
SCHOOL OF PHYSICS, ASTRONOMY & MATHEMATICS

4PAM1008 MATLAB
2 – Basic MATLAB Operation

Dr Richard Greenaway

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.2
© Richard Greenaway 2011

2 Basic MATLAB Operation

2.1 Overview

2.1.1 The Command Line

In this Workshop you will learn how to construct and execute numeric expressions, run MATLAB commands,

control how answers are displayed and other aspects of interacting with MATLAB. Because MATLAB is, at

its core, a programming language the main form of interaction is via a command line, that is, a window in

which the user types statements which are executed when the user presses enter. For some tasks there are

standard user interfaces available for such things as formatting plots but the power of MATLAB is only really

understood when you learn to do things programmatically.

Consider again exercise 1.2. You entered a command which called a function, peaks, returning a matrix of

data assigned to a variable z. We then used the result of that command, ie z, as the input to a new function,

surf, which plotted the data.

>> z = peaks(30);

>> surf(z)

When you type as statement on the command line nothing happens until you press <enter>.

2.1.2 Operators, Variables, Functions and Commands

We construct an expression to execute from various components. A variable is simply 'named' data. We might

store a number in a variable called x, and we can access that number by referring to its variable name.

Operators exist to perform arithmetic and other operations. There are also commands which perform

operations such as saving data to disk, clearing data from memory, displaying the contents of a directory etc.

All of these various components can be used on the command line

All programming languages have libraries of functions. A function is a discrete set of instructions which

perform some kind of operation, usually on data supplied by the user. The anatomy of a function call is shown

below. A function takes zero or more inputs on which it performs some kind of operation. Once completed it

returns zero or more outputs. The '=' is called the assignment operator; it assigns the output returned from the

function to a variable called z.

 Once a command has executed you cannot undo it. If you make a mistake, simply re-type the command ,

correcting any errors, and run it again.

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.3
© Richard Greenaway 2011

z = peaks(30)

MATLAB contains thousands of functions for data processing, either built in or contained in toolboxes. A

toolbox is an add-on for MATLAB which provides a library of functions for use in a specific application area

such as image processing or statistics.

2.1.3 Repeating Commands

It would clearly be tedious to have to re-type an expression each time you wanted to use it. For example if

you do a calculation which contains a typing mistake you don't want to re-type the whole thing again. You

never have to do that. There are various ways to re-play your code.

1. Use accelerator keys.

We can recall previous MATLAB commands by using the ↑ and ↓ cursor keys. Repeatedly pressing ↑

will review the previous commands the most recent first. To re-execute the command simply press the

return key. To edit, use the cursor keys ← or →to move backwards and forwards through the line.

Characters may be inserted by typing at the current cursor position or deleted using the Del key. This

process is most commonly used when long command lines have been mistyped or when you want to

re-execute a command that is very similar to one used previously. To recall the most recent command

starting with f, say, type f at the prompt followed by ↑. Similarly, typing fo followed by ↑ will recall

the most recent command starting with fo.

2. Drag-and-drop commands from the Command History Window

Select the command in the history window and drag it to the command window, then edit it as desired

and press enter to execute it.

3. Write a MATLAB script or function

This is the most powerful means of carrying out tasks in MATLAB and we will introduce this topic at

the end of the current Workshop.

2.1.4 Cleaning Up

During a session you may have create a lot of variables some or all of which you no longer require. Use the

clear command to delete some or all of the data. Remember that the data is listed in the workspace window.

You can delete all variables simply by typing clear

≫ clear

function.

Input parameter.

Output parameter

Assignment operator.

 Toolboxes will not be dealt with explicitly in this course with the exception of the Symbolic Math toolbox

which we will cover in Workshop 5.

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.4
© Richard Greenaway 2011

Alternatively, you delete selected variables by listing them after the command

≫ clear a b x bigArray

Similarly, if you want to clear out all the clutter in the command window, simply type clc on the command

line.

2.1.5 Error Messages

Typing mistakes will happen frequently, especially when constructing a complex expression.

What's wrong with this ?

