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6 We introduce a generative modeling framework for thermodynamic computing, in which structured data
7 are synthesized from noise by the natural time evolution of a physical system governed by Langevin
8 dynamics. While conventional diffusion models use neural networks to perform denoising, here the
9 information needed to generate structure from noise is encoded by the dynamics of a thermodynamic

10 system. Training proceeds by maximizing the probability with which the computer generates the reverse
11 of a noising trajectory, which ensures that the computer generates data with minimal heat emission. We
12 demonstrate this framework within a digital simulation of a thermodynamic computer. If realized in analog
13 hardware, such a system would function as a generative model that produces structured samples without the
14 need for artificially injected noise or active control of denoising.
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16 Introduction—In this Letter we describe a generative
17 modeling framework for thermodynamic computing.
18 Thermodynamic computing is closely related to the field
19 of probabilistic computing [1–3]. It is based on the ideas that
20 we can do energy-efficient computation by using small
21 physical devices whose microscopic states change with time
22 in response to thermal fluctuations, and that the fluctuations
23 of a suitably designed device can encode the outcome of a
24 desired calculation [4–8]. Here, we show that thermody-
25 namic computers can perform generative modeling in a
26 manner analogous to diffusion models, with key differences.
27 In a diffusion model, structured inputs are degraded by
28 the gradual addition of noise. A neural network is trained
29 to enact the reverse process, allowing the generation of
30 structure from noise [9–12]. This process is implemented
31 on a digital computer, where noise is introduced in the form
32 of artificially generated pseudorandom numbers. Here,
33 we use analytic calculations and digital simulations to
34 suggest an alternative approach, in which the noise-driven
35 dynamics of a thermodynamic computer—the noise
36 arising naturally from the system’s interaction with its
37 environment—generates structure from noise. If realized in
38 analog hardware, such a system would generate structured
39 outputs simply by evolving with time under its natural
40 dynamics. It would not require added pseudorandom noise,
41 or the guidance of a digital neural network.
42 In more detail, we consider a model thermodynamic
43 computer, a set of fluctuating nonlinear degrees of freedom
44 coupled by bilinear interactions. The computer’s degrees
45 of freedom evolve according to overdamped Langevin
46 dynamics. This design is inspired by existing hardware
47 that can perform linear algebra [7], and by our recent work

48showing that a nonlinear version of such hardware
49can function as the thermodynamic version of a neural
50network [13]. We provide input to the computer to make it
51display images of digits from the MNIST data set [14], and
52allow these images to degrade by running the dynamics
53of the computer with its interunit couplings set to zero.
54Such degradation is called noising in the diffusion model
55literature. As we do so, we compute from the Langevin
56equation the probability that a computer with hypothetical
57nonzero couplings would have generated the reverse of this
58noising trajectory, and we adjust the values of these
59hypothetical couplings by gradient descent in order to
60maximize that probability. After running several such
61noising trajectories, we construct a denoising computer
62using the trained couplings, and verify that its natural
63dynamics, starting from noisy initial conditions, leads to the
64generation of structured MNIST-like digits. Independent
65dynamical trajectories of the same computer produce a
66variety of outcomes, some of which are not contained in the
67training set.
68In this approach the denoising dynamics is encoded by
69the couplings of the trained thermodynamic computer,
70which plays the role of a denoising neural network in a
71diffusion model. If realized in analog hardware—for
72example, using networks of mechanical [15], electrical [8],
73or superconducting [16] oscillators—the information
74required for denoising would be encoded in the energy
75landscape of the computer, rather than in a digital neural
76network. As a result, denoising would not be simulated, but
77physically enacted.
78In this mode of operation the thermodynamic computer
79resembles a nonequilibrium, continuous-spin analog of a
80Boltzmann machine, a statistical mechanical model that
81represents probability distributions over binary variables
82[17,18]. The key difference is that a Boltzmann machine*Contact author: swhitelam@lbl.gov
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83 encodes information in its equilibrium Boltzmann distri-
84 bution, whereas our device runs on a physical clock: the
85 computation is carried out by the dynamics of the system at
86 a designated time, with no requirement to attain equilib-
87 rium. We therefore refer to the device considered here,
88 which uses Langevin trajectories to perform a calculation,
89 as a Langevin computer.
90 We also show that the training process has a direct
91 physical interpretation: it adjusts the computer’s couplings
92 in order to minimize the thermodynamic irreversibility of
93 the generative process. By finding the computer most likely
94 to have generated the reverse of a noising trajectory, we
95 minimize the expected heat emission and entropy produc-
96 tion of the denoising computer. Our results therefore link
97 the design of generative thermodynamic models to funda-
98 mental physical principles, and broaden our understanding
99 of the capabilities of thermodynamic computers.

