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This paper proposes physical processes to use a Schwarzschild black hole as a rechargeable battery
and nuclear reactor. As a rechargeable battery, it can at most transform 25% of input mass into
available electric energy in a controllable and slow way. We study its internal resistance, efficiency
of discharging, maximum output power, cycle life and totally available energy. As a nuclear reactor,
it realizes an effective nuclear reaction “α particles+black hole→positrions+black hole” and can
transform 25% mass of α-particle into the kinetic energy of positrons. This process amplifies the
available kinetic energy of natural decay hundreds of times. Since some tiny sized primordial black
holes are suspected to have an appreciable density in dark matters, the result of this paper implies
that such black-hole-originated dark matters can be used as reactors to supply energy.

I. INTRODUCTION

A basic property of a battery (the “battery” in this
paper refers to all devices or systems that can generate
electric energy) is that it can convert non-electric energy
into electric energy in a controllable way to supply the
appliances. There are several common mechanisms of
battery, such as using the chemical energy, solar energy,
wind or water energy, nuclear energy and so on. The
black hole, being predicted by Einstein’s general relativ-
ity, is one of the most fantastic object in our universe,
describing an extreme region from which the gravity is
so strong that no signal or classical matter can escape.
Taking the fact that the black hole has extremely strong
gravitational force, an interesting question arises: consid-
ering at least theoretically, could we use the gravitational
force of black holes to generate electric energy, i.e. make
use of black holes as batteries?

Though the black hole’s strong gravity forbids that the
classical matters escape from it into outside, fortunately,
the energy can be extracted from the black hole through
quantum or classical processes. The famous Hawking ra-
diation is one quantum way that the black hole losses
energy [1, 2]. For a larger black hole such effect is too
weak to be used. For a small enough black hole, the
Hawking radiation can be strong. However, in this case,
the black hole will evaporate in a very short time and
the energy releasing is too drastic and rapid to be used
as a controllable supply. An other of the famous pro-
cesses for energy extraction is the Penrose process, stat-
ing that a classical particle can extract rotation energy
from Kerr black hole [3, 4]. Furthermore, it also turned
out that there exist an effective Penrose Process arising
between the Reissner-Nordström (RN) black hole and a
charged particle, showing that the energy and charge of
RN black hole can be extracted by charge particles [5].
In addition, another classical process being able to ex-
tract energy from black holes is superradiance [6], which
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can also extract energy from rotational or charged black
holes.

By Penrose process or superradiance, the charged black
hole can be used as a kind of battery. To extract the
electric energy of same order as the black hole mass,
the black hole must be almost extreme, i.e. contains a
large amounts of charge. However, the naturally formed
black holes, which come from the primordial black hole,
the large mass star or the other astrophysical processes,
though may carry large amounts angular momentum, will
be neutral. The observations via gravitational wave [7, 8]
also verified this point. Particularly, the Schwarzschild
black hole is the final stable state of black hole in classi-
cal physics and so there is seemingly no hope to use it as
a battery to supply appliances by classical processes.

In this paper we propose a method to recharge
Schwarzschild black holes by very tiny amounts of charge.
When the radius of initial black hole is large enough,
we show that strong gravitational force can transform at
most 25% input mass into electric energy. We show that
the Joule heat produced in discharging process just sat-
isfies the requirement of thermodynamical laws of black
holes. We also study the discharging efficiency, maximum
output power, cycle life and totally available energy. By
making use Schwinger effect, we show that the tiny black
hole can be used as a reactor to transform the α-particles
into positrons. This black hole reactor may amplify the
kinetic energy of α-decay hundreds of times. Interest-
ingly, we find that the black hole mass of such reactor
just locates inside the window that black hole could be a
candidate of dark matters.

II. ADD FUEL FOR BATTERY

Let us first introduce how to add “fuel” (recharg-
ing process) for a Schwarzschild black hole. In follow-
ing discussion, we mainly use the natural units system
G = c = ℏ = kB = 4πε0 = 1.

