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Ancient Days

Until the 1970s, all cryptography was symmetric

That is, encrypting and decrypting use
(essentially) the same key

This makes key management to maintain secrecy
of the keys a very big deal
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Caesar Cipher

Index the letters in alpha order
Shift each letter down by n spaces (e.g. 3)
A-> D,B-> E,C-> F and so forth

So decrypting is a shift of -n
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Asymmetric/Public Key

Early 1970s, Cocks/Ellis/Williamson in the UK

1978, CACM, Rivest-Shamir-Adleman

9/1/25



Primes and Primitive Roots

Consider prime p=11 and primitive root 7

We power up 7 modulo 11:

1,2,3,4, 5,6,7,8,9, 10 (exponents)
/,5,2,3,10,4,6,9,8, 1 (reduction mod 11)

For primes and powers of prim roots, we get
essentially a random sequence of the p-1 linear

residues modulo p
The exponents are the discrete logarithms
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Working Modulo N = pqg

Consider N = pg for primes p and g

Not quite a single cycle (as for primes) but
almost, and of order (p-1)(g-1)

We will want to choose p and g carefully

(Get different big primes dividing p-1 and g-1, for
example)
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Montgomery Multiplication

Arithmetic on large (4096 bit) operands would be
very slow, especially for modular reduction

But arithmetic on special operands can be quite
fast

This is why the largest known primes are usually
Mersenne numbers
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Montgomery Multiplication (2)

Consider M = 2~n - 1, a Mersenne number

The product P of two integers < M is 2n bits long
and is P=A*(2~n) + B, with A and B each n bits

AX(2~n) + B = A¥(2”~n-1) + A + B

Reduce P mod M by adding left and right halves
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Montgomery Multiplication (3)

Montgomery multiplication (Peter Montgomery)
essentially involves converting all the arithmetic
modulo N=pg into arithmetic for which reduction
modulo N is simple and fast

Essentially pre-multiply everything by an
appropriate integer to make reduction modulo N
look like reduction modulo Mersenne numbers
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Rivest-Shamir-Adleman

Choose p and g of 2048 bits each, so N=pg

Knowing p and g, choose public exponent E, and compute
the private exponent D for which

ED = 1 modulo (p-1)(g-1)
Publish N and E; hold D as private

To send me a message M, anyone can compute C= MNE
modulo N and send me C

Without factoring N, computing D is hard, so only I can
compute CrD = M~ANED) = M modulo N

Decrypting requires D, which requires factoring N

9/1/25 10



Diffie-Hellman Key Exchange

RSA isn’t used much because it is slow by
comparison with elliptic curves

With two primes of 2048 bits, one has to do 4096
bit arithmetic, and that is “digit-sequential”

The NIST AES standard was developed to be
feasible for credit cards, with minimal processing,
and AES heavily uses byte-oriented computations
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Cocks-Ellis-Williamson
(or) Diffie-Hellman
Key Exchange

Armadillo has public prime P and prim root g and a secret
exponent E

Armadillo computes A = g~E and sends to Bobcat

Bobcat knows P, g, computes her own E’, computes

B = g~NE’ and sends that to Armadillo, and computes k =
ANE” = gN(EE’)

Armadillo computes BNE = gN(EE’) = k

And they both now have a common key to be used in a
symmetric system (like AES)
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The Discrete Log Problem

Given e, N, and a = e~k modulo N, find k

This is a computationally hard problem, although
there is an “index calculus” method that can be
used for some values of N

So we don’t do things mod primes or products of
primes, but using elliptic curves
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Elliptic Curves

Consider the rational solutions to
y"2 = x"3 + Ax + B
where A and B can be chosen rational
The rational solutions form a mathematical group

A straight line cuts a cubic in three places, and the
three (rational) points on the curve sum to zero

Bear with me ... curve groups are written
additively, not multiplicatively
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Elliptic Curves (2)
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Elliptic Curves (3)

Intersect y = Mx + B with the curve, with two rational
points (x1,y1) and (x2,y2) on the line

Then M = (y2-y1)/(x2-x1) is rational
And X3 - M2 x"2 +Sx+ T =0, someSand T
Newton’s equations: x1 + x2 + x3 = M"2

So the third x3 is rational, and thus y3 is rational
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Elliptic Curves (4)

Elliptic curve groups have a finite number of
generators of infinite order

The discrete log problem for curves does not have
a solution — the multiples of a generator are also a
reasonably random walk through the solutions

BUT (VERY BIG DEAL) one can work with much
smaller arithmetic than with RSA or CEW/DH.

These days, routine is curves for key exchange
and then AES for actual message passing
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But Quantum Computing!!??

When we have quantum computers of reasonable
size, all the stuff just discussed becomes trivial to

break
We need other approaches for public key

All the recent NIST post-quantum algorithms are
based on lattices
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But Quantum Computing!!??

Shor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American
mathematician Peter Shor."I2! It is one of the few known quantum algorithms with compelling potential applications and strong
evidence of superpolynomial speedup compared to best known classical (non-quantum) algorithms. ! However, beating classical
computers will require millions of qubits due to the overhead caused by quantum error correction.

Shor proposed multiple similar algorithms for solving the factoring problem, the discrete logarithm problem, and the period-finding
problem. "Shor's algorithm" usually refers to the factoring algorithm, but may refer to any of the three algorithms. The discrete
logarithm algorithm and the factoring algorithm are instances of the period-finding algorithm, and all three are instances of the hidden
subgroup problem.

9/1/25 19



Lattices

Given (0, 1) and (1, O) in two dimensions, we
have a /lattice of all the points in the plane with
integer coordinates

What if we go to several hundred dimensions, and
non-integral basis elements?

We are looking at all the integer linear
combinations of the basis elements
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Hard Lattice Problems

Shortest Vector:
Given a lattice L, what’s the shortest vector?

Closest vector:

Given a point in n-space, what'’s the closest lattice
point?

These are computationally hard problems
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