

The accelerator BNCT System for Sustainable Quality of Life

KAZUYO IGAWA

NEUTRON THERAPY RESEARCH CENTER, OKAYAMA UNIVERSITY, JAPAN

igawakazuyo@okayama-u.ac.jp

Thursday Oct. 24, 2024

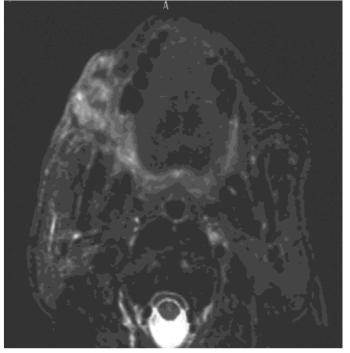
Agenda

- 1) Quality of life after Cancer treatment
- 2) Boron Neutron Capture Therapy for cancer
- 3) The Accelerator BNCT System

1) Quality of life after Cancer therapy

https://www160.statcan.gc.ca/index-eng.htm

Something's wrong?



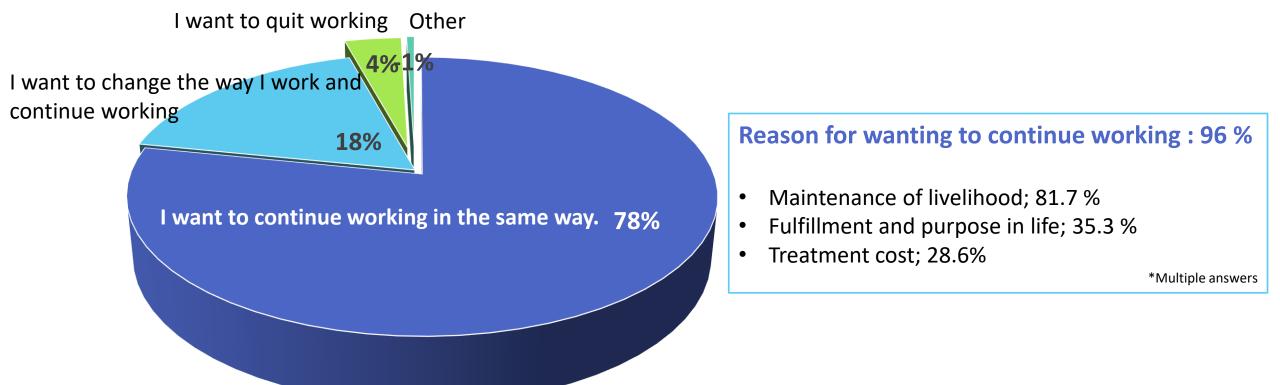
Diagnosis Buccal mucosa SCC, cT4aN0, Stage **W**A

Image diagnosis

Histological diagnosis: SCC

Cancer treatment ~Surgery~

The patient still need to do rehabilitation.

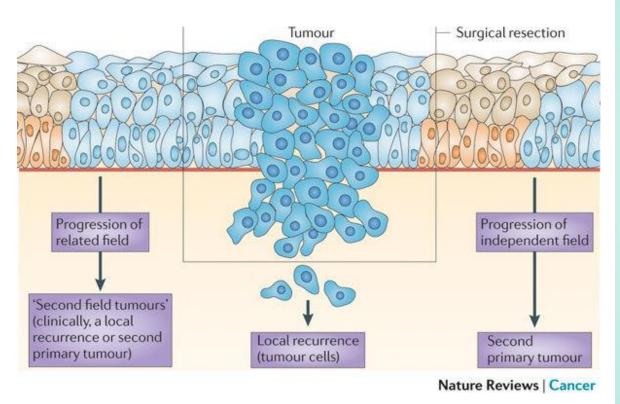


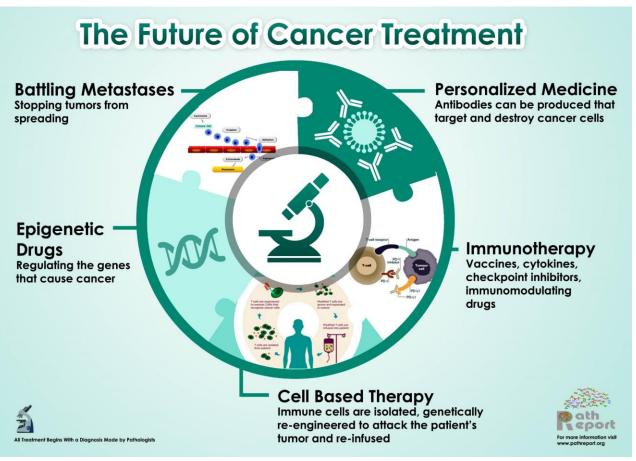
Willingness to work after cancer in Japan

The cancer patients who are working while receiving treatment: 53.6 %

出典1: 東京都福祉保健局「東京都がん医療等に係る実態調査結果(がん患者の就労等に関する実態調査)(平成31年3月)」よりメットライフ生命にて作成

出典2:メットライフ生命調べ「特定疾病に関するインターネット調査(2021年11月)」より作成。調査対象者は「ガン罹患者およびガン罹患経験者」です。

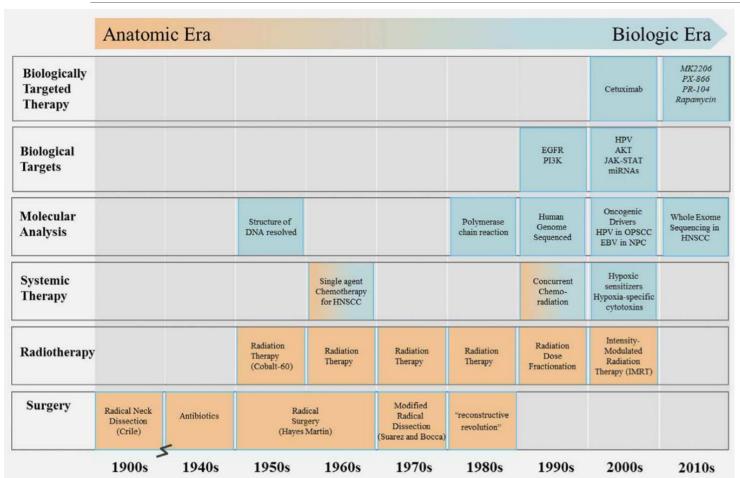




From Anatomy based to Biology based cancer treatment

Anatomy based therapy

Biology based therapy


Function-Sparing Therapy

Management of head and neck cancer

Insurance medial treatment in Japan

2012 : Cetuximab (EXTREME trial)

Immune checkpoint inhibitor

2017 : Nivolumab (Checkmate 141

clinical trial)

2019 : Pembrolizumab (KEYNOTE-048)

Chemical surgery

2020 : BNCT system (JHN002 study)

2020 : ASP-1929 photoimmunotherapy

(NCT02422979)

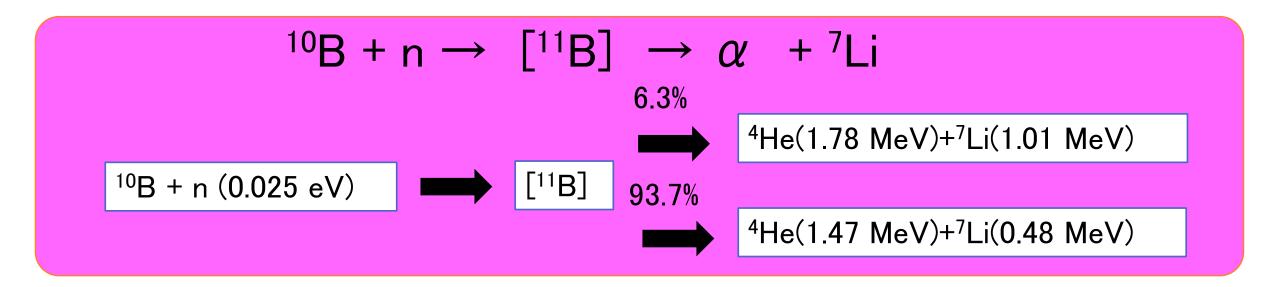
2) Boron Neutron Capture Therapy for Cancer