Consider a static spherically symmetric black hole has
mass M and charge Q with |Q|/M ≪ 1, which is con-
fined inside a cavity. We assume that the radius rc of
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FIG. 1. The charged sphere falls into black hole spontaneously
since the gravitational force is stronger than Coulomb repul-
sion.

cavity is much larger than the horizon radius r+ of the
black hole. The black hole cannot be too small since the
Hawking radiation will lead that a tiny black hole evapo-
rates completely in a very short time. If we require that
effect of Hawking radiation is negligible in a time scale
of age of our universe, the minimal mass of initial black
hole should be much larger than 1011kg. We prepare a
large amounts of charged particles, every one of which
contains the same mass m and charge q with

|q| ≫ m, or in SI unit |q|/m ≫ 10−10C/kg (1)

If we inject a such sphere into the cavity (see Fig. 1)
under following restriction

Q

M
q ≤ m, (2)

then gravitational force will always larger than electric
repulsion and these spheres will spontaneously fall into
black hole. This result can be obtained from Newton’s
laws combining with Coulomb’s formula. Interestingly,
the general relativity will also give us same result, see
Sec. I of Supplementary Materials for details. By this
process, the neutral black hole is recharged. Note that
this recharging process does not consume additional en-
ergy since the falling of charged particles is spontaneous.

On the other hand, when the electric field E near hori-
zon is strong enough, the Schwinger effect may play an
important role [9]. In this case the electron-positron are
separated from vacuum and the charged black hole will
absorb one of them, which prevents the black hole from
being recharged further. We note the Schwinger effect
will happen at a scale of electron Broglie wavelength
λe ≈ 10−12m. In the case that the black hole horizon
radius r+ ≫ λe (this will be the case considered in this
paper), the equivalent principle then implies that gravita-
tional effect can be ignored when we consider the physics
below the length scale λe. We then obtain following in-
equality

|Q|
r2+

≈ |Q|
4M2

≲ Es . (3)

Here Es ≈ 1018V/m is the critical field of Schwinger ef-
fect. If inequality (3) is broken, the black hole can absorb

opposite charge from vacuum and the battery cannot be
charged anymore.

When any one of conditions (2) and (3) is broken, the
recharged process will stop. Assume that an initially neu-
tral black hole has mass M0 and can at most swallow
nr such charged particles. The finally charge and mass
of fully recharged black hole then read Qr = nrq and
M = M0+nrm. If the inequality (2) is first broken, which
we call “Coulomb domain”, the charged particle cannot
fall into black hole spontaneously since Coulomb repul-
sion will be stronger than gravitational attraction. In this
case we have nr = M0m/q2. If the inequality (3) is first
broken, which we call “Schwinger domain”, the Schwinger
effect prevents the black hole from being recharged and
we have nr = 4EsM

2
0 /|q|. They can be combined into

nr = min

{
M0m

q2
,

4EsM
2
0

|q|

}
. (4)

or in SI units

nr = min

{
M0m/kg2

(q/C)2
× 10−20,

(M0/kg)
2

|q/C|
× 10−46

}
.

(5)
The “Coulomb domain” will happen when M0 is large
enough; while the “Schwinger domain” will happen for
small-sized black holes.

From Eqs. (4) and (1) we see that the Qr and increased
mass ∆M of fully recharged black hole satisfies

|Qr| = nr|q| ≤
M0m

q2
|q| = m

|q|
M0 ≪ M0 (6)

and

∆M = nrm ≤ m2

q2
M0 ≪ M0 . (7)

The horizon radius of fully recharged black hole becomes

r+ = M +
√
M2 −Q2

r ≈ 2M0 + 2nrm− n2
rq

2

2M0
. (8)

The Hawking temperature reads T ≈ 1/(8πM0). The
increased energy ∆M contains two parts, the first one
causes the increment of entropy [1, 10–13], which stands
the thermal dissipation T∆S ≈ ∆r+/2. This is the un-
available energy. The other one

E = ∆M − T∆S ≈ n2
rq

2

4M0
= min

{nrm

4
,M3

0E
2
s

}
(9)

is available energy, stored as the static electric potential
energy. Furthermore, the efficiency for the recharging
process is ηr = E/(nrm) ≤ 25%, i.e. black hole can at
most transform 25% input mass into available energy of
static electric field.

After adding fuel for battery, let us discuss which black
hole is good potential candidate for our black hole bat-
ter. It is widely known that the stellar black hole with
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solar mass is surrounded by interstellar matter, such as
plasma, accretion disk et al. The stellar black hole will
thus discharge by surrounded matter very quickly.