100 Training a generative Langevin computer—Consider a
101 model of a thermodynamic computer. The computer is
102 composed of N classical, real-valued fluctuating degrees
103 of freedom x ¼ fxig, which could represent voltage states
104 in electrical circuits [8], oscillator positions in a mechanical
105 system [15], or phases in Josephson junction devices
106 [16,19]. The computer’s units xi evolve in time according
107 to the overdamped Langevin dynamics

ẋi ¼ −μ∂iVθðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2μkBT
p

ηiðtÞ: ð1Þ

108109 Here, μ is the mobility parameter, which sets the basic time
110 constant of the computer. For the thermodynamic com-
111 puters of Refs. [7,8], μ−1 is of order a microsecond. For
112 damped oscillators made from mechanical elements [15] or
113 Josephson junctions [16,19], μ−1 is of order a millisecond
114 or a nanosecond, respectively. The first term on the right-
115 hand side of Eq. (1) is the force arising from the computer’s
116 potential energy VθðxÞ, given a set of parameters (couplings
117 and biases) θ ¼ ðfJijg; fbigÞ; note that ∂i ≡ ∂=∂xi. The
118 second term on the right-hand side of Eq. (1) models
119 temporally uncorrelated thermal fluctuations: kBT is the
120 thermal energy scale, and the Gaussian white noise terms
121 satisfy hηiðtÞi ¼ 0 and hηiðtÞηjðt0Þi ¼ δijδðt − t0Þ.
122 The potential energy VθðxÞ of the computer is

VθðxÞ ¼
X

N

i¼1

ðJ2x2i þ J4x4i Þ þ
X

N

i¼1

bixi þ
X

ðijÞ
Jijxixj: ð2Þ

123124 The first sum in Eq. (2), which runs over the N units, sets
125 the intrinsic couplings of the computer. For J4 ¼ 0 we have
126 a linear model [7], whose unit activations are linear
127 functions of their inputs, while for J4 > 0, the case we
128 consider, we have a nonlinear model that can act as the
129 thermodynamic analog of a neural network [13] (positive
130 J4 also ensures the thermodynamic stability of the com-
131 puter as the Jij are adjusted). We consider the case J2 > 0,

132which creates units with one stable state, analogous to the
133s-units of thermodynamic computing [8]. The alternative
134choice, J2 < 0, creates bistable units, analogous to the
135p-spins in the field of probabilistic computing [1].
136The remaining terms in (2) contain the trainable param-
137eters of the computer. The parameters bi are input signals or
138biases applied to each unit. The parameters Jij are pairwise
139couplings between units, inspired by the bilinear inter-
140actions of the thermodynamic computers of Refs. [7,8],
141with the sum running over all interunit connections.
142Equation (2) describes a thermodynamic computer of
143arbitrary connectivity, and the following discussion applies
144to the same.
145Imagine that we observe a dynamical trajectory of the
146computer at a series of discrete times, ω ¼ fxðtkÞgKk¼0,
147where tk ¼ kΔt. The probability that any step of this
148trajectory was generated by a thermodynamic computer
149with parameters θ can be calculated from the Onsager-
150Machlup action associated with the Langevin equation
151[20,21]. A time-discretized version of this action can be
152derived by first considering a standard Euler integration
153scheme for Eq. (1),

xiðtþ ΔtÞ ¼ xiðtÞ − μ∂iVθðxÞΔtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μkBTΔt
p

ηi: ð3Þ

154155Here, Δt is the integration time step, and ηi is a Gaussian
156random variable with zero mean and unit variance. Writing
157Δxi ≡ xiðtþ ΔtÞ − xiðtÞ, we can rearrange (3) to read

ηi ¼
Δxi þ μ∂iVθðxÞΔt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μkBTΔt
p : ð4Þ

158159Next, note that the probability of generating the step
160x → xþ Δx is that of drawing N noise values ηi,