B: Boron

N: Neutron

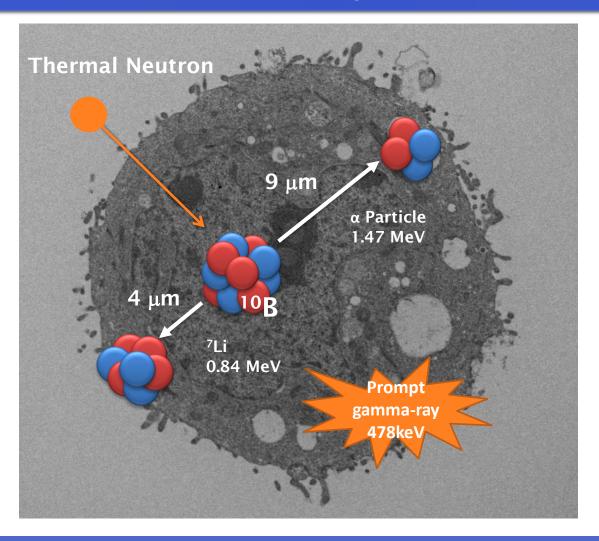
C: Capture

T: Therapy



History of BNCT

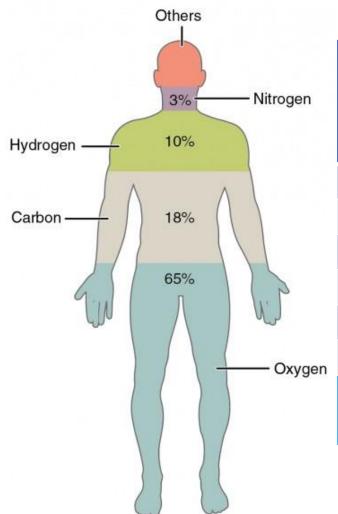
1932: J. Chadwick discovers the neutron


1936:G.L. Locher proposes **BNCT** as a cancer therapy

1951: W. Sweet initiates BNCT clinical trial

Targeted Boron-10 Therapy for Cancer

¹⁰B (n, α) ⁷Li capture reaction



No damage to surrounding tissue

→ High quality of Life

Non-Boron-10 in human body

Atomic Composition of a Man

Element	Mass [%]	Mass [mol]	Mass 70 [kg]	Atoms 7 x10 ²⁷ atoms	Nuclide	Ratio [%]	Neutron cross sections [barn] *
Oxygen	61	2700	43 kg	1.61 x10 ²⁷	¹⁶ O	99.757	<0.0002
Carbon	23	1300	16 kg	8.33x10 ²⁶	¹² C	98.93	0.0037
Hydrogen	10	6900	7 kg	4.22x10 ²⁷	¹ H	99.989	0.332
Nitrogen	2.5	129	1.8 kg	3.9x10 ²⁵	¹⁴ N	99.632	1.75
Calcium	1.4	25	1.0 kg	1.6x10 ²⁵	⁴⁰ Ca	96.941	3.4
Phosphate	1.1	25	780 g	9.6x10 ²⁴	³¹ P	100	0.19
Boron	-	-	18mg	2x10 ²⁰	¹¹ B	80	0.0055
					¹⁰ B	20	3835

* thermal neutron(En=0.025eV),1[barn]= 1X10⁻²⁴ cm²

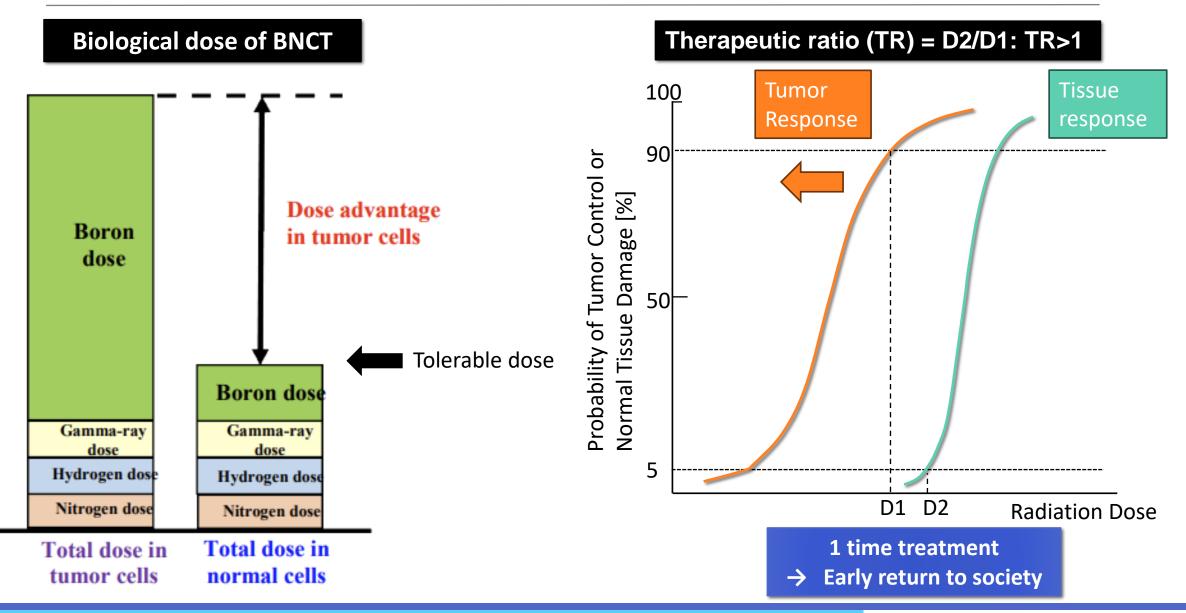
Reference: Emsley, John, The Elements, 3rd ed., Clarendon Press, Oxford, 1998 http://www.foresight.org/Nanomedicine/index.html, 2006.

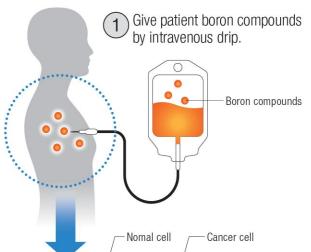
https://wwwndc.jaea.go.jp/NuC/index.html

https://courses.lumenlearning.com/nemcc-ap/chapter/elements-and-atoms-the-building-blocks-of-matter/

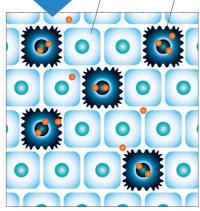
(70 kg)

* 人間は約70%が水 (H₂O)。

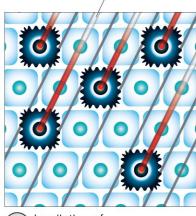




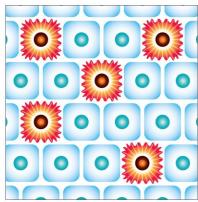
A single irradiation of BNCT



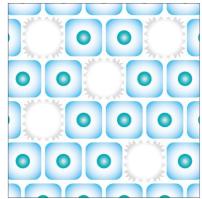
BNCT Procedures


BNCT procedures

Before commencing BNCT, the accumulation of boron compounds in the cancer is checked by marking boron agents with a radioactive nuclide and administering a PET inspection. After determining that a sufficient level of boron can accumulate in the cancer, the patient receives a dose of boron compound and is irradiated with an epithermal neutron taken from a nuclear reactor or an accelerator. Neutron thermalization of the epithermal neutron then takes place in the body and the boron reacts with the cancer to selectively destroy the cancer in an effective manner.



Boron compounds are taken into cancer cells selectively.



Thermal neutron

3 Irradiation of thermal neutrons.

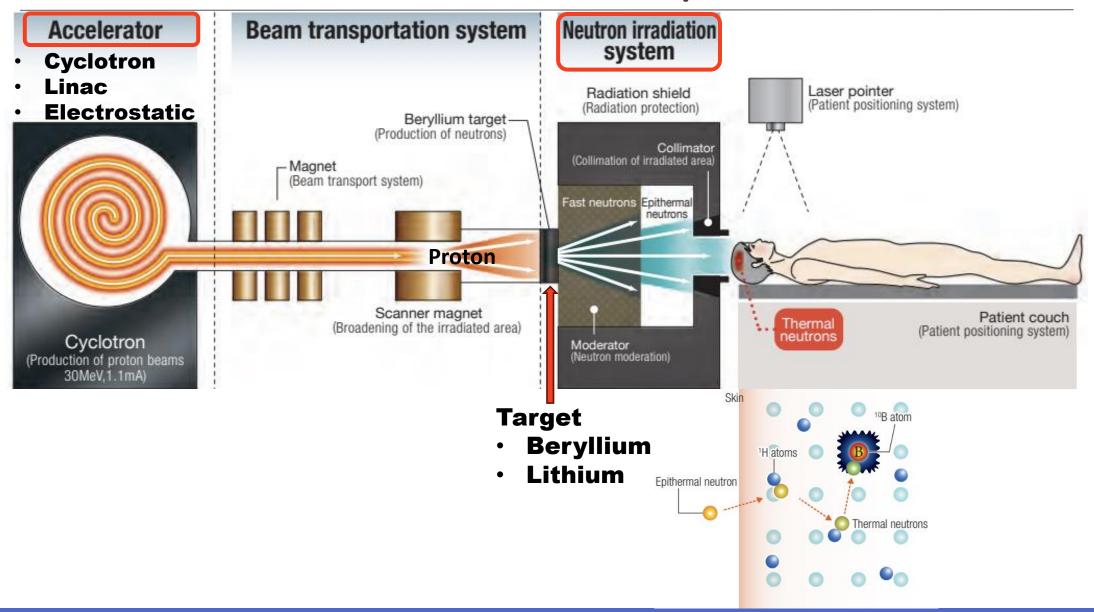
Within a cancer cell, the nuclear reaction of boron and a neutron generates radiation.