However, for tiny black hole, especially in atomic scale,
most of matter around the black hole will be captured
and absorbed very quickly. For example, one can see that
the damping time scale of bosonic as well as Fermionic
field near the tiny black hole from the associated quasi-
normal modes Γ ∼ 10−16s [14, 15]. Any fundamental
particle around this tiny black hole will either escape into
infinite or be absorbed very quickly. Therefore, our po-
tential black hole battery should be tiny black hole in
atomic scales. Such a small black hole most likely be pri-
mordial black hole, which is a candidate of dark matter
in our Universe and may exist widely. We thus propose
rechargeable battery and nuclear reactor using classical
Schwarzschild black hole with 1015kg ∼ 1018kg. In such
small scale, the accretion disk around our tiny black hole
cannot form [16].

III. DISCHARGE PROCESS

A. Effective circuit

We now consider the discharge process. As a toy
model, we open a complex massless scalar field Ψ in
the box to minimally couples with gravity. The com-
plex scalar field carries charge σ and is confined in the
box. In frequency domain [17], we consider the s-wave
mode approximation and adopt the Dirichlet boundary
condition for the scalar field

Ψ = e−iωtR(r)/r , R|r=rc = X0, ω ≥ 0 . (10)

We further leave ω and X0 as two parameters that we
can control. Our discharging process indeed makes use of
superradiance, which treats the complex scalar as pertur-
bation, by neglecting the backreaction of scalar field on
spacetime geometry. A detailed study on the dynamics
of black hole in cavity will be found in Sec. II of Supple-
mentary Materials and relative Refs. [18–25]. This in fact
is “quasi-static approximation” and can be applied when
R(r) is small enough. The theory of superradiance gives
us following energy flux density Pe and charge current
density PQ on the boundary of the box [6]

Pe =
2σω

r2c

(ω
σ
− µh

)
|X0|2|Th|2 ,

(11)

PQ =
2σ2

r2c

(ω
σ
− µh

)
|X0|2|Th|2 .

Here we denote µh = Q/r+ as the electric potential on
the horizon and Th as the transition amplitude for the
complex scalar near the horizon. In this approximation
the discharging process in indeed makes use of super-
radance. It is thus nature to define the electric current I

and power Pd in an effective circuit as

I = −4πr2cPQ, Pd = −4πr2cPe . (12)

Furthermore, we can define the terminal voltage Ud =
ω/σ and the electromotive force Ubh = µh. The Eq. (11)
can therefore be written as the Ohm’s Law

Pd = UdI , (Ubh − Ud) = IR , (13)

where the effective internal resistance R of the battery
reads

R ≡ 1

8πσ2|Th|2|X0|2
. (14)

Due to the existence of internal resistance, the Joule heat
will be created, which stands for the unavailable work
from the battery and will cause the increment of entropy.
Thus, the discharging is quasi-static but irreversible pro-
cess.

Since the system is quasi-static, the first law of the
thermodynamics for the RN black hole shows

T
dS
dt

=
dM
dt

− µh
dQ
dt

= −Pd + µhI , (15)

where T and S denote the Hawking temperature and
entropy of the RN black hole respectively. We thus have

T
dS
dt

= 8πσ2
(ω
σ
− µh

)2

|X0|2|Th|2 . (16)

We see that, in discharging process, the entropy of our
black hole battery is always increasing, following the re-
quirement of Hawking’s area theorem of black hole hori-
zon. Furthermore, more importantly, from Eqs. (12),
(14) and (16), one will easily find TdS = I2Rdt. This
shows that the increment of entropy exactly corresponds
to the heat dissipation produced from the effective inter-
nal resistance of our battery.

As a device of energy supply, the efficiency and power
are main parameters to characterize its performance.
Due to the nonzero the effective internal resistance, the
maximal efficiency of discharging will happen when the
current I → 0. In this case, the thermal dispersion
caused by internal resistance is negligible and our bat-
tery can at most transform 25% input mass into available
electric energy. Noting the fact that the an atom bomb
only releases 0.1% energy of its mass. The maximal effi-
ciency of the battery is 250 times higher than that of the
atomic bomb.

