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Generative Thermodynamic Computing

Stephen Whitelam
Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

(Received 25 June 2025; accepted 14 November 2025)

We introduce a generative modeling framework for thermodynamic computing, in which structured data
are synthesized from noise by the natural time evolution of a physical system governed by Langevin
dynamics. While conventional diffusion models use neural networks to perform denoising, here the
information needed to generate structure from noise is encoded by the dynamics of a thermodynamic

system. Training proceeds by maximizing the probability with which the computer generates the reverse

of a noising trajectory, which ensures that the computer generates data with minimal heat emission. We
demonstrate this framework within a digital simulation of a thermodynamic computer. If realized in analog
hardware, such a system would function as a generative model that produces structured samples without the
need for artificially injected noise or active control of denoising.

DOI: 10.1103/kwyy-1xIn

Introduction—In this Letter we describe a generative
modeling framework for thermodynamic computing.
Thermodynamic computing is closely related to the field
of probabilistic computing [1-3]. It is based on the ideas that
we can do energy-efficient computation by using small
physical devices whose microscopic states change with time
in response to thermal fluctuations, and that the fluctuations
of a suitably designed device can encode the outcome of a
desired calculation [4-8]. Here, we show that thermody-
namic computers can perform generative modeling in a
manner analogous to diffusion models, with key differences.

In a diffusion model, structured inputs are degraded by
the gradual addition of noise. A neural network is trained
to enact the reverse process, allowing the generation of
structure from noise [9-12]. This process is implemented
on a digital computer, where noise is introduced in the form
of artificially generated pseudorandom numbers. Here,
we use analytic calculations and digital simulations to
suggest an alternative approach, in which the noise-driven
dynamics of a thermodynamic computer—the noise
arising naturally from the system’s interaction with its
environment—generates structure from noise. If realized in
analog hardware, such a system would generate structured
outputs simply by evolving with time under its natural
dynamics. It would not require added pseudorandom noise,
or the guidance of a digital neural network.

In more detail, we consider a model thermodynamic
computer, a set of fluctuating nonlinear degrees of freedom
coupled by bilinear interactions. The computer’s degrees
of freedom evolve according to overdamped Langevin
dynamics. This design is inspired by existing hardware
that can perform linear algebra [7], and by our recent work
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showing that a nonlinear version of such hardware
can function as the thermodynamic version of a neural
network [13]. We provide input to the computer to make it
display images of digits from the MNIST data set [14], and
allow these images to degrade by running the dynamics
of the computer with its interunit couplings set to zero.
Such degradation is called noising in the diffusion model
literature. As we do so, we compute from the Langevin
equation the probability that a computer with hypothetical
nonzero couplings would have generated the reverse of this
noising trajectory, and we adjust the values of these
hypothetical couplings by gradient descent in order to
maximize that probability. After running several such
noising trajectories, we construct a denoising computer
using the trained couplings, and verify that its natural
dynamics, starting from noisy initial conditions, leads to the
generation of structured MNIST-like digits. Independent
dynamical trajectories of the same computer produce a
variety of outcomes, some of which are not contained in the
training set.

In this approach the denoising dynamics is encoded by
the couplings of the trained thermodynamic computer,
which plays the role of a denoising neural network in a
diffusion model. If realized in analog hardware—for
example, using networks of mechanical [15], electrical [8],
or superconducting [16] oscillators—the information
required for denoising would be encoded in the energy
landscape of the computer, rather than in a digital neural
network. As a result, denoising would not be simulated, but
physically enacted.

In this mode of operation the thermodynamic computer
resembles a nonequilibrium, continuous-spin analog of a
Boltzmann machine, a statistical mechanical model that
represents probability distributions over binary variables
[17,18]. The key difference is that a Boltzmann machine
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encodes information in its equilibrium Boltzmann distri-
bution, whereas our device runs on a physical clock: the
computation is carried out by the dynamics of the system at
a designated time, with no requirement to attain equilib-
rium. We therefore refer to the device considered here,
which uses Langevin trajectories to perform a calculation,
as a Langevin computer.

We also show that the training process has a direct
physical interpretation: it adjusts the computer’s couplings
in order to minimize the thermodynamic irreversibility of
the generative process. By finding the computer most likely
to have generated the reverse of a noising trajectory, we
minimize the expected heat emission and entropy produc-
tion of the denoising computer. Our results therefore link
the design of generative thermodynamic models to funda-
mental physical principles, and broaden our understanding
of the capabilities of thermodynamic computers.