5 Cancer cells are destroyed in a highly selective manner.

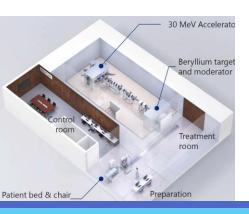
http://www.pref.osaka.lg.jp/jigyochosei/bnct-jituyouka/

3) Accelerator based BNCT system

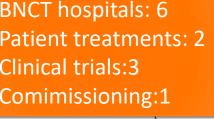
Country	Institute/Hospital	Accelerator type	Target material	Beam energy (MeV)	Beam current (mA)	Status
Japan	Southern Tohoku Hospital	Cyclotron	Ве	30	1.0	Treatment
	Kansai BNCT Research Center	Cyclotron	Ве	30	1.0	Treatment
	Kyoto University	Cyclotron	Ве	30	1.0	Research
	National Cancer Center Hospital	Linac	Li	2.5	12	*1
	Edogawa Hospital	Linac	Li	2.5	12	*1
	University of Tsukuba	Linac	Ве	8	2.1	*2
	Nagoya University	Electrostatic	Li	2.8	15	*3
	Shonan Kamakura Hospital	Electrostatic	Li	2.6	12	*3
Finland	Helsinki University Hospital	Electrostatic	Li	2.6	12	*2
China	Xiamen Humanity Hospital	Electrostatic	Li	2.5	10	*1
	IHEP	Linac	Li	3.5, 2.8	2.9, 20	*3
	China Institute of Atomic Energy	Cyclotron	Ве	14	1	*5
	Lanzhou University	Electrostatic	Li	2.6	15	*5
Italy	CNAO	Electrostatic	Li	2.5	10	*5
	INFN	Linac	Ве	5	30	*4
S. Korea	Gil Hospital	Linac	Ве	10	8	*1
U.K.	Birmingham University	Electrostatic	Li	2.6	12	*4
Russia	Budker Institute	Electrostatic	Li	2.0-2.3	10	Research
Argentina	CNEA (deuteron)	Electrostatic	Be, C	1.45	30	*4
Spain	University of Granada	Electrostatic	Li	2.1	30	*5

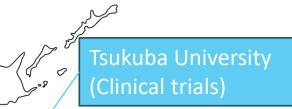

^{*1:} Clinical study, *2: Preparation of clinical study, *3: Commissioned, *4: Under development, *5: In planning

Accelerator BNCT system


Accelerator based BNCT hospitals in Japan

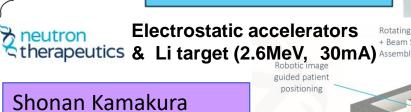
Southern Tohoku General Hospital (Cancer treatment by health insurance from 2020)



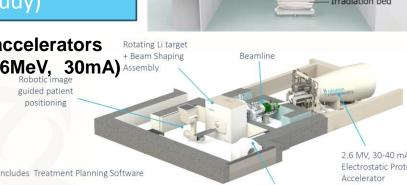

Kansai BNCT Medical Center (Cancer treatment by health insurance from 2020)

BNCT hospitals: 6 Patient treatments: 2 Clinical trials:3 Comimissioning:1

BPA



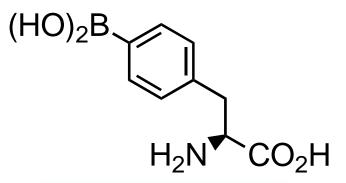
株式会社 i BNC t Electrodynamic linear Accelerator


& Be target (8MeV, 5mA)

National Cancer Center (Clinical trials)

Edogawa Hospital (Clinical study)

Shonan Kamakura **General Hospital** (Preclinical Study)



Li target

Boron-10 for BNCT in Japan

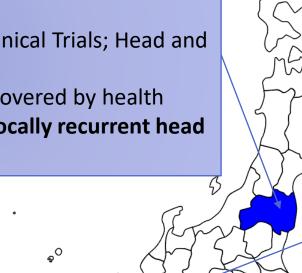
Product Name	Steboronine® intravenous drip bag 9000 mg/300 mL				
Generic Name	Borofalan [10B]				
Indications	Locally unresectable recurrent or unresectable advanced head and neck cancer				
Dosage & Administration	For adult patients, Borofalan [10B] is administered intravenous infusion at approximately 500 mg/kg. In particular, for the first two (2) hours, the amount of Borofalan [10B] per hour is adjusted for 200 mg/kg (i.e. total amount for 2 hours: 400 mg/kg). After that 2 hours, neutron irradiation to the cancer lesion begins, and at the same time, Borofalan [10B] is administered at 100 mg/kg for one (1) hour until the neutron irradiation is completed.				
NHI Price	JPY 444,215 (per 300mL bag)				
Manufactured by	Stella Pharma Corporation				

Accelerator based BNCT systems ◆住友重機械工業

住友重機械工業 **Cyclotron & Be target** (30 MeV, 1mA)

Southern Tohoku BNCT Research Center

Feb. 2016 - June 2018 Phase II Clinical Trials; Recurrent high-grade glioma


July 2016- Feb. 2018 Phase II Clinical Trials; Head and

neck cancer

June 2020~ Medical treatment covered by health

insurance; locally advanced or locally recurrent head

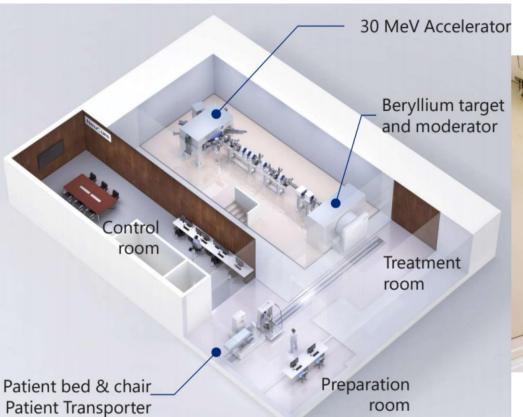
and neck cancer

June 2020 ~ Medical treatment covered by health insurance; locally advanced or locally recurrent head and neck cancer 2022~ Clinical study; Recurrent malignant glioma

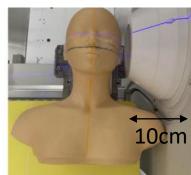
Kyoto University (prototype)

Oct.2012-April 2015 Phase I Clinical trials; Brain tumor Jan. 2016 Jan.- June 2018 Phase II Clinical Trials; Brain tumor Feb.2014- Jan. 2016 Phase I Clinical Trials; Head and Neck Cancer

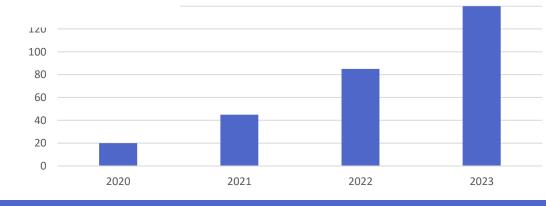
*Pengbo (Hinan) Medical **Technology in China** (2025-planned)



Kansai BNCT Medical Center

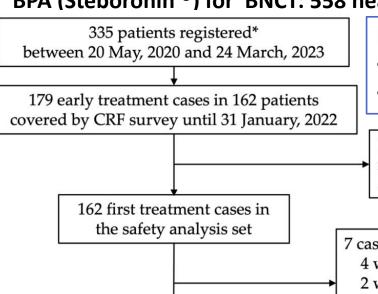


Pharmaceutical University



Development of extended collimator

2020~ BNCT for head and neck cancer 290 cases (until 2024 March)



2020 ~ BNCT for locally advanced or locally recurrent head and neck cancer

BPA (Steboronin ®) for BNCT: 558 head and neck cancer cases (~2024 March)

