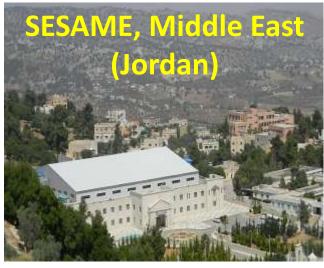
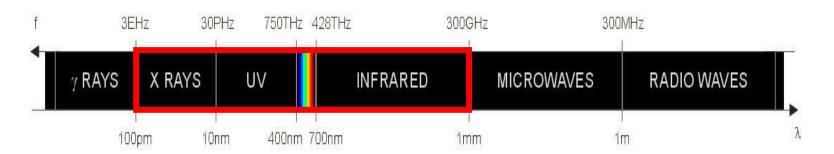
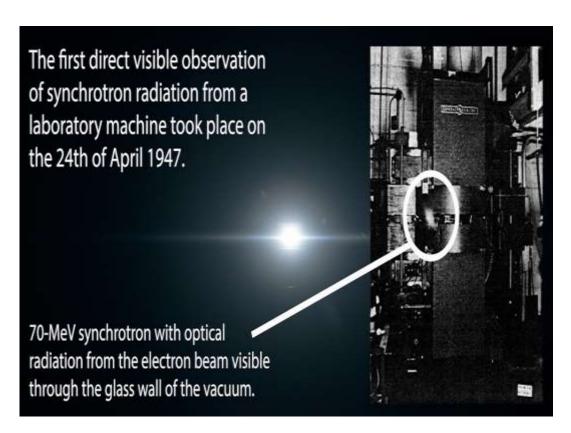

Gihan Kamel, Ph.D. BM02-IR Beamline Principal Scientist

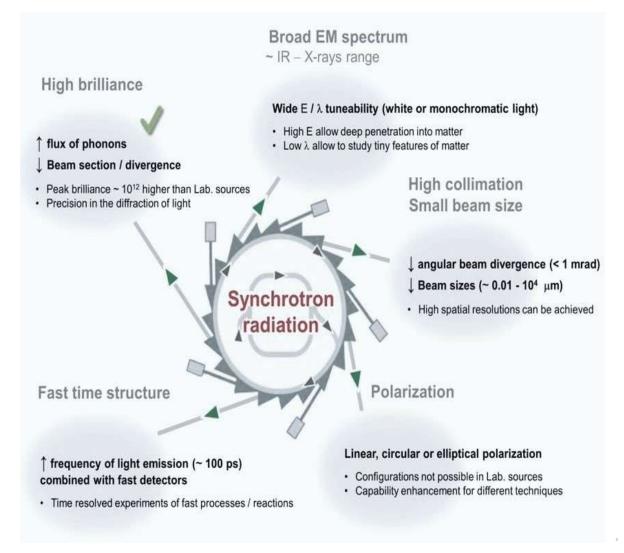
on leave from: Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt

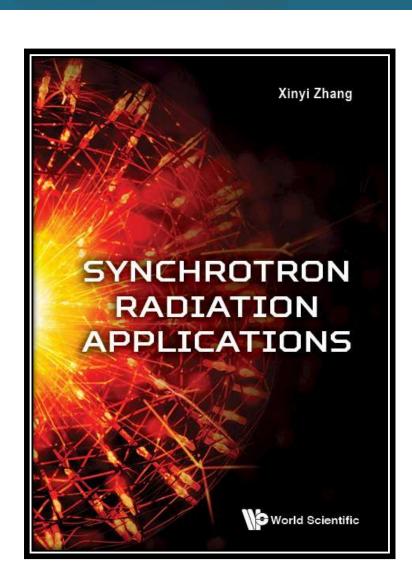


Science = common purpose + common values

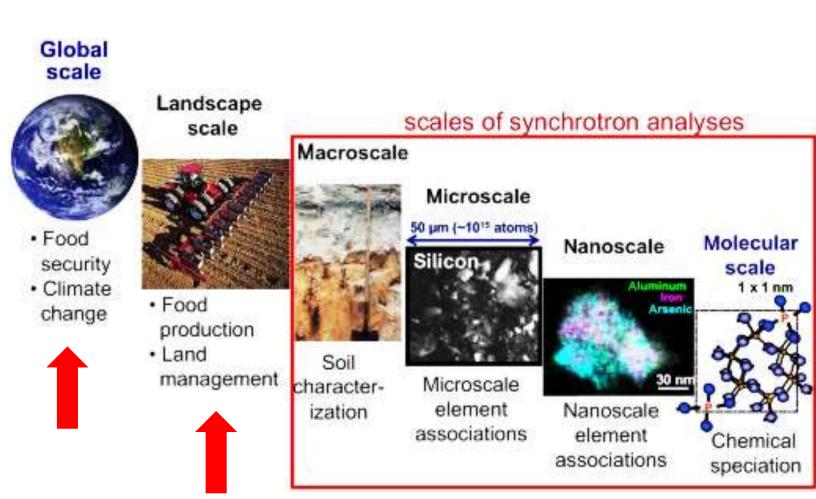




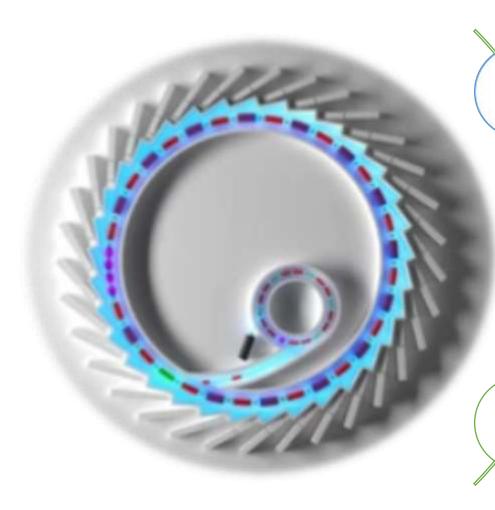




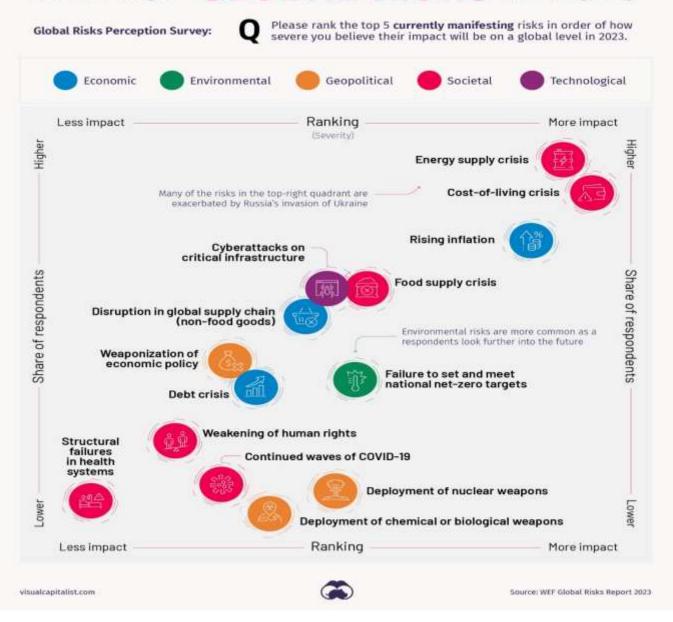
.. Electromagnetic waves emitted by charged particles that move in a curved trajectory at a speed close to the speed of light.. *Spectrum of opportunities and (complementarities)*..



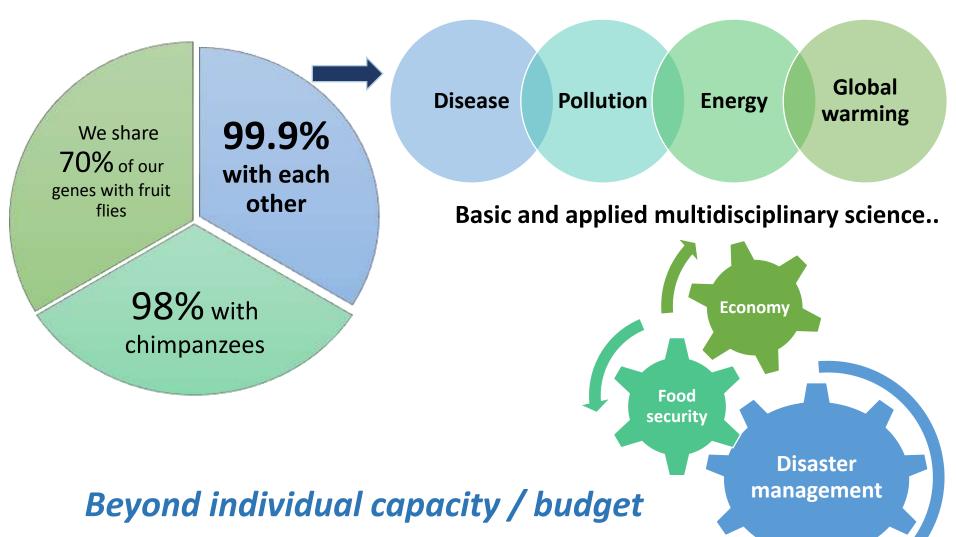
https://doi.org/10.1016/B978-0-12-818896-5.00009-0

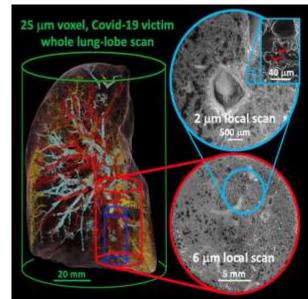

... a bright light that explores the *microscopic* world.

Education, capacity development and research


+ Social & Economic Impacts - "Middle East context" and beyond

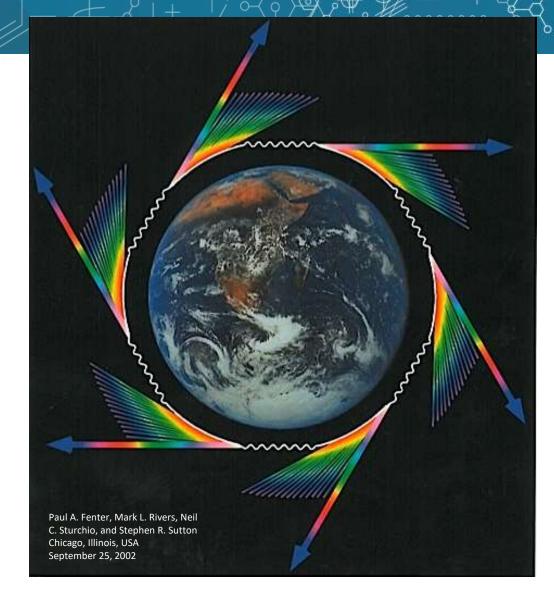
- 1 Global/long term impacts
 - 2 Indirect Impacts
 - 3 Direct local impacts
- 4 Collective future impacts


THE TOP GLOBAL RISKS IN 2023



- How to establish sustainable cutting-edge institutions and research infrastructures?,
- ➤ How to reverse the braindrain dramatic concern?,
- how to address the local and regional alarms related to health, environment, and human heritage?,
- ➤ How to use science as a vehicle for industrial development and growing economy?