Training a generative Langevin computer—Consider a
model of a thermodynamic computer. The computer is
composed of N classical, real-valued fluctuating degrees
of freedom x = {x;}, which could represent voltage states
in electrical circuits [8], oscillator positions in a mechanical
system [15], or phases in Josephson junction devices
[16,19]. The computer’s units x; evolve in time according
to the overdamped Langevin dynamics

Xj = —p0;Vo(x) + /2ukgTn;(2). (1)
Here, p is the mobility parameter, which sets the basic time
constant of the computer. For the thermodynamic com-
puters of Refs. [7,8], u~! is of order a microsecond. For
damped oscillators made from mechanical elements [15] or
Josephson junctions [16,19], u~! is of order a millisecond
or a nanosecond, respectively. The first term on the right-
hand side of Eq. (1) is the force arising from the computer’s
potential energy Vy(x), given a set of parameters (couplings
and biases) @ = ({J/;;}.{b;}); note that d; = d/dx;. The
second term on the right-hand side of Eq. (1) models
temporally uncorrelated thermal fluctuations: kg7 is the
thermal energy scale, and the Gaussian white noise terms
satisfy (7;(1)) = 0 and (;(1)n;(¢')) = 6;;0(t = ).

The potential energy Vg(x) of the computer is

N
:Z sz +J4x +be +Z‘Il]xx (2)
(if)

i=1 i=1

The first sum in Eq. (2), which runs over the N units, sets
the intrinsic couplings of the computer. For J, = 0 we have
a linear model [7], whose unit activations are linear
functions of their inputs, while for J, > 0, the case we
consider, we have a nonlinear model that can act as the
thermodynamic analog of a neural network [13] (positive
J4 also ensures the thermodynamic stability of the com-
puter as the J;; are adjusted). We consider the case J, > 0,

which creates units with one stable state, analogous to the
s-units of thermodynamic computing [8]. The alternative
choice, J, < 0, creates bistable units, analogous to the
p-spins in the field of probabilistic computing [1].

The remaining terms in (2) contain the trainable param-
eters of the computer. The parameters b; are input signals or
biases applied to each unit. The parameters J;; are pairwise
couplings between units, inspired by the blhnear inter-
actions of the thermodynamic computers of Refs. [7,8],
with the sum running over all interunit connections.
Equation (2) describes a thermodynamic computer of
arbitrary connectivity, and the following discussion applies
to the same.

Imagine that we observe a dynamical trajectory of the
computer at a series of discrete times, w = {x(;)}X,
where f, = kAt. The probability that any step of this
trajectory was generated by a thermodynamic computer
with parameters @ can be calculated from the Onsager-
Machlup action associated with the Langevin equation
[20,21]. A time-discretized version of this action can be
derived by first considering a standard Euler integration
scheme for Eq. (1),

x;(t+ At) = x;(1) — uo;Vo(x)Ar + \/2ukgTAtn;.  (3)
Here, At is the integration time step, and #; is a Gaussian
random variable with zero mean and unit variance. Writing
Ax; = x;(t + At) — x;(¢), we can rearrange (3) to read

B Ax,- —l—/l@lVg(x)At
T ke TAL

Next, note that the probability of generating the step
x — x + Ax is that of drawing N noise values 7;,

(4)

PyP(Ax) = (22)N/? HGXP(—W?/Z)’ (5)

with the »; given by Eq. (4). Hence, the negative log-
probability that a computer with parameters € generated the
step x - x + Ax is

N
[Ax; + uo;Vy(x)At]?
—In PP (Ax , 6
0 ; Ak TAt (6)
up to an unimportant constant term. The negative log-
probability that a computer with parameters 6 would
generate the reverse step, x + Ax =x’ — x, is

N [—Ax; + po;Vo(x') At

—In Py (Ax) =
nFo(8x) ; Aples TAT

(7)

To increase the probability with which the computer
would have generated the entire reverse trajectory
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@ = {x(1x_;)}X_,, we can sum Eq. (7) over all steps of the
trajectory, differentiate that expression with respect to each
parameter of the computer, and update the parameters as

K
a HSte
V- +aZFInP‘(; P[Ax(1,)]. (8)
k=1 tj
K 0 B
bi = bi +QZ£IHPZtCP[Ax(tk)], (9)
k=1 U

where a is a learning rate. Recall that Ax(z;) is the
displacement generated at time step k in the observed
(forward) trajectory. The gradient terms in (8) and (9) can
be calculated analytically, and are

0 B —Axi + /«lal’V0(x/)Al

———In PyP(Ax ;
o1, e (Ax) 2y T X
2T 0
and
0 ~ ster —Ax,- + ﬂ()ng(x’)At
— 5, Py (ax) = 2k T - ()
where

aiVO(.X') = 2J2X,' + 4-]4)Cl3 + bi + Z J,-/-xj. (12)
JENT(I)

Here, NV (i) denotes the set of units connected to unit i.