Patients

- Prior conventional radiotherapy : 93 %
- Prior chemoradiotherapy: 79%

17 cases excluded due to second registration for treatment to relapse after BNCT

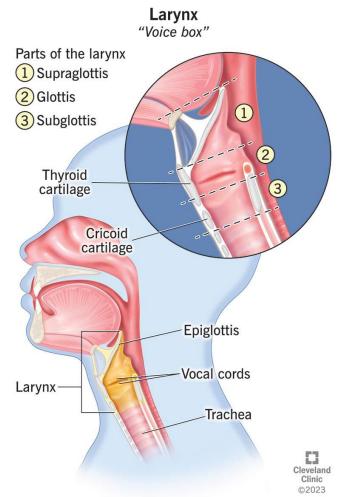
7 cases excluded from efficacy analysis 4 with inadequate neutron irradiation 2 with uncollected CRF after 6 months 2 with unsatisfactory tumor response 1 with off-label use

	SCCHN ($n = 137$)	NSCCHN $(n = 17)$		
ORR, % (95% CI)	72.3 (64.0–79.6)	64.7 (38.3–85.8)		
Best overall response				
CR, n (%)	63 (46.0)	8 (47.1)		
PR, n (%)	36 (26.3)	3 (17.7)		
SD, n (%)	31 (22.6)	5 (29.4)		
PD, n (%)	6 (4.4)	0		
NE, n (%)	1 (0.7)	1 (5.9)		

Abbreviations: SCCHN, squamous cell carcinoma of the head and neck; NSCCHN, non-squamous cell carcinoma of the head and neck; ORR, overall response rate; CI, confidence interval; CR, complete response; partial response; SD, stable disease; PD, progressive disease; NE, not evaluated.

155 cases in the efficacy analysis set

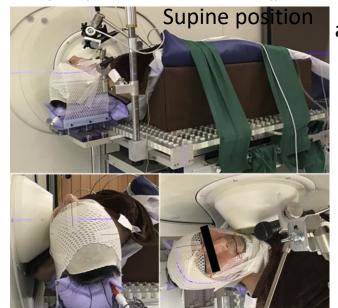
BNCT for Recurrent laryngeal carcinoma

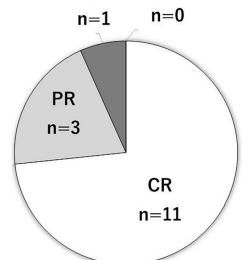

OMPU

15 patients, median age 74 years

Patient and tumor characteristics and treatments administered.

Function	of	Lary	/nx
----------	----	------	-----

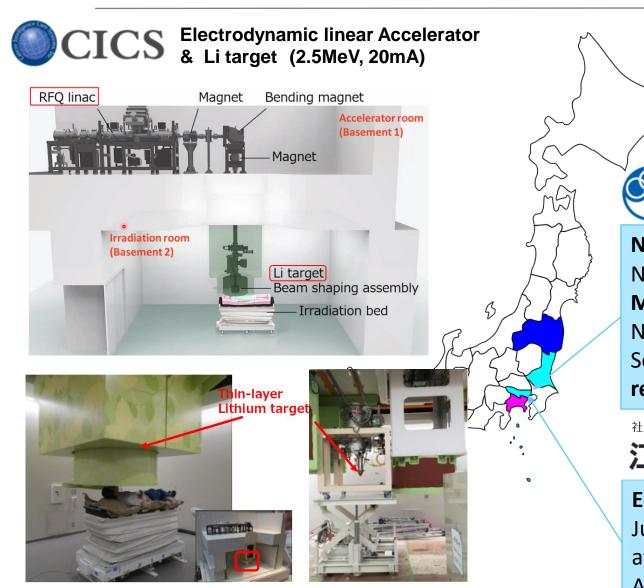

- Respiratory "breathing": to provide an open airway
- Phonatory "Speaking": to provide a mechanism for sound production
- Protective: to prevent food or drink from accidentally entering the trachea


Patient	Age (y), Gender	Subsite	TNM	Initial therapy	Time from initial RT to BNCT (m)	rTNM	Recurrent tumor diameter (mm)
1	53/M	glottic	T1aN0M0	RT 70Gy	9	rT1aN0	8
2	64/M	glottic	T2N0M0	CRT(CDDP) 70Gy	82	rT2N0	14
3	74/M	glottic	T1aN0M0	RT 66 Gy, TOLS	44	rT2N0	14
4	55/F	glottic	unknown	CRT(CDGP) 66Gy	107	rT2N0	15
5	81/M	glottic	T2N0M0	BRT(Cetuximab)70 Gy, SOHND	76	rT2N0	16
6	84/M	subglottic	T2N0M0	CRT(CDDP) 70Gy	87	rT2N0	17
7	84/M	glottic	unknown	RT (dose unknown)	150	rT2N0	18
8	81/M	glottic	T2N0M0	RT 67 Gy, TOLS \times 4	45	rT2N1	9
9	74/M	glottic	T3N0M0	CRT(CDDP) 67 Gy, TOLS,S-1	28	rT3N0	12
10	85/M	glottic	T3N0M0	RT 70Gy	10	rT3N0	15
11	61/M	glottic	T3N0M0	CRT(CDDP) 70Gy	6	rT3N0	20
12	74/F	glottic	T3N1M0	TPF, CRT(CDDP) 16Gy	12	rT3N1	11
13	87/F	glottic	T2N0M0	RT 64.8Gy	47	rT4aN0	15
14	69/M	glottic	T1aN0M0	RT63Gy, TOLS, PIT	95	rT4aN0	20
15	74/M	glottic	T1aN0M0	RT 70 Gy, Partial laryngectomy	139	rT4aN0	22

RT: radiation therapy, CRT: concurrent chemoradiotherapy, TOLS: Transoral laser surgery, CDDP: cis-diamminedichloroplatinum, CDGP: cis-diammineglycolatoplatinum.

SOHND: supra omohyoid neck dissection, PIT: Photoimmunotherapy.

Tumor response at three months after BNCT SD PD



Accelerator based BNCT systems

National Cancer Center Hospital

November 2019 ~ 2022 Phase 1 Clinical Trial; **Malignant Melanoma & Angiosarcoma**

November 2022~ Phase 2 Clinical Trial; Angiosarcoma September 2024 ~Phase 1/2 Clinical Trial; FBPA-PET positive recurrent thoracic solid malignant tumor

社会福祉法人 仁生社

江戸川病院 時

Edogawa Hospital

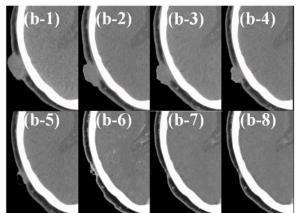
July 2023 ~ March 2024 Clinical study; **Recurrent breast cancer** after radiation therapy

August 2024 ~ Clinical study; **FDG-PET positive tumors**

2019~ BNCT for scalp angiosarcoma

Phase 1 clinical trials; maximum dose to skin 12 Gy-Eq

68-year-old female,

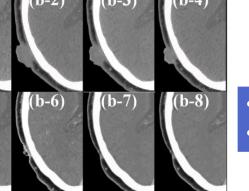

Right temporodorsal scalp mass; 35×28 mm and 22 mm

Blood boron concentration; 42.2 ppm

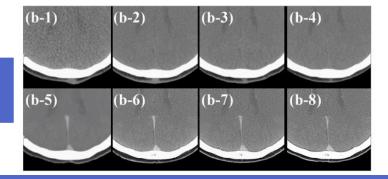
Proton charge; 9526 mC **Irradiation time; 17mins**

Epithermal neutron; 5.3×10^{11} cm-2

66-year-old female,


Dorsal scalp mass; 29 × 23 mm and 10 mm

Blood boron concentration; 36.5ppm

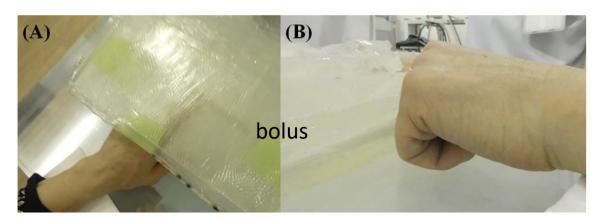

Proton charge; 11636 mC Irradiation time; 20 mins

Epithermal neutron; 6.3×10^{11} cm-2

- High QOL
- Complete Response (CR)