Global Research Infrastructures


HiP-CT synchrotron technique is being used to image whole human lungs to help understand the injury caused by COVID-19. P. Tafforeau/ESRF.

But what if what we need is more than money?

"Regionally-shared problems best, or only, be solved through cross-border collaboration. The similarities of culture and experience, coupled with a common language and history of scientific achievement make collaboration an obvious strategy."

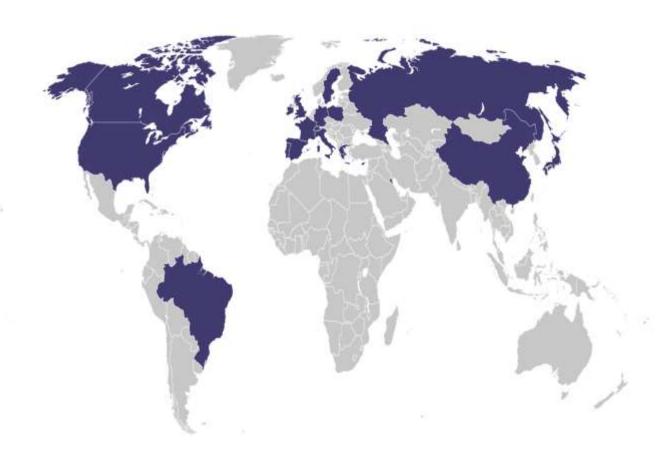
Not enough..

Modelled on CERN

TURKEY

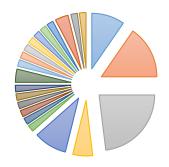
Intergovernmental Organization at the service of its

Members and the whole world



PAKISTAN

SESAME OBSERVERS



Brazil, Canada, China, the European Organization for Nuclear Research (CERN), the European Union (EU), France, Germany, Greece, Italy, Japan, Kuwait, Portugal, the Russian Federation, Spain, Sweden, Switzerland, UAE, UK and the USA. (UNESCO may serve on the SESAME Council).

SESAME and International Cooperation

Users' diversity

- Cyprus
- Türkiye
- Malta
- France
- Japan
- UAE
- Iraq
- Colombia
- Cameeron

- Jordan
- Iran
- Germany
- Colombia
- Malaysia
- UK
- South Africa
- Israel

- Egypt
- Italy
- **■** Belgium
- Palestine
- Pakistan
- Qatar
- Mexico
- Benin

World-class basic and applied research interdisciplinary science,

Bridge to understanding and peace in the region,

Local and regional concerns in various domains,

Environment for collaborations and individual development,

Training hub (Human capacity building),

Diaspora attraction (Brain-drain reversal),

Gender gap minimization - as much as possible.

Images are subjected to copyrights

2017: Pioneering SESAME Light Source Inauguration



2018: SESAME became the first Associate of LEAPS (League of European Accelerator-Based Photon Sources)

On signing the Declaration of Association to the LEAPS Consortium with Helmut Dosch, Chair of LEAPS and Chair of the DESY Board of Directors, Rolf Heuer, President of the SESAME Council.

2019: SESAME became the World's FIRST large accelerator complex fully powered by renewable energy – EU Support

The world's first carbon neutral accelerator laboratory. This makes SESAME economically, as well as environmentally sustainable. It has signed the UN's Climate Neutral Now pledge.

6.5 MW Solar Power Plant Financed by EU

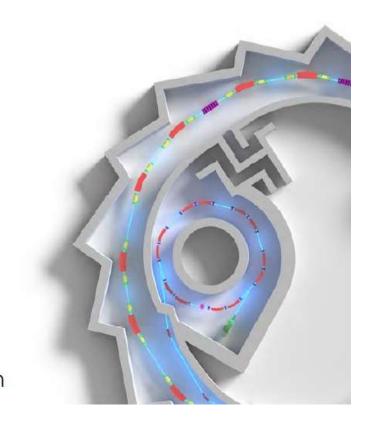
Average Annual Production: 11.57 GWh CO₂ Saved: -7,104 Ton