An other interesting question, and maybe more more
practical concern, is the maximum power and its cor-
responding efficiency [26–28]. In order to simplify the
discussion, we will apply an additional approximation
named “high frequency approximation”: ωM ≫ 1. Then
transmission amplitude can be approximated by |Th|2 ≈
1. This will mean that the effective resistance becomes
constant, namely R0 ≡ R|ωM≫1 ≈ 1/(8πσ2|X0|2). It
is from Eq. (11) easy to observe that there exist an in-
stantaneous maximal output power when the discharging
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voltage is half of the electromotive force at every moment
t, i.e. ω/σ = µh/2. The battery can transform 12.5% in-
put mass into available energy if it works at maximal
power.

To end this subsection, we shall discuss the problem of
superradiant instability of the charged scalar field cou-
pled with the charged black hole in a cavity [6, 29, 30].
In our black hole battery, we set the complex scalar with
time-dependent exterior source ⟨O⟩ on the boundary of
the cavity (See also Appendix. B). It is similar to the
mechanical system with forced vibration. The state of
absorbing or releasing energy for such a system depends
on the frequency of the external source. Therefore, the
charge and discharge process of our black hole battery
depends on the source, ⟨O⟩ on the cavity boundary.

Moreover, the superradiant instability of a charged
black hole in the cavity will only happen when the cav-
ity is a mirror. In other words, the system is an "au-
tonomous system", where the complex scalar has no
time-dependent exterior source. Therefore, the superra-
diant instability will not happen in our black hole battery
model during the discharging process.

B. Cycle life and totally available energy at
maximum power supply

For a neutral black hole confined in a cavity, we can
use above mentioned method to recharge it fully and then
discharge it completely. Such process can be repeated
many times and so this battery is rechargeable battery.
After a single recharging—discharging cycle, even though
the black hole battery goes from Schwarzschild black hole
to Schwarzschild black hole again, the entropy increase.
The Hawking-Bekenstein entropy formula shows that the
Schwarzschild radius of our black hole battery will always
increase after every such cycle. Consequently, when the
radius is near the boundary rc, our black hole battery
become unavailable.

Here we consider the case that the exterior black hole
is large enough so the recharging process will stop at
“Coulomb domain”. We first obtain the increment of the
Schwarzschild radius for the recharging process ∆r+ =
(n2

rq
2/4M2

0 )r+ = (m2/4q2)r+ from Eqs. (8) and (4). To
estimate maximal cycle life, we use the minimal power to
discharge, i.e. I → 0, so that the entropy increment in
discharging process is negligible. Therefore,

r+,n =

(
1 +

m2

4q2

)
r+,n−1 . (17)

Here r+,n stands for the black hole radius after n times
recharge—discharge cycle process. It implies that

r+,n = 2M0

(
1 +

m2

4q2

)n

, (18)

where we have imposed r+,0 = 2M0 as the initial
Schwarzschild radius of our black hole battery. Further-
more, when r+,N = rc/α with truncation α ≳ 1, our

+
+

𝑀0 ∼ 1021g

−
+

𝐸 =
+𝑄

𝑟+
2 = 𝐸𝑠

α-particle
α-source

FIG. 2. At Schwinger domain the black hole spontaneously
absorbs the α-particles and radiates positrons.

horizon is close to the boundary and the black hole bat-
tery’s life comes to the end. The maximal number of the
recharge—discharge cycle process then reads

Nmax ≈ ln(rc/α)− ln 2M0

ln(1 +m2/4q2)
≈ 4q2

m2
ln

(
rc

2M0α

)
. (19)

We then obtain an estimation on the maximal total avail-
able energy of its whole life Etotal,max ∼ NmaxE . Since
E = nrm/4 and nr = M0m/q2 at “Coulomb domain”, we
then have

Etotal,max ∼ M0 ln

(
rc

2M0α

)
> M0 . (20)

The black hole battery during its life can even supply the
energy larger than its initial mass.

As we illustrated above, our black hole battery is
based on the energy and charge extraction by super-
radiance. There is another similar process for extract-
ing energy from black hole, called the Blanford-Znajek
process [31]. Even though both superradiance and the
mentioned Blanford-Znajek process, described by circuit-
theory analogy, can achieve the energy extraction pro-
cess, the physics are different.