2022~ BNCT for cutaneous malignant melanoma

OPEN ACCESS


EDITED BY Minoru Suzuki, Kyoto University, Japan

REVIEWED BY
Koichi Yasuda,
Hokkaido University, Japan
Shintaro Shiba,
Shonan Kamakura General Hospital, Japan

Acral cutaneous malignant melanoma treated with linear accelerator-based boron neutron capture therapy system: a case report of first patient

72-year-old female, malignant melanoma on a second finger of the left hand, Tumor size; 20 × 12 mm

Maximum dose of the skin; 18 Gy-Eq Blood boron concentration; 33.7 ppm

Proton charge; 18230 mC Irradiation time; 30.4 mins

Epithermal neutron; 9.7×10^{11} cm-2

- High QOL
- Complete Response (CR)

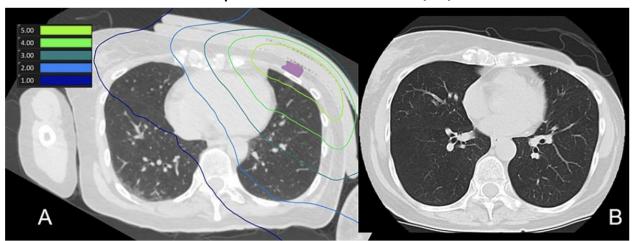
2023~ BNCT for recurrent breast cancer

June 2023 ~ March 2024 Specific Clinical Research; Recurrent breast cancer after radiation therapy

Cureus
Part of Springer Nature

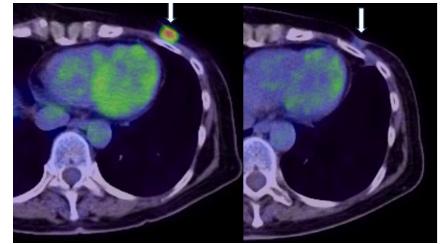
Open Access Case Report

DOI: 10.7759/cureus.57417


The Effects of Boron Neutron Capture Therapy on the Lungs in Recurrent Breast Cancer Treatment

61-year-old woman

Left breast cancer; Chemotherapy, mastectomy (ypT2N1M0), and radiotherapy with 54 Gy in 30 fractions **The recurrence in the left chest**; Surgery, radiotherapy with 50.4 Gy in 28 fractions and chemotherapy for 3 years **The further recurrence on the left chest wall; BNCT**


Dose distribution map for BNCT 90

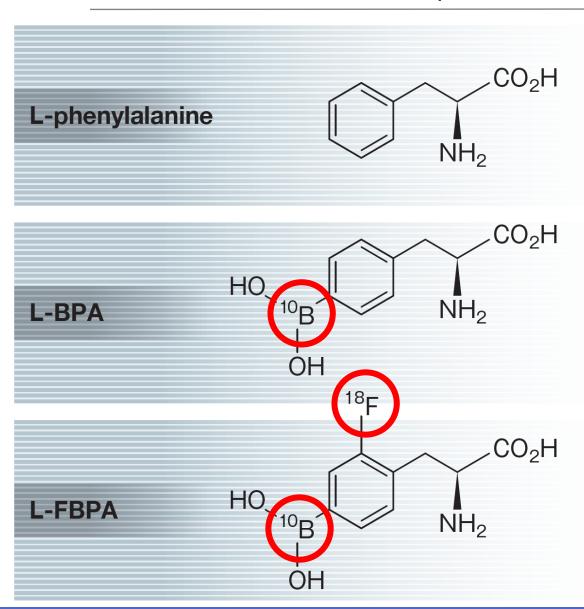
90 days post-treatment

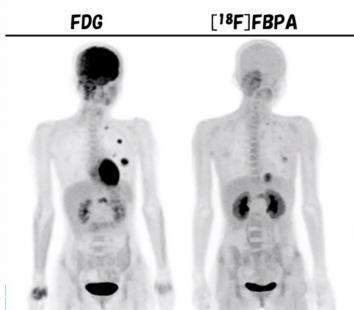
Before BNCT

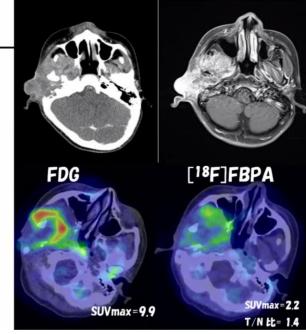
6 months post-BNCT

The prescribed dose of ipsilateral lung;

Minimum dose; 23.6 Gy-Eq, Average dose; 2.7

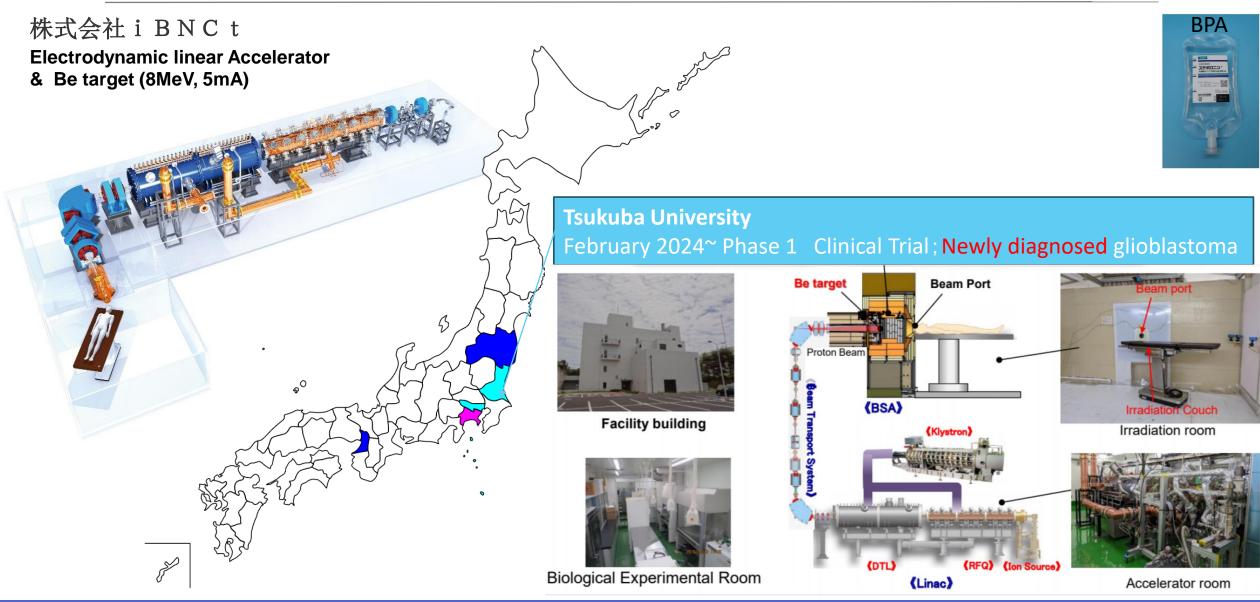

CT scans after BNCT showed no evidence of radiation pneumonitis.




2024 ~ BNCT for FBPA-PET positive recurrent solid thoracic malignant tumor

Recurrent Adenoid Cystic Cancer of rt. Parotis

- Imaging of tumor site boron accumulation
- **→** Indication of BNCT
- ◆ Tumor tissue/normal tissue (T/N ratio)
- → BNCT Dose Calculation



Accelerator based clinical BNCT systems

Accelerator based clinical BNCT systems

Development of Accelerator based clinical BNCT (~ Sep. 2024)

China

Xiamen Humanity Hospital (XHH) BNCT Center

October 2022~ clinical study; **Recurrent head and neck** cancer, **High-grade glioma**, **Melanoma**

March 2024 The approval of Accelerated BNCT treatment system (NeuPEX Block-I) as Class III medical device

May 2024~ Investigational New Drug (IND) clinical trials for Neuboron's boronophenylalanine (NBB-001, BPA)

Korea

Gachon University Gil Medical Center

June 2022 clinical trials phase1/2~; High-grade glioma

Japan

South Tohoku BNCT Research Center

2016-2019 Phase 2 Clinical Trial; **Head and neck cancer**June 2020~ Medical treatment covered by health insurance; **Head and neck cancer**

Kansai BNCT Medical Center

June 2020 ~ Medical treatment covered by health insurance; **Head and neck cancer**

National Cancer Center Hospital

November 2019 ~ 2022 Phase 1 Clinical Trial; Malignant Melanoma & Angiosarcoma

November 2022~ Phase 2 Clinical Trial; Angiosarcoma September 2024~ Phase1/2 Clinical Trials; FBPA-PET positive recurrent thoracic solid malignant tumor