SESAME Energy Balance

MAX Peak Load: 2.1MW

Average Annual

Consumption: 9.7GWh CO₂ Saved: - 5,955 Ton

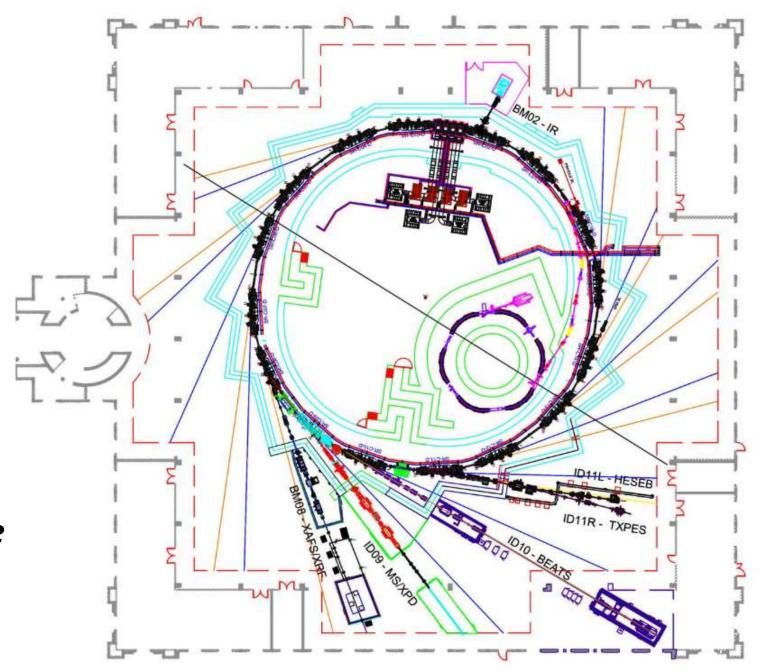

Cooling System: 542kWh

Storage Ring Magnets: 521kWh

Main RF System: 480kWh

SESAME Main Building: 100kWh

Injector (Microtron & Booster): 62.5kWh


Operational:

BM08- XAFS/XRF Beamline

BM02-IR Beamline

ID09- MS/XPD Beamline

3rd Generation light source

Recently added

BEATS - BEAmline for Tomoghraphy at SESAME

HESEB - Helmholtz-SESAME Beamline

TXPES – Turkish X-ray PhotoEmission Spectroscopy Beamline

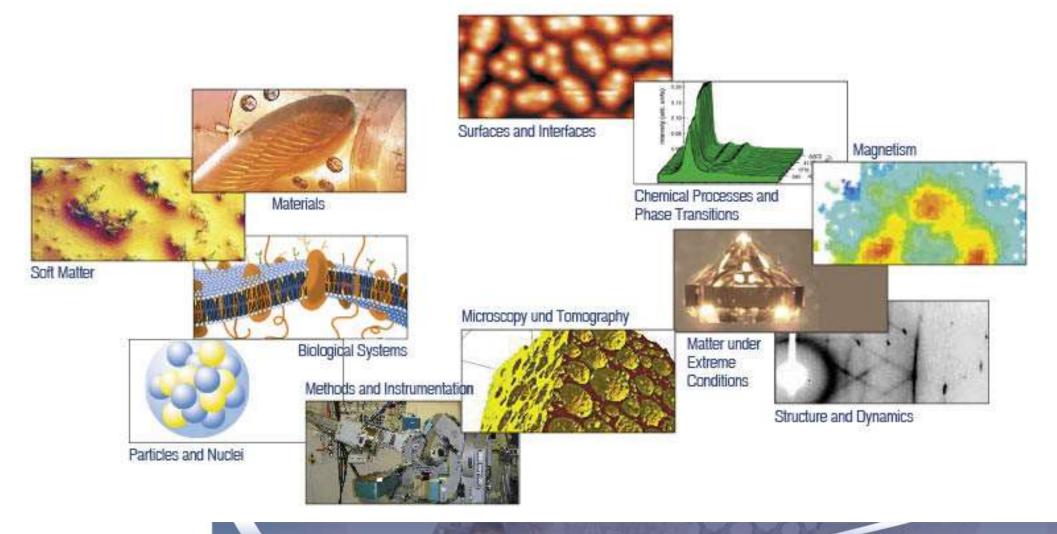
© SESAME 2022: Commemorative plaque and the HESEB beamline

SUSTAINABLE GALS

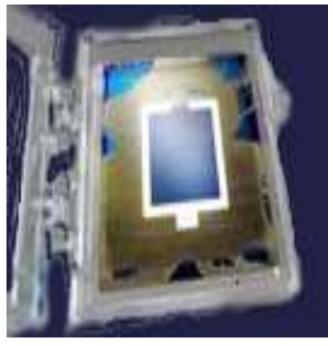
"ISC: Science Missions for Sustainability"

Collective projection of science missions in realizing the UN Sustainable Development Goals.

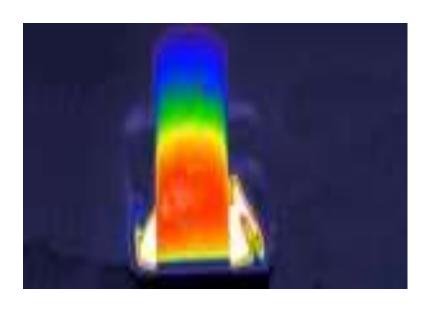
Encouraging science funders to step out of "business-as-usual" approaches beyond traditional science models.


:: Innovative strategies and collaborative actions on all levels. For instance, scaling up the investment in science to strongly support transdisciplinary and inclusive mission.

⁵ Call for applications: A Global Call for Science Missions for Sustainability, International Science Council, 2024. https://council.science/mission-science/


SNI-Portal: Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities

Photovoltaics


© Silvia Mariotti/HZB

Solar cells made of semiconductor materials are the basis of electricity generation from solar energy. Mostly silicon is used for this, but there are alternatives and supplementary possibilities. Perovskite solar cells, whose functioning is being researched at the Helmholtz-Zentrum Berlin (HZB) with synchrotron radiation, are particularly promising. They have the advantage that they can be produced cheaply and utilise different wavelengths than silicon. In so-called tandem solar cells, which combine both semiconductors, a higher efficiency can therefore be achieved than in conventional modules. Synchrotron radiation is used to research the properties of perovskite solar cells, for example the temperature-structure relationship, the process of crystallisation or the <u>stabilising effect of fluorine additives</u> in lead-free perovskite solar cells. But the silicon layer in the tandem solar cell can also be made even more effective through targeted nanotexturing.