When the forward trajectories depict noising processes,
training over many such trajectories identifies couplings
that allow a thermodynamic computer to transform noise
into structured data.

Numerical illustration of generative thermodynamic
computing—To illustrate this result we carried out a
digital simulation of a thermodynamic computer. We set
J, = J, = 10kgT, and consider a computer with N, = 28>
visible units and N, = 512 hidden units. The visible units
will be used as a display, and the hidden units used to do
computation. The computer has N N}, trainable couplings
J;; between visible and hidden units, and N,(Ny, —1)/2
trainable couplings between hidden units. Hidden units
have trainable biases b,. Visible units have no trainable
biases, but during training we impose visible-unit biases
b; x P;, where P; denotes the i pixel of an MNIST digit
(each digit’s pixels were adjusted to have zero mean and
unit variance). We display the visible units in a 28 x 28
grid, matching the presentation of an MNIST digit.

To construct noising trajectories we project an MNIST
image onto the visible units, via their nontrainable biases.
We project part of the same image onto the hidden-unit

(@) )

(b
00000000 ET 7/ 2

FIG. 1. (a) Example noising trajectory. (b) The remaining digits
used in the training set.

biases, in order to provide them with some signal, and set
all couplings J;; to zero. We then let the computer come to
equilibrium, by simulating Eq. (1) for a sufficiently long
time. We then run a dynamical trajectory of time #; = 2.5,
slowly diminishing the intensity of the imposed digit. The
result is an image that becomes increasingly noisy, as
shown in Fig. 1(a). Positive values of the unit activations x;
are shown blue, while negative values are shown white.
As we run each noising trajectory, we update Egs. (8)
and (9). This process, repeated over many trajectories,
identifies the parameters @ of the computer that would,
with maximum likelihood, generate the reverse of the
trajectory, and so convert noise into signal. In this small-

scale example we trained the computer using only three Q1

digits, shown in Figs. 1(a) and 1(b).

In Fig. 2(a) we show three independent trajectories of the
thermodynamic computer trained in this way. Trajectories
begin from a noisy initial state prepared by bringing the
coupling-free thermodynamic computer to equilibrium. In
each case, the trained thermodynamic computer gradually
transforms noise into structure, illustrating its ability to
perform noise-to-structure generation. These results indi-
cate that the computer has internalized representations of
the digits and can reproduce them via physical evolution.
In the case of the digit “1”, the generated image appears

(a)

FIG. 2. (a) Three independent dynamical trajectories of the
trained denoising thermodynamic computer. (b) The outcome at
time t = f; of 25 independent trajectories of the trained computer.
(c) Coupling patterns between 16 representative hidden units and
the visible layer.
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inverted. This behavior reflects a breaking of the visible
layer’s approximate symmetry under the transformation
x; — —x; (the digits presented to the computer have pixel
values that are roughly symmetric about zero).

In Fig. 2(b) we show the output at time ¢ = t; of 25
independent trajectories generated by the trained thermody-
namic computer. The outputs exhibit diversity in style and
form, behavior that is typical of diffusion models trained to
approximate, rather than exactly replicate, the data distribu-
tion. Not all outputs are necessarily desirable or clearly
interpretable—some display “mode mixing,” in the language
of diffusion models—but this simple example is intended as
a proof of principle, a demonstration that structure can be
generated from noise by physical dynamics alone.

Some insight into the behavior of the computer is
provided by Fig. 2(c), which shows 16 of the computer’s
hidden units’ learned couplings to the visible layer. Each
panel represents the pattern of couplings J;; between one
hidden unit and all visible units: blue indicates positive
coupling, red negative (either can be excitatory or inhibi-
tory, via the interaction J;;x;x;, depending on the values of
the unit activations x;). These patterns act as receptive fields
that determine how each hidden unit responds to features in
the visible layer. Several of the units have learned localized,
digitlike structures, suggesting that the computer decom-
poses input patterns into interpretable visual components.
Some hidden units exhibit complementary structure—
activating for certain strokes while suppressing others—
enabling the system to encode multiple features. Together,
these receptive fields determine the energy landscape that
guides the computer’s dynamics, allowing the system to
transform noise into structured outputs.