Firstly, our black hole battery model focuses on ex-
tracting the charge with energy from a tiny charged
Schwarzschild black hole (RN black hole) by perturbed
complex scalar with source. However, the Blanford-
Znajek process extracts the magnetic energy from the
supermassive rotating black hole with an accretion disk.
Secondly, the Blanford-Znajek process is widely known
and play an important role in astrophysical black hole, es-
pecially stellar black hole. Nevertheless, as we mentioned
above,the potential candidate for our black hole battery
is a tiny spherical black hole in an atomic scale, with
which the accretion disk is difficult to form. Therefore,
the mechanism of energy extraction, as well as the envi-
ronment of our black hole battery model and Blanford-
Znajek process are different.

IV. BLACK HOLE REACTOR

From nuclear physics, we know that the reaction α →
e+ is forbidden in particle physics due to the conservation
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of the baryon number. However, we in the following will
propose a process to spontaneously realize an effective
reaction by taking a black hole into account.

The basic idea is shown in Fig. 2. We prepare a natural
α-source at the safe distance far away from the black hole.
The α-particles has q = 2e and m = mα ≈ 4GeV with
typical kinetic energy Ek ≈ 5MeV. The kinetic energy
is much smaller than its rest mass and so is negligible.
Then we use above mentioned process to recharge the
neutral black hole. Initially the strong gravity swallows
the α-particle into black hole. We assume that the initial
mass of black hole satisfies

1015kg ≪ M0 ≤ mα/(4Esq) ≈ 1018kg . (21)

In this mass region, the horizon radius of black hole
will be much larger than the electron Broglie wavelength
10−12m and the α-particle radius 10−15m. The electrons,
positrons and α-particles can all be treated as point-
particles. We see that the recharging process will be
terminated at Schwinger domain. To recharge the initial
black hole into critical field only needs very tiny amount
of α-particles nr ≲ 1010. When Schwinger critical elec-
tric field arrives, the black hole will still spontaneously
swallow the electrons but “eject” the positrons from vac-
uum. The electric field of black hole will accelerate the
positrons and energy of positrons that escape into infinity
can be estimated by

Ep ∼ Eser+ ≈ 2EsM0e ≤
mα

4
. (22)

We see that if the initial mass of black hole near 1018kg,
the energy of positron will approach to 1GeV. Compared
with the kinetic energy of input α-particles, the kinetic
energy of positron is amplified hundreds of times.

Such tiny black holes are primordial black holes, which
are formed at early universe and can exist till today. In-
terestingly, as we mentioned above, they are just sug-
gested to have an appreciable density as candidate of
dark matters [32]. If this is true, such size black hole
should widely exist in our universe and we find a new
application for dark matters: it may play a role of anti-
matter factory [16] and can be used as an efficient reactor
to amplify MeV α-radiation into GeV positron radiation.

Even though we share similar applications on the
Schwinger effect to produce anti-particles with Ref. [16],
the purposes are different. The Ref. [16] suppose that
the black hole with low mass (around 1021g ) can be
surrounded by plasma. The protons in the plasma then
can be absorbed by the black hole. Then, once the elec-
tronic field around the black hole is strong enough, the
Schwinger effect happens, emitting positrons.

As we illustrated above, matters is difficult to surround
the tiny black hole in atomic scale. we then provide an-
other scheme to realize this process, building an effective
nuclear reactor using tiny black hole. For example, af-
ter obtaining the α particle using prepared α source, we
inject the α particles into charged black hole to trigger

the Schwinger effect to produce positrons. Using this ef-
fect, together with the black hole, we realize an effect “α
to e+” reaction, which is forbidden in nuclear physics.
Furthermore, our black hole reactor model realizes the
transformation from MeV α particle into GeV radiation,
which greatly improves the efficiency of nuclear reaction.

V. CONCLUSION

In this paper, we argue theoretically that we can use a
Schwarzschild black hole as a rechargeable battery. We
propose a way to add “fuel” for this battery (recharg-
ing process) and show that it at most can transform
25% input mass into electric energy. We show that
the recharging and discharging processes are always irre-
versible processes, as required by the second law of black
hole physics. We then further identify the effective inter-
nal resistance in discharging process and show that the
Joule heat produced by the effective resistance is just as
same as the amounts required by the laws of black hole
thermodynamics. We study the discharging efficiency,
maximum output power, cycle life and totally available
energy. Using tiny black holes, we propose a model of
black hole reactor, which realizes an effective nuclear re-
action “α+black hole→ e++black hole”. This process
can at most amplifies the kinetic energy of α-decay hun-
dreds of times. Interestingly, the optimal mass of such
a black hole reactor is just located inside the window of
primordial-black-hole-originated dark matters.
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Appendix A: The Condition of mass-charge ratio for
dropped charged Particles