Batteries

© Shearing et al./ Nature Communications

The use of renewable energy also includes its storage. There are different concepts depending on the application. **Batteries** have high efficiencies and can be used in mobile applications, which is why intensive research is being carried out on the entire value chain - from the functional mechanism and new materials to durability, safety and sustainability. Synchrotron radiation, for example, can be used to distinguish the role of individual elements in order to find customised solutions. Researchers all over Germany are investigating batteries and their materials with synchrotron radiation. University research and application go hand in hand.

Catalysis

© Dr. Ziliang Chen/HZB

Great expectations are being placed in the industrial use of green hydrogen, for example in steel production or in aviation. "Green" is the term used to describe hydrogen that has been produced in a CO₂-neutral way - either with green electricity or, in future, directly through photolysis in "artificial leaves". In this process, tailormade catalysts are to make it possible to split water with the help of sunlight. Research with synchrotron radiation not only helps to find particularly suitable <u>catalyst</u> materials, but also to develop especially efficient or combinations of materials structures understand <u>processes</u> and investigate them <u>during</u> operation. Molecular films, such as those made possible by the European XFEL, can also contribute to this.

Hydrogen Storage

© Andreas Stierle/DESY

There are also various approaches to **storing hydrogen**. Besides the usual compressed gas storage, hydrogen can also be chemically bound in methanol or liquid organic hydrogen carriers (LOHC) or stored in solids, especially in <u>metal hydrides</u> and adsorptively in nanostructured materials. Their structure and functioning are studied at synchrotrons, e.g. the adsorption and release to <u>graphene-supported Pd nanoclusters</u> or the storage in a <u>hydride composite system</u>.

Climate Change

Research with synchrotron radiation also contributes to the **understanding of our environment**, e.g. how <u>climate-relevant aerosols</u> behave in the atmosphere, what basic properties <u>water</u> or gas hydrates have, which substances react with each other in the <u>soil</u>, which soils or rock formations can <u>absorb CO</u>₂ or what part the subduction of rocks has in the <u>global carbon cycle</u>.

OPEN ACCESS

Harvesting of aerial humidity with natural hygroscopic salt excretions

Marieh B. Al-Handawi^a, Patrick Commins^a, Robert E. Dinnebier^b, Mahmoud Abdellatief^c, Liang Li^{a,d,1}, and Panče Naumov^{a,e,f,g,1}

These salts have the ability to collect water from the air even at humidity levels as low as 50-55%.

it offers proof that the plant is capable of absorbing water via its leaves

nature communications

Explore content > About the journal > Publish with us ∨

nature > nature communications > articles > article

Article Open access | Published: 19 August 2022

Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting

<u>Husam A. Almassad</u>, <u>Rada I. Abaza</u>, <u>Lama Siwwan</u>, <u>Bassem Al-Maythalony</u> & <u>Kyle E. Cordova</u> [™]

Nature Communications 13, Article number: 4873 (2022) Cite this article

JAAS

PAPER

View Article Online
View Journal | View Issue

Cite this: J. Anal. At. Spectrom., 2021, **36**, 981

Synchrotron X-ray fluorescence and X-ray absorption near edge structure of low concentration arsenic in ambient air particulates†

Abdallah A. Shaltout, **D*** Messaoud Harfouche, ** Fahmy A. S. Hassan** and Diane Eichert**

Energy Technology

Generation, Conversion, Storage, Distribution

Research Article

Magnetic Properties and Environmental Temperature Effects on Battery Performance of Na_{0.67}Mn_{0.5}Fe_{0.5}O₂

Serdar Altin, Ali Bayri, Emine Altin, Erdinc Oz, Sedat Yasar, Sebahat Altundağ, Messaoud Harfouche, Sevda Avci

First published: 31 March 2021 | https://doi.org/10.1002/ente.202001130 | Citations: 6

<u>Home</u> > <u>Journal of Materials Science: Materials in Electronics</u> > Article

An investigation of the improvement in energy storage performance of Na_{2/3}Mn_{1/2}Fe_{1/2}O₂ by systematic Alsubstitution

Published: 27 July 2020

Volume 31, pages 14784–14794, (2020) Cite this article

Download PDF &

Access provided by Int. Atomic Energy Agency IAEA Library, NE Nuc. Inf. Section Ms. Eva Corazon

Journal of Materials Science: Materials in

Electronics

Aims and scope →

Submit manuscript →

S. Altin , S. Altundağ, E. Altin, M. Harfouche & A. Bayri

696 Accesses 6 6 Citations Explore all metrics →

Use our pre-submission checklist →

Avoid common mistakes on your manuscript.