Edogawa Hospital BNCT

June 2023 ~ Specific Clinical Research; **Recurrent breast cancer** after radiation therapy

August 2024 ~Specific Clinical Research; **FDG-positive tumors**

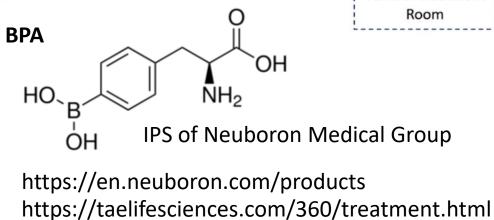
Tsukuba University

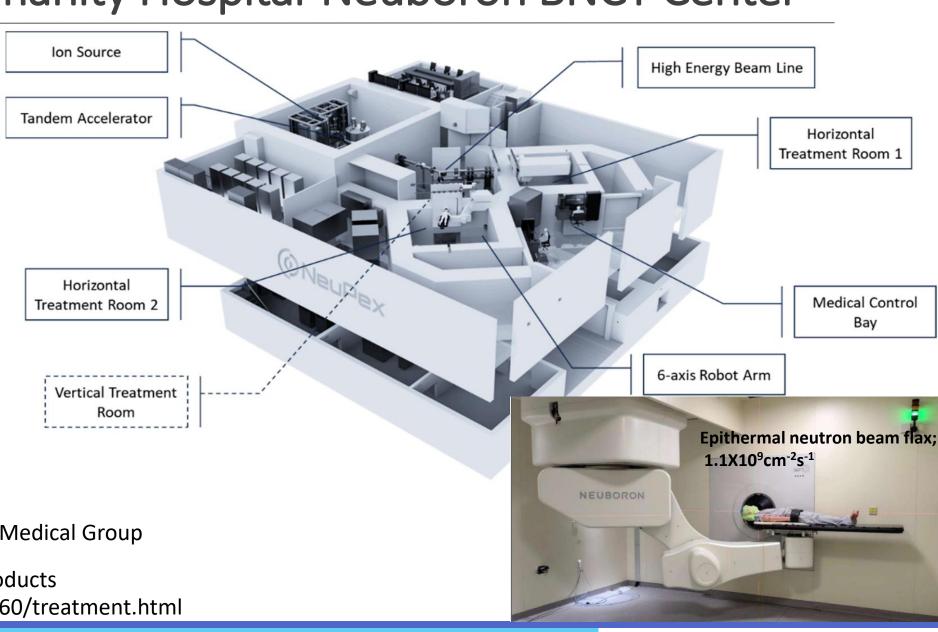
February 2024~ Phase 1 Clinical Trial; Newly Diagnosed Glioblastoma

Shonan Kamakura Hospital

2025 ~ Clinical Study (Planned)

Ximen Humanity Hospital-Neuboron BNCT Center


NEUBORON


Tandem & Li target (2.35MeV, 10mA)

NeuPex Block-I uses a tandem electrostatic accelerator to provide a low-energy proton beam at a relatively high beam current. Electrostatic accelerators are well-known as a power-efficient, stable machines. Figure III-4 shows the main vessels of the accelerator system.

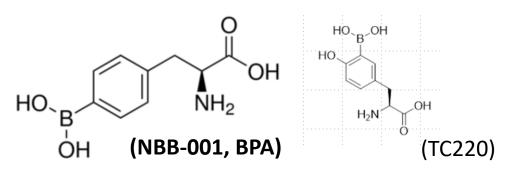
FIG. III-4. Tandem electrostatic accelerator of NeuPex (a) electrostatic power vessel, (b) main accelerate

2022 ~ BNCT for advanced refractory Malignant Tumors

October 2022 ~ June 2024, 24 patients

Investigator-initiated trial (IIT)

IIT-001(Chinese Clinical Trial Registration Number: ChiCTR2200066473),


"A Single-center, Single-arm Clinical Trial of the Safety and Efficacy of Boron Neutron Capture Therapy (BNCT) for Advanced Refractory

Malignant Tumors"

3 month follow up

High QOL, Patients satisfaction and Tumor regression

- IIT-002 on going, 5 patients Head and neck cancer and brain tumor (glioma)
- IIT-003 LAT-1 and/or 18F-BPA positive tumors

March 2024 The approval of Accelerated BNCT treatment system (NeuPEX Block-I) as Class III medical device May 2024~ Investigational New Drug (IND) clinical trials for Neuboron's boronophenylalanine (NBB-001, BPA)

Accelerator-BNCT Clinical Research Center, Korea

June 2022~ High-grade glioma 2023 ~ Head and neck cancer

> **Gachon University Gil Medical Center**

National Cancer Center

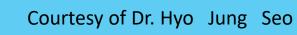
The Catholic University of Korea Seoul St. Mary's Hospital

Seoul National University Hospital

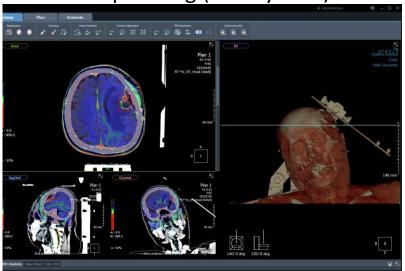
DawonMedax A-BNCT Center

~ 27 m

~ 34 m



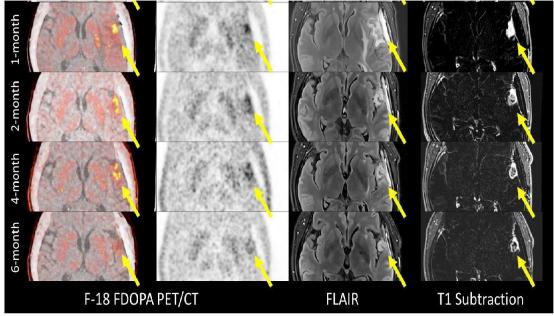
- Treatment room
- LINAC accelerator room
- Accelerator control room
- BPA injection room
- ICP-MS equipment room
- Blood sample analysis room



BNCT for Recurrent Glioblastoma

June 2022~2023 11 High-grade glioma patients (6 clinical trials, 5 compassionate cases)

Treatment planning (TPS system)


BPA (Interpharma, Czech) administration

Neutron irradiation

6-month follow-up image of a BNCT treated patient with 9 Gy-Eq DLT

- 6 month "progress-free survival"
- Stable disease (SD) or "complete response"

Summary

- BNCT is a cancer therapy that uses a nuclear reaction between neutrons and boron to selectively destroy cancer cells with little damage to normal cells.
- BNCT usually is treated with a single irradiation. Therefore, early return to society is possible.
- With the development of the accelerator BNCT system, hospital-based treatment has started in Japan from 2020.
- BNCT has a high level of patient satisfaction, with improvement in post-treatment QOL observed.

Thank you for listening!

About

Staff

Achievements

BNCT

Training course

News

Contact

IAEA, Japan's Okayama
University to Work Together
on Advancing Boron Neutron
Capture Therapy to Help Fight
Cancer

The IAEA and Japan's Okayama University have agreed to work together in the area of Boron Neutron Capture Therapy (BNCT), a non-invasive therapeutic technique for treating invasive malignant tumours.

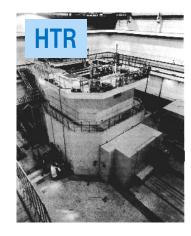
Okayama University

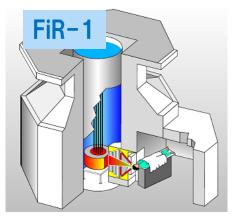
IAEA Collaborating Centre

for

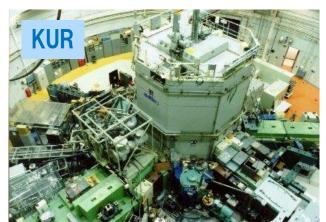
Boron Neutron Capture Therapy

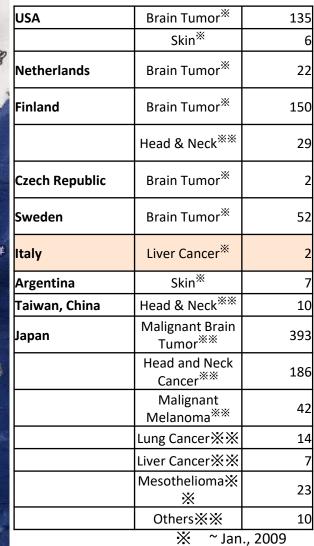
2022 - 2026




CROL

The development of reactor-based BNCT

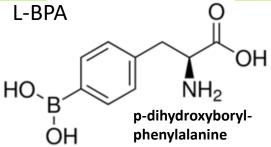




Reactor-based neutron sources in the world

>1400 until 2014,

*** March, 2012



2010 ~ Reactor-based BNCT in Taiwan

Boron

(Hammercap AB, Stockholm, Sweden and Taiwan Biotech Co. Ltd, Taiwan, China)

