.83$ lb-ft

 $M_1/M_2 = SF$

1872.5lb-ft /1023.83 lb-ft = 1.83 > 1.67 design OK (between 1.75-2.00)

VI. <u>CONCLUSION</u>

- THE REPORT INDICATES THAT RESISTING MOMENT IS GREATER THAN FLEXURE MOMENTS AND MEETS REQUIREMENTS.
- THE IRC 2015 REQUIRED 36" HIGH GUARDRAIL
- THE IBC 2015 REQUIRED 42" HIGH GURDARAIL
- THE CALCULATIONS AND TEST WERE PERFORMED FOR RAIL LOCATED AT 42" AND IT PASS
- TO MEET GUARDRAIL LOADS AND WIND LOADS HALF PRIVACY PANEL AND FULL PRIVACY PANEL NEEDS AN EXTRA POSTS FOR CERTAIN PANEL WIDTHS-SEE BELOW TABLES FOR POST SPACING RELATED TO HEIGHT OF THE PANEL

POST SPACING TABLE

NOT EXPOSED TO WIND APPLICATIONS			
HEIGHT OF THE PANEL (in)	RECOMMENDED POST SPACING (O.C.)	GOVERNING LOAD	
≤42	6FT (68in)	50plf on top rail	
48	5FT (60in)	50plf on top rail	
54	4FT (48in)	50plf on top rail	
60	3.5 FT (42in)	50plf on top rail	
66	3FT (34in)	50plf on top rail	
72	3FT (34in)	50plf on top rail	

115MPH WIND-EXPOSURE B&C				
HEIGHT OF THE PANEL (in)	RECOMMENDED POST SPACING (O.C.)	GOVERNING LOAD		
≤42	6FT (68in)	50plf on top rail		
48	5FT (60in)	50plf on top rail		
54	4FT (48in)	50plf on top rail		
60	3.5 FT (42in)	50plf on top rail		
66	3FT (34in)	30psf wind		
72	3FT (34in)	30psf wind		

115MPH WIND-EXPOSURE D				
HEIGHT OF THE PANEL (in)	RECOMMENDED POST SPACING (O.C.)	GOVERNING LOAD		
≤42	6FT (68in)	50plf on top rail		
48	5FT (60in)	50plf on top rail		
54	4FT (48in)	36.5 psf wind		
60	3FT (34in)	36.5 psf wind		
66	2.5FT (30in)	36.5 psf wind		
72	2FT (24in)	36.5 psf wind		

120MPH WIND-EXPOSURE B&C				
HEIGHT OF THE PANEL (in)	RECOMMENDED POST SPACING (O.C.)	GOVERNING LOAD		
≤42	6FT (68in)	50plf on top rail		
48	5FT (60in)	50plf on top rail		
54	4FT (48in)	50plf on top rail		
60	3.5 FT (42in)	32.8 psf wind		
66	3FT (34in)	32.8 psf wind		
72	2.5FT (30in)	32.8 psf wind		

120MPH WIND-EXPOSURE D				
HEIGHT OF THE PANEL (in)	RECOMMENDED POST SPACING (O.C.)	GOVERNING LOAD		
≤42	6FT (68in)	50plf on top rail		
48	4.5FT (54in)	39.8 psf wind		
54	3.5FT (42in)	39.8 psf wind		
60	3FT (34in)	39.8 psf wind		
66	2.5FT (30in)	39.8 psf wind		
72	2FT (24in)	39.8 psf wind		

130MPH WIND-EXPOSURE B&C				
HEIGHT OF THE PANEL (in)	RECOMMENDED POST SPACING (O.C.)	GOVERNING LOAD		
≤42	6FT (68in)	50plf on top rail		
48	4.5FT (54in)	38.5 psf wind		
54	3.5FT (42in)	38.5 psf wind		
60	3FT (34in)	38.5 psf wind		
66	2.5FT (30in)	38.5 psf wind		
72	2FT (24in)	38.5 psf wind		

130MPH WIND-EXPOSURE D				
HEIGHT OF THE PANEL (in)	RECOMMENDED POST SPACING (O.C.)	GOVERNING LOAD		
≤42	5FT (60in)	46.7 psf wind		
48	4FT (48in)	46.7 psf wind		
54	3FT (34in)	46.7 psf wind		
60	2.5FT (30in)	46.7 psf wind		
66	2FT (24in)	46.7 psf wind		
72	1.67FT (20in)	46.7 psf wind		

140MPH WIND-EXPOSURE B&C			
HEIGHT OF THE PANEL (in)	RECOMMENDED POST SPACING (O.C.)	GOVERNING LOAD	
≤42	5FT (60in)	44.7 psf wind	
48	4FT (48in)	44.7 psf wind	
54	3FT (34in)	44.7 psf wind	
60	2.5FT (30in)	44.7 psf wind	
66	2FT (24in)	44.7 psf wind	
72	1.67FT (20in)	44.7 psf wind	

140MPH WIND-EXPOSURE D		
HEIGHT OF THE PANEL (in)	RECOMMENDED POST SPACING (O.C.)	GOVERNING LOAD
≤42	4.5FT (54in)	54.1 psf wind
48	3FT (34in)	54.1 psf wind
54	2.5FT (30in)	54.1 psf wind
60	2FT (24in)	54.1 psf wind
66	1.67FT (20in)	54.1 psf wind
72	1.5FT (18in)	54.1 psf wind

* 6FT is nominal size of the panel, which is 68"

* 3FT is a distance measured from center of the post to the center of added post 34"

SUGGESTION TO USE #8 SCREW TO SECURE SLATS IN THE 6FT WIDE SPANS