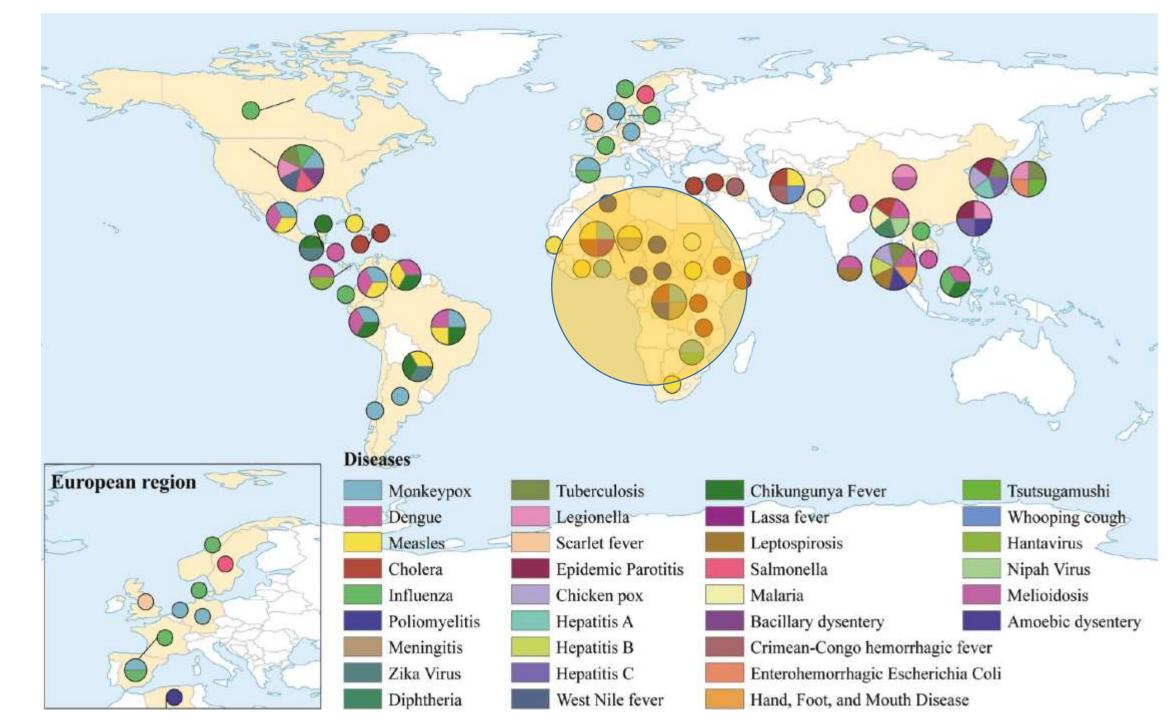
Green Plastics: Direct Production from Grocery Wastes to Bioplastics and Structural Characterization by Using Synchrotron FTIR

Onur Aras^{1, *}, Gihan Kamel^{2,3} and Murat Kazanci^{4,5, *}

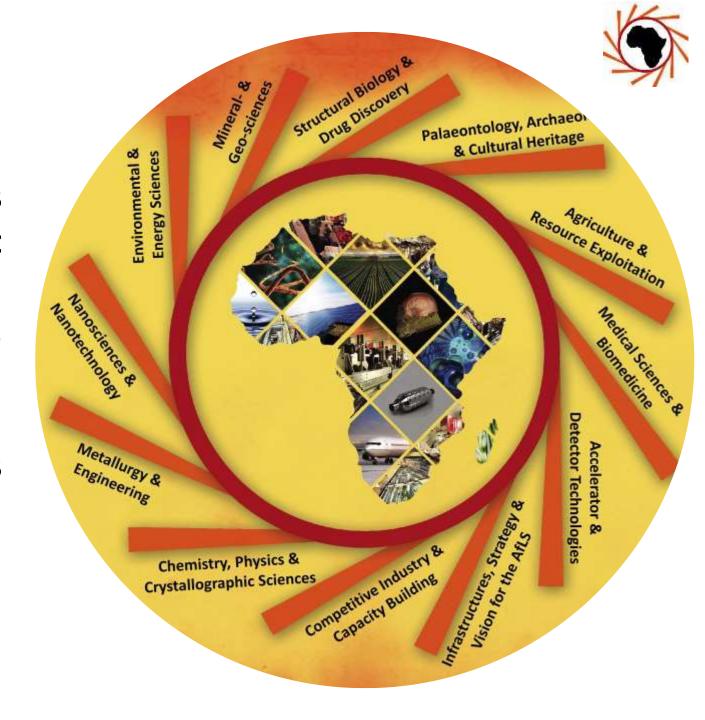
- ¹Istanbul Medeniyet University, Nanoscience and Nanoengineering Program, Graduate School, 34700 Istanbul, Turkey; Electronic address: onuraras.medeniyet@gmail.com
- ²SESAME Synchrotron (Synchrotron-light for Experimental Science and Applications in the Middle East), 19252 Allan, Jordan; Electronic address: gihan.kamel@sesame.org.jo.
- ³Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt.
- ⁴Istanbul Medeniyet University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey; Electronic address: muratkazanci.tr@gmail.com; https://www.imunanolab.com
- ⁵Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700, Istanbul, Turkey.

Over 60 worldwide, None in Africa – so far-

Towards an AfLS



Challenges..



The African light source expected to be a prominent mega-science techno-industrial and fundamental research facility, as well as an innovation hub in Africa. It would promote local and regional research platforms, as well as massive advanced human capacity development and employment in Africa.

The AfLS will promote advanced capacity building, innovation, industrial linkages, industrial research, competitive industry, big data, 4IR technologies, and localisation of manufacturing skills. This will drive growth and new sustainable jobs.

The AfLS will promote world-leading research in agriculture. The literature has many examples of AdLS focus on food security by plant, soil and food scientists. This is based on the capacity of the AdLS for 5D imaging in terms of sensitivity to chemical and biological characterisation, 3D spatial form, and also time sequences, including in response to various stimuli.

The AfLS will be the premier instrument to tackle the disease burden of Africa. The drug discovery for the medical interventions for HIV/AIDS was driven by high resolution atomic level viral structures obtained mostly at AdLSs, allowing drug targets to be identified. A similar process is underway for the SARS-Cov-2 and other viruses.