Pstep
θ ðΔxÞ ¼ ð2πÞ−N=2

Y

N

i¼1

expð−η2i =2Þ; ð5Þ

161162with the ηi given by Eq. (4). Hence, the negative log-
163probability that a computer with parameters θ generated the
164step x → xþ Δx is

− lnPstep
θ ðΔxÞ ¼

X

N

i¼1

½Δxi þ μ∂iVθðxÞΔt�2
4μkBTΔt

; ð6Þ

165166up to an unimportant constant term. The negative log-
167probability that a computer with parameters θ would
168generate the reverse step, xþ Δx≡ x0 → x, is

− ln P̃step
θ ðΔxÞ ¼

X

N

i¼1

½−Δxi þ μ∂iVθðx0ÞΔt�2
4μkBTΔt

: ð7Þ

169170To increase the probability with which the computer
171would have generated the entire reverse trajectory
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172 ω̃ ¼ fxðtK−kÞgKk¼0, we can sum Eq. (7) over all steps of the
173 trajectory, differentiate that expression with respect to each
174 parameter of the computer, and update the parameters as

Jij → Jij þ α
X

K

k¼1

∂

∂Jij
ln P̃step

θ ½ΔxðtkÞ�; ð8Þ

175176

bi → bi þ α
X

K

k¼1

∂

∂bi
ln P̃step

θ ½ΔxðtkÞ�; ð9Þ

177178 where α is a learning rate. Recall that ΔxðtkÞ is the
179 displacement generated at time step k in the observed
180 (forward) trajectory. The gradient terms in (8) and (9) can
181 be calculated analytically, and are

−
∂

∂Jij
ln P̃step

θ ðΔxÞ ¼ −Δxi þ μ∂iVθðx0ÞΔt
2kBT

xj

þ −Δxj þ μ∂jVθðx0ÞΔt
2kBT

xi; ð10Þ

182183 and

−
∂

∂bi
ln P̃step

θ ðΔxÞ ¼ −Δxi þ μ∂iVθðx0ÞΔt
2kBT

; ð11Þ

184185 where

∂iVθðxÞ ¼ 2J2xi þ 4J4x3i þ bi þ
X

j∈N ðiÞ
Jijxj: ð12Þ

186187 Here, N ðiÞ denotes the set of units connected to unit i.
188 When the forward trajectories depict noising processes,
189 training over many such trajectories identifies couplings
190 that allow a thermodynamic computer to transform noise
191 into structured data.
192 Numerical illustration of generative thermodynamic
193 computing—To illustrate this result we carried out a
194 digital simulation of a thermodynamic computer. We set
195 J2 ¼ J4 ¼ 10kBT, and consider a computer with Nv ¼ 282

196 visible units and Nh ¼ 512 hidden units. The visible units
197 will be used as a display, and the hidden units used to do
198 computation. The computer has NvNh trainable couplings
199 Jij between visible and hidden units, and NhðNh − 1Þ=2
200 trainable couplings between hidden units. Hidden units
201 have trainable biases bi. Visible units have no trainable
202 biases, but during training we impose visible-unit biases
203 bi ∝ Pi, where Pi denotes the ith pixel of an MNIST digit
204 (each digit’s pixels were adjusted to have zero mean and
205 unit variance). We display the visible units in a 28 × 28
206 grid, matching the presentation of an MNIST digit.
207 To construct noising trajectories we project an MNIST
208 image onto the visible units, via their nontrainable biases.
209 We project part of the same image onto the hidden-unit

210biases, in order to provide them with some signal, and set
211all couplings Jij to zero. We then let the computer come to
212equilibrium, by simulating Eq. (1) for a sufficiently long
213time. We then run a dynamical trajectory of time tf ¼ 2.5,
214slowly diminishing the intensity of the imposed digit. The
215result is an image that becomes increasingly noisy, as
216shown in Fig. 1(a). Positive values of the unit activations xi
217are shown blue, while negative values are shown white.
218As we run each noising trajectory, we update Eqs. (8)
219and (9). This process, repeated over many trajectories,
220identifies the parameters θ of the computer that would,
221with maximum likelihood, generate the reverse of the
222trajectory, and so convert noise into signal. In this small-
223scale example we trained the computer using only three
224digits, shown in Figs. 1(a) and 1(b).
225In Fig. 2(a) we show three independent trajectories of the
226thermodynamic computer trained in this way. Trajectories
227begin from a noisy initial state prepared by bringing the
228coupling-free thermodynamic computer to equilibrium. In
229each case, the trained thermodynamic computer gradually
230transforms noise into structure, illustrating its ability to
231perform noise-to-structure generation. These results indi-
232cate that the computer has internalized representations of
233the digits and can reproduce them via physical evolution.
234In the case of the digit “1”, the generated image appears

(a) (b)

F1:1FIG. 1. (a) Example noising trajectory. (b) The remaining digits
F1:2used in the training set.