We consider a classical charged particle with mass m
and charge q moving along the geodesic in the RN black
hole background. The action for this particle in spherical
coordinate xµ = (t, r, θ, φ) is

S =

∫
dτL , L =

1

2λ
gµν ẋ

µẋν − λ

2
m2 − qẋµAµ (A1)

where τ denotes the affine coefficient and ẋµ ≡ dxµ

dτ . λ is
an auxiliary field, performing variation respect to which
gives the normalization of 4-velocity that

gµν ẋ
µẋν = −1 . (A2)
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In the background of RN black hole with mass M and
charge Q, namely

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2 , At =
Q

r
(A3)

and f = 1 − 2M/r + Q2/r2, if we consider a timelike
killing vector χµ = (∂/∂t)µ, the charged particle’s action
will be invariant under the infinitesimal transformation
xµ → xµ + ϵχµ , ϵ ≪ 1, namely

LχS = −
∫

dτqẋµ(χν∂νAµ +Aν∂µχ
ν) = 0 , (A4)

where we have used the Killing equation ∂(µχν) = 0, as
well as the fact that Lχgµν = 0 since the static RN black
hole is not dependent on t. It will give the following
conserved energy of the massive charged particle,

E ≡
(
1− 2M

r
+

Q2

r2

)
dt
dτ

+
qQ

mr
. (A5)

Since in the recharging process we have qQ ≥ 0, we see
E > 0. Furthermore, for simplicity, we consider the ini-
tially static particle without angular momenta, lying on
the plane θ = π/2. Recall the normalization of 4-velocity.
we obtain the radial worldline of this particle as(

dr
dτ

)2

= E2 − Veff , (A6)

where the effective potential Veff is

Veff = 1− 2M

r
+

2EqQ

mr
−
(

q2

m2
− 1

)
Q2

r2
. (A7)

In asymptotic flat region, if the particle is relaxed freely
at infinity then we have E = 1. If it falls into the RN
black hole, namely the total interaction, including grav-
itational and electrical one, applied to charged particles
are attractive, it is required that

Veff |r→−∞ ≈ 1 +
α

r
+O

(
1

r2

)
, α < 0 . (A8)

This indicates that

m

q
≥ Q

M
. (A9)

Under our requirement |q|/m ≫ 1, we see that condi-
tion (A9) then insures(

dr
dτ

)2

=
2M − 2Qq/m

r
+

(
q2

m2
− 1

)
Q2

r2
> 0 (A10)

This means that dr/dτ < 0 outside horizon. Eq. (A5)
shows

dt
dτ

=

(
1− Qq

mr

)
/f ≥

(
1− M

r

)
/f >

1

2f
, (A11)

so we find dr/dt ≤ 0 outside black hole. Thus, the parti-
cle will fall from infinity into the horizon without back-
tracking.

Intriguingly, in context of Newtonian mechanic, this
condition also can be given that the gravitational attrac-
tion applied to the charged particles is larger than the
electrical repulsion, leading to these particles falling into
black hole.

Appendix B: Dynamics of black hole in cavity

1. On-shell Action and Ward Identities

We begin with the Einstein-Maxwell theory, which
minimally coupled a free massless complex scalar field.
The complex scalar field carries charge σ. In this paper,
we will always assume that the quantum effects of both
black holes and matters are negligible. The total action
of our theory is written as

S = Sbulk + Ssurf (B1)

where

Sbulk :=
1

16π

∫
M

d4x
√
−g

(
R− F 2 − |DµΨ|2

)
,(B2)

Ssurf := − 1

8π

∫
∂M

d3x
√
−h(K −K0) . (B3)

In the bulk action, Fµν ≡ ∂µAν−∂νAµ stands for the field
strength of the Maxwell field, as well as Dµ := ∇µ−iσAµ.
The surface action includes the Gibbons-Hawking term
and the counter term respectively, where hij and K de-
note the induce metric the associated intrinsic curvature
scalar. We here choose K0 = K|gµν=ηµν

to eliminate
the infinity of flat spacetime. Performing variation with
respect to gµν , Aµ and Ψ†, the equations of motion read

Gµν = 8πTµν , ∇µFµν = −4πJΨ
ν , DµDµΨ = 0 ,(B4)

where Gµν = Rµν − 1
2gµνR denotes the Einstein tensor.