The AfLS will promote the public understanding of science, attract new young minds, especially girls. It will be a repository and a dissemination hub for all levels of educational material. It will be a premier site for advanced human capacity building. The research outputs will be visually palatable and easily understood.

The AfLS will abound with modern role models for both women and men in science. Most AdLSs concentrate on increasing diversity, based on gender, ethnicity, geographical representation, amongst others.

The AfLS will be a premier facility for environmental research. The infrared beamlines will allow molecular imaging at unprecedented bio-sensitivity. Advanced spectroscopy, such as XAFS and XANES, are techniques that allow the study of chemistries and materials in the field at unprecedented sensitivity, complete with imaging.

Renewable energy studies will be well represented, including new photovoltaic materials, novel batteries, novel catalysts for fuel cells, and detailed chemical studies of the reactions involved, both those that are to be promoted and those that represent adverse pathways that need remediation.

The site for the AfLS will require a large space that soon will become populated with a megascale science and industry park. This is due to the technology transfer and innovation associated with AdLSs.

Ultimately, there will be a high demand for Industrial users to perform proprietary commercial research, where IP protection, rather than publications, will be the output. This will have a premium charge. There also will be industry-relevant research, which will be published as usual in open academic collaborations. In all cases, there will be innovation, leading to new industrial capacity.

The ethos of AdLSs is diversity, tolerance, and the global nature of science and science diplomacy. True education reduces endemic prejudice and promotes the culture of Ubuntu

The research on the environment, clean water and sanitation, renewable energies, will promote and enable sustainable lifestyles and development.

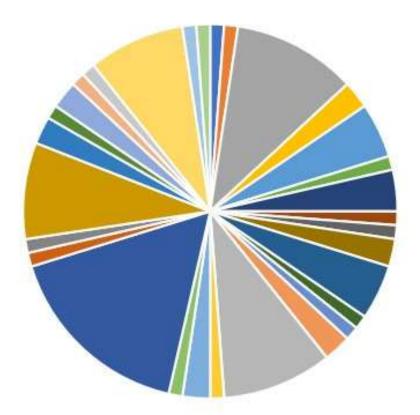
As above, the research on the environment, clean water and sanitation, renewable energies, promotes and enables sustainable lifestyles and development.

The multidisciplinary capacity of research at AdLSs includes research into the understanding of climate, including the interaction between bio-systems and the fluids around them, trace element chemistries as they affect precipitation, and other physical, chemical and biological processes. All scientific aspects can be addressed at unprecedented levels of accuracy in these studies.

Once again, the multidisciplinary capacity of research at AdLSs will include research into other physical, chemical and biological processes relevant to water based life.

Once again, the multidisciplinary capacity of research at AdLS light sources will includes research into other physical, chemical and biological processes relevant to land-based life.

AdLSs are usually globally used and globally relevant infrastructures. The ethos of AdLSs is diversity, tolerance, and the global nature of science, science diplomacy.

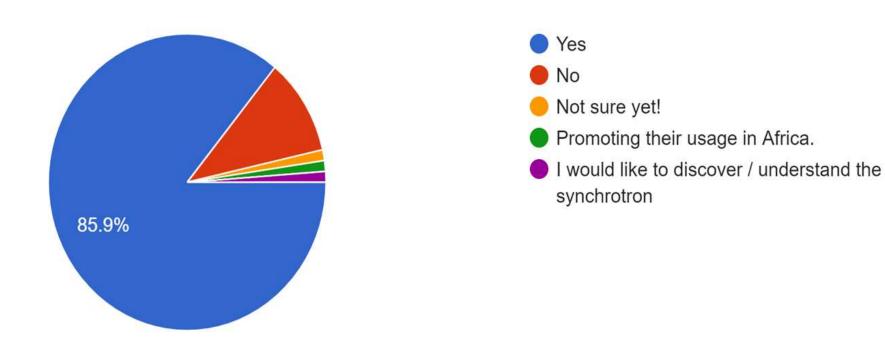


Major large-scale globally relevant infrastructures for research and innovation are unavoidably catalysts that spark networks, collaborations and partnerships that enable such concentration of equipment at such scale and innovation. The partnerships occur at government level and are evident at all other levels, most especially the user levels.

Community

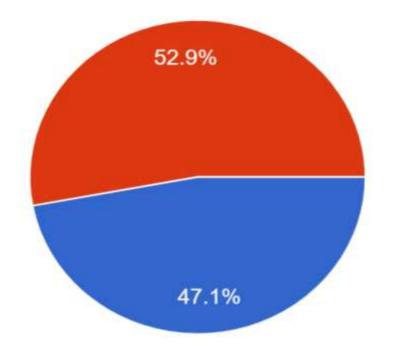
- Algerian
- Egyptian
- German
- Indian
- Japanese
- Malaysian
- Nigerian
- South African
- Tunisian
- USA

- American & Togolese
- Ethiopian
- Germany & UK
- Italian
- Jordanain
- Moroccan
- Pakistani
- Senegalese
- Ugandan
- USA and Nigeria


- Cameron
- French
- Ghanaian
- Ivorian
- Kenyan
- Mozambican
- Peruvian
- South African, French & Algerian
- UK, Canada
- Zambian

Interest

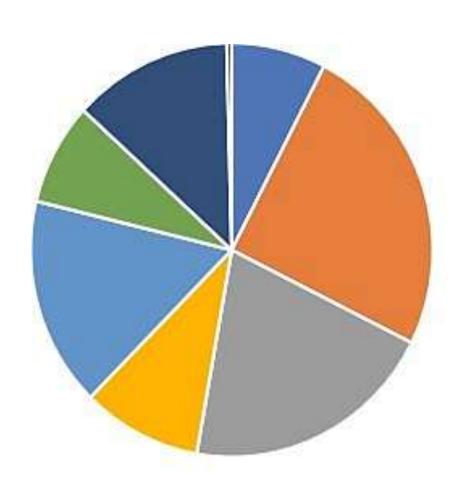
Do you have current/future synchrotron-related interest(s)?