(a)

(b) (c)

F2:1FIG. 2. (a) Three independent dynamical trajectories of the
F2:2trained denoising thermodynamic computer. (b) The outcome at
F2:3time t ¼ tf of 25 independent trajectories of the trained computer.
F2:4(c) Coupling patterns between 16 representative hidden units and
F2:5the visible layer.

Q1
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235 inverted. This behavior reflects a breaking of the visible
236 layer’s approximate symmetry under the transformation
237 xi → −xi (the digits presented to the computer have pixel
238 values that are roughly symmetric about zero).
239 In Fig. 2(b) we show the output at time t ¼ tf of 25
240 independent trajectories generated by the trained thermody-
241 namic computer. The outputs exhibit diversity in style and
242 form, behavior that is typical of diffusion models trained to
243 approximate, rather than exactly replicate, the data distribu-
244 tion. Not all outputs are necessarily desirable or clearly
245 interpretable—some display “mode mixing,” in the language
246 of diffusion models—but this simple example is intended as
247 a proof of principle, a demonstration that structure can be
248 generated from noise by physical dynamics alone.
249 Some insight into the behavior of the computer is
250 provided by Fig. 2(c), which shows 16 of the computer’s
251 hidden units’ learned couplings to the visible layer. Each
252 panel represents the pattern of couplings Jij between one
253 hidden unit and all visible units: blue indicates positive
254 coupling, red negative (either can be excitatory or inhibi-
255 tory, via the interaction Jijxixj, depending on the values of
256 the unit activations xi). These patterns act as receptive fields
257 that determine how each hidden unit responds to features in
258 the visible layer. Several of the units have learned localized,
259 digitlike structures, suggesting that the computer decom-
260 poses input patterns into interpretable visual components.
261 Some hidden units exhibit complementary structure—
262 activating for certain strokes while suppressing others—
263 enabling the system to encode multiple features. Together,
264 these receptive fields determine the energy landscape that
265 guides the computer’s dynamics, allowing the system to
266 transform noise into structured outputs.
267 Physical interpretation of the learning process—The
268 generative model we have considered is a thermodynamic
269 system, and we can interpret the learning algorithm used
270 to train it in physical terms. To do so, consider one step
271 of a noising trajectory ω ¼ fxðtkÞgKk¼0, generated by any
272 means. Consider the ratio of two probabilities (a standard
273 device in nonequilibrium statistical mechanics [22]): the
274 probability that the step was generated by a computer with
275 a set of reference couplings (call them θ ¼ 0), and the
276 probability that our denoising computer (with parameters θ)
277 generated the reverse of that step. This ratio is

ln
Pstep
0 ðΔxÞ

P̃step
θ ðΔxÞ ¼

X

N

i¼1

ð−Δxi þ μ∂iVθðx0ÞΔtÞ2
4μkBTΔt

−
X

N

i¼1

ðΔxi þ μ∂iV0ðxÞΔtÞ2
4μkBTΔt

≈ −
X

N

i¼1

Δxi∂iV0ðxÞ þ Δxi∂iVθðxÞ
2kBT

≈ −
ΔQ0 þ ΔQθ

2kBT
; ð13Þ

278279to leading order in Δt. Here, ΔQ0 and ΔQθ denote the
280incremental heat dissipated during the forward step by
281the reference and trained computers, respectively. Over the
282entire trajectory, in the limit Δt → 0, we have