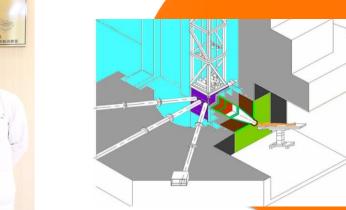
(BPA-Fructose, 500 mg/kg)

Therapy

Brain tumor

Head and neck cancer

Epithermal neutron flux for 1 MW power is 1.7×109 n cm-2 s-1 in air at the beam exit


2023~ Medical device approval from Taiwan Food and Drug **Administration**

2010~ Head and neck cancer 2017~ salvage BNCT as emergent / compassionate use for recurrent malignant brain tumors

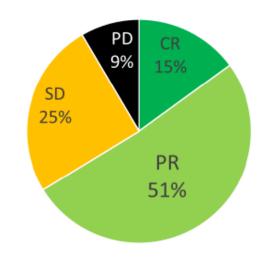
The treatment of foreign patients, including patients from America, Japan, Brazil, Australia, Spain, Swiss, Italy, Singapore and China (~34) patients till Aug.2023)

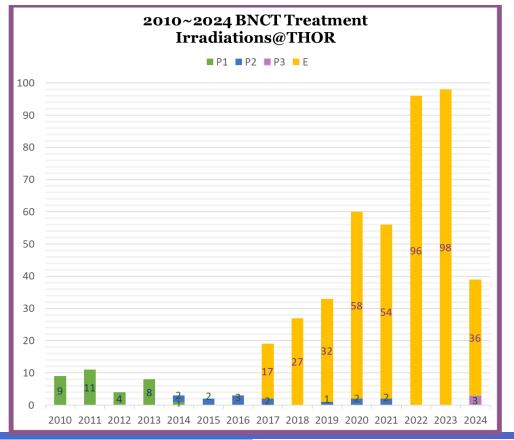
Dr. Yi-Wei Chen

THOR status	Clinical intent	Indication	Case number	Execution period	Clinical outcome	
Not-approved medical facilities by TFDA (2010-2023.5)	Phase I trial	Recurrent H&N cancers	17	2010-2013	Improved patients' QOL, with 6 patients CR and 6 patients with tumor volume reduced by more than 30% (PR)	
	Phase II trial	Recurrent H&N cancers	11	2014-2020	Similar as phase I	
	Salvage	Recurrent brain and H&N cancers	> 400	2017-	Effective in palliating the disease and improving the patients' QOL; to be evaluated	
Approved medical device (2023.6-)	Phase I/II trial	Recurrent glioblastoma after CCRT and Avastin	55	2023.12.01- 2026.04.30	To be evaluated	
Cancer Conqueror, Precision Medical Technology: Current Status and Future Prospects of THOR-BNCT Development in Taiwan, Sep 2023						

Current BNCT status in Taiwan

Item	Brain	H&N	Others	Total	P1	P2	Р3	E
Irradiation times	264	197	7	468	33	14	3	418

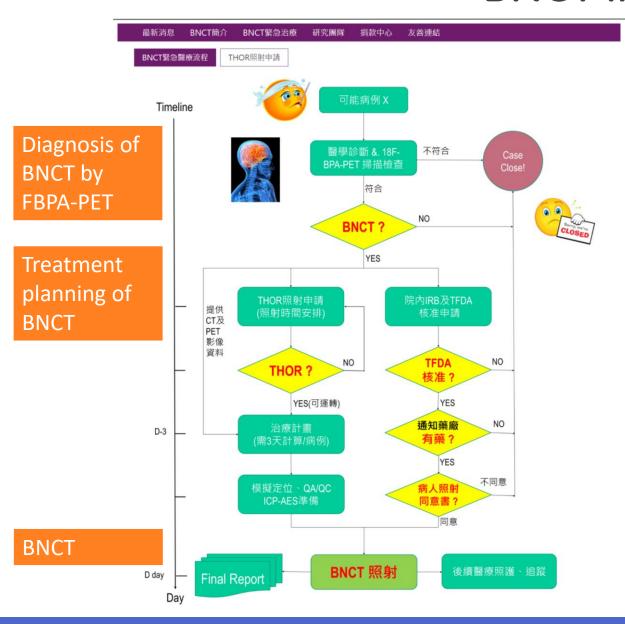

2010.08.11~ 2024.04.19


by JJP

Median follow-up time is 7.5 months.

Longest survival is 17.9 months

Shortest survival period after BNCT is 1.1 month.

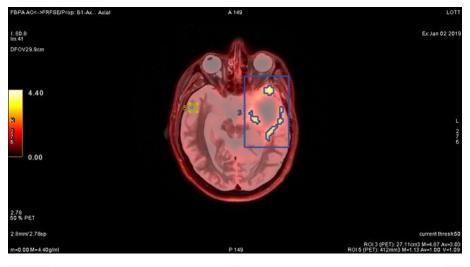


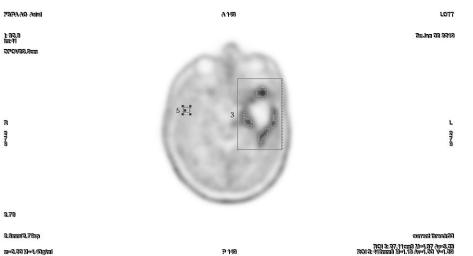
BNCT in Taiwan

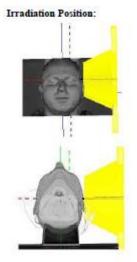
以單次申請BNCT醫療服務計算,為新台幣**壹拾貳萬元**整,若採計畫性照射,第二次及以後之照射則每次收費新台幣**壹拾萬元**整。(1st NT\$ 120,000, 2nd NT\$ 100,000)

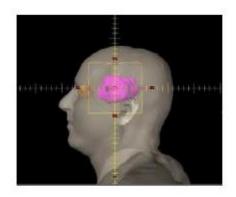
•聯絡人: 王雅亭小姐,

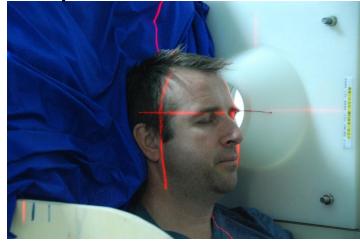
電話: (03) 5742884,傳真: (03) 5725974 email : ytwang@mx.nthu.edu.tw / reactor@my.nthu.edu.tw






BNCT for Recurrent glioblastoma (Australian patient)

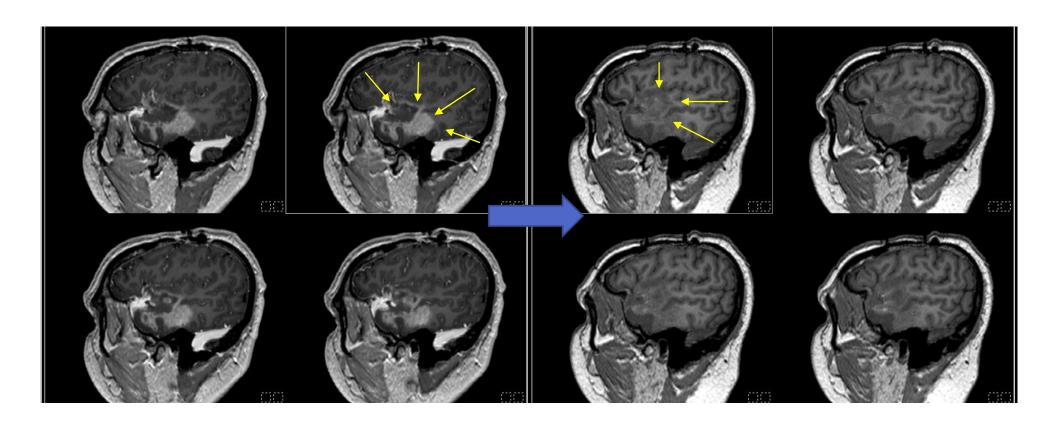

FBPA-PET Imaging before BNCT


Simulation before BNCT

BNCT

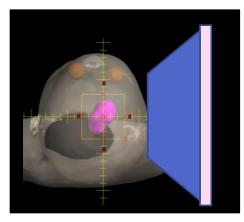
Set up

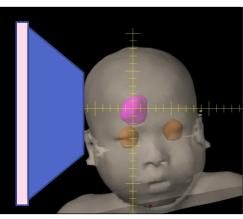
Boron administration

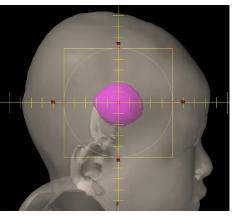


BNCT for Recurrent glioblastoma (Australian patient)