Yes

No

Do you have a previous experience in light sources facilities?



Challenges

- Bureaucracy in the facility of destination
- Lack of funding schemes (travel and mobility, project expenses, etc.)
- Lack of basic and/or preliminary research equipment in your own country
- Lack of mentoring
- Lack of training opportunities to develop professional skills
- Scientific merit-related needs
- Bureaucracy in your own country
- Lack of dedicated manpower

The African Light Source Foundation

"The first African Light Source: lighting the future of Africa"

Memoranda of Understanding

Advanced Light Source Facilities

Synchrotron-Light for Experimental Science and Applications in the Middle East

International Institutions / Organisations

Lightsources for Africa, the Americas, Asia and Middle East and the Pacific (LAAAMP)

Letters of Support

African Institutions / Organisations

African Crystallography Association Steering Committee (AfCA-SC), Africa

Ghana Academy of Arts and Sciences, Ghana

African Seismological Commission (AfSC), Africa

International Union of Geodesy and Geophysics (IUGG), Africa

Network of African Science Academies (NASAC), Africa

South African Institute of Physics (SAIP), South Africa

Ministry of Environment, Science, Technology & Innovation (MESTI), Ghana

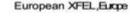
Federation of African Medical Physics Organizations, FAMPO, Africa

Mbarara University of Science and Technology, Faculty of Science, Uganda

African Physical Society (AfPS)

BioStruct Africa, Africa

African Materials Research Society (AMRS), Africa


Advanced Light Source Facilities

diamond LSU CAMD

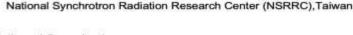
Diamond Light Source, UK

Centre for Advanced Microstructures and Devices (CAMD) Louisiana State University,

Paul Scherrer Institute (PSI), Switzerland

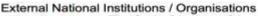
European Organization for Nuclear Research (CERN)

The European Synchrotron Radiation Facility (ESRF)


MAX IV laboratory, Sweden Synchrotron SOLEIL, France

National Synchrotron Light Source II (NSLS II), USA Australian Synchrotron (ANSTO), Australia

Singapore Synchrotron Light Source NUS


International Institutions / Organisations International Center for Theoretical Physics (ICTP)

International Union of Pure and Applied Chemistry (IUPAC)

International Union of Crystallography (IUCr)

The Cockroft Institute of Accelerator Science and Technology, UK)

US Particle Accelerator School (USPAS), USA

Roadmap...?

Bottom Up

- 1. Human Capacity: scientists, engineers, technicians
- 2. African scientists access existing LSs
- 3. African relationships with existing LSs.
- 4. Involvement of industry
- 5. Community for the African light source Users
- 6. Conferences, Workshops, Outreach, Media

Top Down

- 1. Strategic approach to African Governments and (Pan) African orgs.
- 2. Conceptual Design Report (CDR)
- 3. Inter-African co-operation on Regional feeder infrastructure
- 4. African multinational beamlines at existing LSs
- 5. Regional / Pan African membership of existing LSs

AFRICAN LIGHT SOURCE FOUNDATION

TRUST DEED

Letter of Authority
issued by the
Masters Office of the South African High Court
1 June 2018

6. Technical Design Report (TDR)

The Africa Light Source Foundation Towards a Lightsource for the African Continent

Countries Expressing Commitment

Ghana
2019, the President Akufo-Addo of Ghana
pledged to champion the project in the African Union.
2020, the science minister, Dr. Kwabena Frimpong-Boateng,
reaffirmed Ghana's support for the African light source

Benin

2019, X-TechLab, as a government priority project, expresses itself as part of the Roadmap to the AfLS.

SA

2021, SA Dept Science and Innovation and the NRF invite a proposal towards the AfLS as a "Flagship Project"

2021, Nigeria
Office of the Science Ministry

2021, Cote d'Ivoire Office of the Science Ministry

2021, AUC-HRST
Developing Process and Actions

Some Existing Regional Facilities

- X-TechLab Benin
- Materials analysis, spectroscopy for many disciplines. Energy, health, environment, agriculture, materials
- Sir Aaron Klug Centre SA
- Structural biology resource widely used in SADEC region
- African Laser Centre
- Pan-African NEPAD flagship initiative
- ICTP-EAIFR Rwanda
- Condensed matter, Geology, Particle Physics, Cosmology, Astroparticle physics
- Partner with LAAAMP, IUCr OpenLABS, START, Othe Rwands

"Science alone cannot solve the many political, security, and economic problems that we are facing today. However, science diplomacy still has an important role to play addressing the health, environmental, energy, water, and food challenges contribute regional to instability."

"Science Diplomacy in Arab Countries: The Need for a Paradigm Shift.", <u>Nart Dohjoka</u>, <u>Cathleen A. Campbell</u>, <u>Brenna Hill</u>, AAAS Science and Diplomacy, 2017

Thank you!

gihan.kamel@sesame.org.jo