ln
P0½ω�
Pθ½ω̃�

¼ −
1

2
½βQ0ðωÞ þ βQθðωÞ�: ð14Þ

283284Here, β≡ 1=ðkBTÞ, and P0½ω� and Pθ½ω̃� denote the
285probabilities of observing the forward trajectory with
286the reference computer, and the reverse trajectory with
287the denoising computer, respectively. The terms Q0ðωÞ and
288QθðωÞ represent the total heat dissipated along the forward
289trajectory by the two computers.
290Training proceeds by minimizing the negative log-
291probability − lnPθ½ω̃�. According to the fluctuation
292relation (14), and given that the reference process is fixed,
293this is equivalent to minimizing −QθðωÞ, the negative total
294heat dissipated by the denoising computer when generating
295the noising trajectory ω. Given that heat changes sign upon
296time reversal, the learning process therefore minimizes the
297heat Qθðω̃Þ ¼ −QθðωÞ emitted by the trained computer
298along the trajectory ω̃, i.e., as it generates structure from
299noise. In this sense, the trained dynamics is thermody-
300namically optimal: it is the dynamics that reconstructs
301the imposed data with the least heat emitted or entropy
302produced.
303Thermodynamic advantage—We can estimate the
304thermodynamic advantage, the ratio of the energy costs
305of digital to thermodynamic computation, by considering the
306energy scales of denoising using a digital neural network and
307a hardware version of our simulated thermodynamic com-
308puter. The basic energy scale of a digital neural network is
309set by a multiply accumulate (MAC) operation, which differs
310by hardware implementation but is typically about 1 pJ [23],
311or 2.4 × 108kBT at room temperature. For a modest multi-
312layer perceptron denoiser (784 → 128 → 128 → 784),
313a single denoising step requires ∼2.2 × 105 MACs. If we
314make the very conservative assumption that the denoiser is
315used only 10 times within a denoising trajectory, the order-
316of-magnitude energy budget of denoising using a neural
317network is not less than 5 × 1014kBT.
318The energy cost of the thermodynamic computer is much
319smaller. We can calculate the heat emitted by the computer
320from the difference of the potential energy (2) between the
321start and end of a trajectory, Q ¼ Vθ½xð0Þ� − Vθ½xðtfÞ� (no
322work is done on the computer after the hidden-unit biases
323are established). Over 1000 independent denoising trajec-
324tories of the trained computer we calculate a mean heat
325emission of hQi ¼ 2.9 × 103kBT, with standard deviation
3263.5 × 102kBT. Comparing this value to the digital estimate
327gives a ratio of more than 1011. That is, if implemented in
328hardware, the thermodynamic computer would be more
329than 10 orders of magnitude more energy efficient than
330a digital neural network. The example shown here is
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331 rudimentary by the standards of state-of-the-art diffusion
332 models, but shows the potential, and potential energy
333 savings, of thermodynamic computation.
334 Conclusions—We have proposed a generative modeling
335 framework in which structure is produced from noise by
336 the physical dynamics of a thermodynamic system. This
337 approach follows the logic of a diffusion model, but instead
338 of using a digital neural network and artificially injected
339 noise, the information required for generation is encoded in
340 the system’s energy landscape and emerges from a physical
341 dynamics. Used in this way, the thermodynamic computer
342 is a Langevin computer, a nonequilibrium, continuous-spin
343 analog of a Boltzmann machine [17,18].
344 The learning process, maximizing the likelihood that a
345 trained system could have produced the reverse of a noising
346 trajectory, admits a natural interpretation in terms of
347 entropy production: the model learns to reverse the forward
348 dynamics in the most thermodynamically reversible way.
349 Thermodynamic learning therefore links generative mod-
350 eling to fundamental physical principles.
351 Reference [24] proposed the idea of making a generative
352 model by controlling analog physical dynamics with a
353 digital neural network. Here, we have shown that analog
354 hardware on its own can be generative. However, having a
355 neural network control the couplings of the thermodynamic
356 computer would indeed make it more expressive: for
357 instance, the neural network could adjust the couplings
358 of the computer as a function of time, or set the computer’s
359 couplings so as to produce conditioned outputs.
360 We have used digital simulation to demonstrate that
361 nonlinear, nonequilibrium analog hardware can learn to
362 generate structured outputs from noise. This Letter pro-
363 vides another example of a thermodynamic computer
364 trained to operate under nonequilibrium conditions [13].
365 Realized physically—trained digitally, with the learned
366 couplings implemented in hardware—such systems could
367 perform autonomous generative computation without
368 external control or artificial randomness, opening new
369 avenues of exploration for physically grounded, energy-
370 efficient machine learning.
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