The bulk energy momentum tensor Tµν and the bulk cur-
rent JΨ

µ read

Tµν :=
1

4π

(
FµσFν

σ − 1

4
gµνFρσF

ρσ

)
+

1

16π

(
DµΨ(DνΨ)† +DνΨ(DµΨ)† − gµν

(
|DρΨ|2

))
,

JΨ
µ := − σ

4π
ℑ(Ψ†DµΨ) . (B5)

One widely used quasi-local definition of energy is the
Brown-York energy momentum tensor [19, 20, 33] from
the on-shell action

Tij(x) ≡
−2√
−h

δSon−shell

δhij(x)
= [Kij ]− hij [K] , (B6)

Here hij and Kij are induced metric and extrinsic cur-
vature of cut-off boundary, [Kij ] = Kij − K0,ij and
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[K] = K−K0. The K0,ij is the extrinsic curvature when
the boundary embedded in flat spacetime. This can be
regarded as the energy momentum tensor of the black
hole confined in the box. Since the black hole is allowed
to exchange energy through the boundary, the Brown-
York energy momentum tensor Tij is not conserved. The
dynamics of the Brown-York energy momentum tensor
are ruled by the following “Ward Identity”, arising from
the diffeomorphic invariance of cut-off boundary.

Specifically, let ξi to be arbitrary vector field which
is tangent to cut-boundary, this vector field then can
generate an infinitesimal diffeomorphic transformation
xi → xi+εξi for boundary. The diffeomorphic invariance
of the on-shell action requires that.

LξSon−shell =

∫
rc

d3x
√
−h

(
TijLξh

ij + J i(x)LξAi

(B7)
+O(x)LξΨ

† +O†(x)LξΨ
)
= 0 ,

where Lξ denotes the Lie derivative along with ξi and

O(x) ≡ 1√
−h

δSon−shell

δΨ†(x)
, (B8)

J i(x) ≡ −1√
−h

δSon−shell

δAi(x)
. (B9)

Here we call O(x) and J i(x) to be the expectation value
of the response for the source of the complex scalar and
the 3-electromagnetic current respectively, following the
usual definitions of holographic duality in asymptotically
anti-de Sitter spacetime [18-21]. Note a similar deduction
has also been used to study superradiance of asymptoti-
cally anti-de Sitter black holes [22].

After integrating by parts, the “Ward Identity” for the
Brown-York energy momentum tensor can be derived
from the Eq. (B7)

∇̄jTij = −2ℜ(O∇̄iΨ
†) + ∇̄jJ

jAi + JjFij . (B10)

where ∇̄i denotes the covariant derivative operator for
the induced metric. Additionally, our theory has not
only the diffeomorphic invariance but also the gauge sym-
metry. The gauge symmetry requires that the on-shell
action Son−shell is invariant under the following gauge
transformation,

Ai → Ai + ∂iλ , Ψ → eiqλΨ . (B11)

Specially, for infinitesimal λ, the gauge invariance implies
the second “Ward Identity” for the current J i

∇̄iJ
i = 2σℑ

(
OΨ†) . (B12)

We now consider the physical interpretations on these
two “Ward Identities”. When the complex scalar field
vanishes, Eq. (B12) becomes ∇̄iJ

i = 0. This just reflects
the charge conservation interior the box due to the fact

that cut-off boundary is insulated with black hole. We
then denote

PQ ≡ 2σℑ
(
Ψ† ⟨O⟩

)
. (B13)

According to Eq. (B12), we interpret PQ as the “ charge
current density” via the boundary of the box.

To understand the physical meaning of quantities ap-
pearing in the right-side of Eq. (B10), let us denote that
χi =

(
∂
∂t

)i
is a timelike vector which is tangent to bound-

ary. Define the energy current J i
e ≡ T i

jχ
j and electric

field Ei = χjFji at the cut-off boundary, the first “Ward
Identity ”, Eq. (B10) gives

∇̄jJ
j
e = T ij∇̄iχj − 2ℜ(O∂tΨ

†) + PQAt + J iEi . (B14)