Physical interpretation of the learning process—The
generative model we have considered is a thermodynamic
system, and we can interpret the learning algorithm used
to train it in physical terms. To do so, consider one step
of a noising trajectory w = {x(#;)}X_, generated by any
means. Consider the ratio of two probabilities (a standard
device in nonequilibrium statistical mechanics [22]): the
probability that the step was generated by a computer with
a set of reference couplings (call them @ = 0), and the
probability that our denoising computer (with parameters )
generated the reverse of that step. This ratio is

" PS‘CP(Ax XN: —AX; 4 u0;Vo(x')At)?
Py?(Ax) & 4k T At
z’v: (Ax; + o,V (x)At)?
=1 4MkBTAt
_ZAxaVO( )"’AX@V@( )
- 2kgT
kT

to leading order in Ar. Here, AQ, and AQ, denote the
incremental heat dissipated during the forward step by
the reference and trained computers, respectively. Over the
entire trajectory, in the limit Az — 0, we have

2 =~ B0(@) + ). (14)

Here, f=1/(kgT), and Py[w] and Py[®] denote the
probabilities of observing the forward trajectory with
the reference computer, and the reverse trajectory with
the denoising computer, respectively. The terms Qqy(w) and
Qg(w) represent the total heat dissipated along the forward
trajectory by the two computers.

Training proceeds by minimizing the negative log-
probability —In Pg[@]. According to the fluctuation
relation (14), and given that the reference process is fixed,
this is equivalent to minimizing —Qg(®), the negative total
heat dissipated by the denoising computer when generating
the noising trajectory w. Given that heat changes sign upon
time reversal, the learning process therefore minimizes the
heat Qy(@) = —Qg(w) emitted by the trained computer
along the trajectory &, i.e., as it generates structure from
noise. In this sense, the trained dynamics is thermody-
namically optimal: it is the dynamics that reconstructs
the imposed data with the least heat emitted or entropy
produced.

Thermodynamic advantage—We can estimate the
thermodynamic advantage, the ratio of the energy costs
of digital to thermodynamic computation, by considering the
energy scales of denoising using a digital neural network and
a hardware version of our simulated thermodynamic com-
puter. The basic energy scale of a digital neural network is
set by a multiply accumulate (MAC) operation, which differs
by hardware implementation but is typically about 1 pJ [23],
or 2.4 x 103%gzT at room temperature. For a modest multi-
layer perceptron denoiser (784 — 128 — 128 — 784),
a single denoising step requires ~2.2 x 10> MACs. If we
make the very conservative assumption that the denoiser is
used only 10 times within a denoising trajectory, the order-
of-magnitude energy budget of denoising using a neural
network is not less than 5 x 10'%kgT.

The energy cost of the thermodynamic computer is much
smaller. We can calculate the heat emitted by the computer
from the difference of the potential energy (2) between the
start and end of a trajectory, Q = Vy[x(0)] — Volx ()] (no
work is done on the computer after the hidden-unit biases
are established). Over 1000 independent denoising trajec-
tories of the trained computer we calculate a mean heat
emission of (Q) = 2.9 x 103%kgT, with standard deviation
3.5 x 10%kgT. Comparing this value to the digital estimate
gives a ratio of more than 10'". That is, if implemented in
hardware, the thermodynamic computer would be more
than 10 orders of magnitude more energy efficient than
a digital neural network. The example shown here is
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rudimentary by the standards of state-of-the-art diffusion
models, but shows the potential, and potential energy
savings, of thermodynamic computation.

Conclusions—We have proposed a generative modeling
framework in which structure is produced from noise by
the physical dynamics of a thermodynamic system. This
approach follows the logic of a diffusion model, but instead
of using a digital neural network and artificially injected
noise, the information required for generation is encoded in
the system’s energy landscape and emerges from a physical
dynamics. Used in this way, the thermodynamic computer
is a Langevin computer, a nonequilibrium, continuous-spin
analog of a Boltzmann machine [17,18].

The learning process, maximizing the likelihood that a
trained system could have produced the reverse of a noising
trajectory, admits a natural interpretation in terms of
entropy production: the model learns to reverse the forward
dynamics in the most thermodynamically reversible way.
Thermodynamic learning therefore links generative mod-
eling to fundamental physical principles.

Reference [24] proposed the idea of making a generative
model by controlling analog physical dynamics with a
digital neural network. Here, we have shown that analog
hardware on its own can be generative. However, having a
neural network control the couplings of the thermodynamic
computer would indeed make it more expressive: for
instance, the neural network could adjust the couplings
of the computer as a function of time, or set the computer’s
couplings so as to produce conditioned outputs.

We have used digital simulation to demonstrate that
nonlinear, nonequilibrium analog hardware can learn to
generate structured outputs from noise. This Letter pro-
vides another example of a thermodynamic computer
trained to operate under nonequilibrium conditions [13].
Realized physically—trained digitally, with the learned
couplings implemented in hardware—such systems could
perform autonomous generative computation without
external control or artificial randomness, opening new
avenues of exploration for physically grounded, energy-
efficient machine learning.
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