Before BNCT (2019-01-16)


BNCT on 201901-30


After BNCT (2019-02-26)

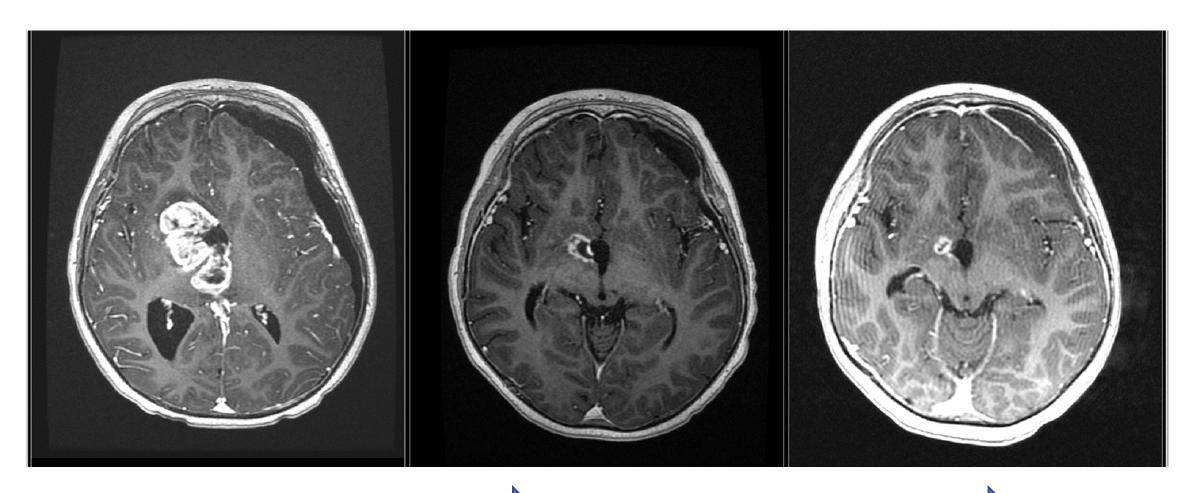


BNCT for brain tumor (8-year-old kid)

Simulation before epithermal neutron irradiation



- Collimator length 10 cm, diameter of opening 10 cm
- Neutron source to tumor center distance 18 cm


Treatment room

BNCT for brain tumor (8-year-old kid)

After 40 Gy X-ray RT

After BNCT 20.7 Gy-E

Development of salvage BNCT system for recurrent malignant glioma patients in Taiwan

Article

Salvage Boron Neutron Capture Therapy for Malignant Brain Tumor Patients in Compliance with Emergency and Compassionate Use: Evaluation of 34 Cases in Taiwan

Survivals after BNCT

	OS				CSS			RFS
•	Median	6		Median			Median	
	Survival	Months	12 Months	Survival	6 Months	12 Months	Survival	6 Months
	(Months)	Months		(Months)			(Months)	
All cases	7.25	52%	29%	7.80	58%	38%	4.18	32%
CR	17.43	100%	64%	28.00	100%	50%	9.23	65%
PR	15.47	73%	62%	15.47	73%	62%	8.21	55%
SD	6.00	14%	0%	6.00	33%	0%	3.00	0%
PD	4.83	0%	0%	4.83	40%	0%	1.50	0%
ORR	15.65	82%	61%	17.11	82%	73%	8.44	59%
DCR	8.10	62%	35%	9.07	62%	41%	4.57	39%

OS, overall survival; CSS, cancer-specific survival; RFS, relapse-free survival;

Treatment Response after BNCT

Response	N (%)	95% CI
CR	6 (17.6%)	0.05-0.30
PR PR	11 (32.4%)	0.17-0.48
SD	12 (35.3%)	0.19-0.51
<mark>PD</mark>	5 (14.7%)	0.03-0.27
<mark>ORR</mark>	50.0%	0.33-0.66
<mark>DCR</mark>	85.3%	0.73-0.97

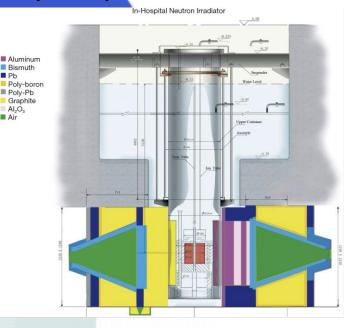
ORR, objective response rate (ORR = CR + PR); DCR, disease control rate (DCR = CR + PR + SD).

2014 ~ Reactor-based BNCT in the hospital, China

Therapy
Melanoma

In-Hospital Neutron Irradiator (IHNI-1) in China, Beijing Capture Technology Limited Co. (BCTC)

Boron

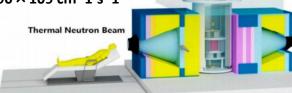

L-BPA O OH NH₂ P-dihydroxyboryl-phenylalanine

(BPA-Fructose)

Neutron

In-Hospital Neutron Irradiator (IHNI-1)

- Thermal Neutron (<0.4eV)
- Epithermal neutron (0.4 eV – 10keV)



世界首台医院中子照射器

二元靶向放疗治癌的新技术: 中子俘获疗法

Thermal neutron fluence rate; 1.90 × 109 cm-1·s-1

Epithermal neutron fluence rate; 4.90 × 108 cm-1·s-

Epithermal Neutron Beam

2014~ BNCT for melanoma @ IHNI-1

Third Xiangya Hospital of Central South University ClinicalTrials.gov (No. NCT02759536)

Case Report

Boron neutron capture therapy for malignant melanoma: first clinical case report in China

Zhong Yong^{1*}, Zewen Song^{2*}, Yongmao Zhou³, Tong Liu⁴, Zizhu Zhang⁴, Yanzhong Zhao⁵, Yang Chen⁴, Congjun Jin⁴, Xiang Chen⁶, Jianyun Lu⁷, Rui Han⁸, Pengzhou Li⁹, Xulong Sun⁹, Guohui Wang⁹, Guangqing Shi¹, Shaihong Zhu⁹

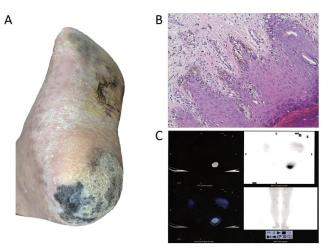


Figure 1 Gross examination, pathological analysis and PET/CT scan of the patient before BNCT. (A) Gross examination of the skin lesions in the patient's left foot before BNCT; (B) Pathological analysis before BNCT; (C) PET/CT before BNCT. BNCT, boron neutron capture therapy; PET, positron emission tomography; CT, computed tomography.

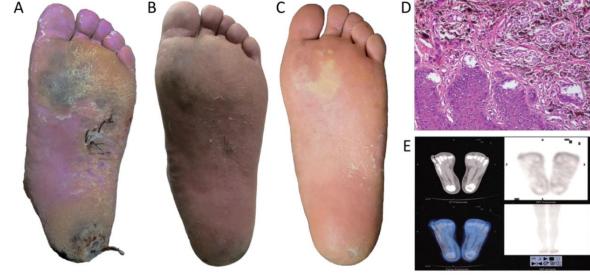


Figure 4 Gross examination, pathological analysis and PET/CT scan of the patient after BNCT. (A–C) Gross examination of the skin lesions in the patient's left foot 2 weeks (A), 5 weeks (B) and 24 months (C) after BNCT; (D) Pathological analysis after BNCT; (E) PET/CT scan after BNCT. BNCT, boron neutron capture therapy; PET, positron emission tomography; CT, computed tomography.

Latest reactor-based BNCT development all over the world

Ca. 2000 patients underwent BNCT all over the world.

1951: 1st clinical trial of BNCT for recurrent glioblastomas in U.S.

2001: 1st BNCT clinical trial for head and neck cancer in Japan

Up to now clinical trails using reactor based BNCT

- Japan: more than 1000 cases
- Finland: 311 cases for both clinical trials and compassionate use
- Taiwan: more than 450 cases for both clinical trials and compassionate use

2014: Reactor based BNCT in the hospital in China

2023: The approval of reactor based BNCT system as medical device in Taiwan