The terms appearing in right-side of Eq. (B14) can be
explained as follows: The J iEi stands for the electric
power caused by the interaction between electric field Ei

and current J i on the boundary; the PQAt stands for the
energy increasing caused by the charge increasing since
At stands for the chemical potential of charge and PQ

stands for the increasing rate of charge injected into box
via boundary; −2ℜ(O∂tΨ

†) stands for the generalized
work caused by complex scalar field. To understand the
term T ij∇̄iχj , we decompose the energy momentum ten-
sor and ∇̄iχj into

Tij = T hij + πij , ∇̄iχj = θhij + σij + ωij . (B15)

Here πij stands for the shear stress of cut-off boundary
and T stands for the trace of Tij . The θ, σij and ωij are
the trace, the symmetric traceless and skew-symmetric
parts of ∇̄iχj , respectively, which stand for the the ex-
pansion, the shear tensor and rotation tensor of time evo-
lution vector χi respectively. We then see that the first
term of the right-side on Eq. (B14) reads

T ij∇̄iχj = T θ + πijσ
ij . (B16)

Here T θ stands for the work caused the variation of area
of the boundary and πijσ

ij stands for the work caused
by the shear stress of boundary. The cut-off boundary
can be thought of as an elastic membrane and Eq. (B16)
then stands for the work cased by the shape-deformation
of cut-off boundary. Similar to the Eq. (B12), we then
denote

Pe ≡ ∇̄jJ
j
e (B17)

and interpret it as the energy flux density via the bound-
ary of the box, i.e. the power surface density at the
boundary, caused by various works of matters and the
deformation of boundary. Specifically, for positive Pe

and PQ, the box absorbs energy and charge, while for
negative Pe and PQ, the box loses energy and charge.

2. Complex scalar in frequency domain

As the first step to study this topic, we now treat the
complex scalar as perturbation and neglect the backre-
action of scalar field on spacetime geometry. This in fact
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is “quasi-static approximation” and can be applied when
discharging current is small enough. In frequency do-
main, we consider the s-wave mode approximation and
adopt the Dirichlet boundary condition at the boundary
of the cavity for the scalar field

Ψ = e−iωtR(r)/r , R|r=rc = X0, ω ≥ 0 . (B18)

We further leave ω and X0 as two parameters that we
can control. In frequency domain [14] and spherically
symmetric case, the equation for the complex scalar field
will thus reduce into following from

d2R
dy2

+ U(y, ω)R = 0 , (B19)

Here y is the tortoise coordinate and U(y, ω) is the ef-
fective potential which depends on bulk metric and the
frequency ω. Near horizon the asymptotical behavior of
U(y, ω) gives universal behavior U |y→−∞ = (ω − ωh)

2,
in which

ωh ≡ σµh , µh ≡ Q/r+ (B20)

is the electric potential on the horizon. Since the black
hole horizon is a one-way membrane, we impose the in-
falling boundary condition of radial function, namely

R(y) = X0The−i(ω−ωh)y, y → −∞ , (B21)

in which the transmission amplitude Th depends on the
parameters related to our black hole battery as well as
the frequency ω and charge σ. In addition, recall the
Eq. (B8), it is easy to observe that O is still a periodic

function of time, sharing the same frequency with Ψ in
frequency domain. We therefore set

O = Z0e−iωt/rc . (B22)

Recall the Eq. (B18), here we have introduced three co-
efficients, Th, X0 and Z0, corresponding to the external
source and its respond for the complex scalar, but they
are not independent. They are further connected by
the following conserved Wroskain determinant associated
with R and its complex conjugate,

R† dR
dy

−RdR†

dy

∣∣∣∣
r=rh

= R† dR
dy

−RdR†

dy

∣∣∣∣
r=rc

. (B23)

giving

2|X0|2|Th|2(ω − ωh) = i(X0Z
†
0 −X†

0Z0) . (B24)

The result can be further simplified if we impose rc ≫ r+.
In this case the induced metric of cavity is approximated
by the metric of a particle in flat spacetime and gauge
potential at the cavity approximately vanishes. Thus, the
two “Ward Identities" of the boundary, the Eq. (B10) and
Eq. (B13), will reduce to

Pe =
2σω

r2c

(ω
σ
− µh

)
|X0|2|Th|2 ,

(B25)

PQ =
2σ2

r2c

(ω
σ
− µh

)
|X0|2|Th|2 .

This recovers energy flux density and charge current den-
sity computed from the theory of superradiance [6].
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