≫sin(pi/5)*((3 + 15/(45^(1/3)) + tan(0.8*pi))

It's not immediately obvious but when you press enter …

>> sin(pi/5)*((3 + 15/(45^(1/3)) + tan(0.8*pi))

??? sin(pi/5)*((3 + 15/(45^(1/3)) + tan(0.8*pi))

 |

Error: Expression or statement is incorrect--possibly unbalanced (, {, or [.

MATLAB prints an error message and if possible will show you on the line where the error is (look for the

little vertical line), but not always. Above it has correctly determined an unbalanced bracket but it's not at the

end of the line.

>> sin(pi/5)*((3 + 15/(45^(1/3))) + tan(0.8*pi))

ans =

 3.815091183583086

2.2 Variables

A MATLAB variable is essentially a tag that you assign to a value while that value remains in memory. The

tag gives you a way to reference the value in memory so that your programs can read it, operate on it with

other data, and save it back to memory. To define a variable simply assign a value to a variable name a

follows. '=' is called the assignment operator. It does not mean 'equal to'.

>> x = 10;

MATLAB variable names must begin with a letter, which may be followed by any combination of letters,

digits, and underscores. MATLAB variables are case-sensitive.

 If you have experience of generic programming languages then you will be used to the idea of declaring a

variable before using it. The declaration specifies the type, such as integer or double. In MATLAB this is not

necessary, simply assigning a value to a name will define the variable.

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.5
© Richard Greenaway 2011

>> x =10

>> X = 20

are two different variables.

2.2.1.1 Special Values

There are some 'built in values', special functions which return pre-defined values such as pi which returns the

value π.

>> pi

ans =

 3.1416

You notice in the above example that the value returned is called ans which is another special value. ans

always contains the most recent result if you haven't assigned it to an explicit output.

The following table lists the special values defined in MATLAB.

Function Output
ans Most recent answer (variable). If you do not assign an output variable to an expression,

MATLAB automatically stores the result in ans.
eps Floating-point relative accuracy. This is the tolerance the MATLAB software uses in its

calculations.
intmax Largest 8-, 16-, 32-, or 64-bit integer your computer can represent.
intmin Smallest 8-, 16-, 32-, or 64-bit integer your computer can represent.

realmax Largest floating-point number your computer can represent.
realmin Smallest positive floating-point number your computer can represent.

pi π
i, j imaginary unit
inf Infinity. Calculations like n/0, where n is any nonzero real value, result in inf.
NaN Not a Number, an invalid numeric value. Expressions like 0/0 and inf/inf result in a NaN, as

do arithmetic operations involving a NaN. Also, if n is complex with a zero real part, then n/0

returns a value with a NaN real part.
computer Computer type.
version MATLAB version string.

Table 2-1

Exercise 2-1

Enter the following commands and look at the results.

>> 1/0

>> 0/0

>> i^2

>> 10 - NaN

Any computation involving an NaN always results in an NaN.

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.6
© Richard Greenaway 2011

2.3 Operators
Arithmetic operators perform numeric computations, for example, adding two numbers or raising the elements

of an array to a given power. The following table summarises the standard arithmetic operators.

Operator Description

+ Addition

- Subtraction

* Multiplication

+ Unary plus

- Unary minus

/ division

^ Power

Table 2-2

As well as standard arithmetic operators there are relational and logical operators, all of which will be

covered in Workshop 3.

Calculating Roots

The function sqrt can be used to calculate the square root of a value but for any order root the general

approach is to use the power operator, '^' since a fractional power gives you the root. Be sure to use brackets

to force the correct order of operation.

To calculate √

 type:

2345^(1/3)

Exercise 2-2

Use MATLAB to calculate the following.

1. (ans. 4.5)

2. (

) () (ans. -30000)

3.
(√)

⁄ (ans. 9)

 Operators will be dealt with in more detail in Workshop 3 when we look at matrices. For now we confine

ourselves to simple variable types.

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.7
© Richard Greenaway 2011

4. Solve the following equations

 a. (ans. -2, -9)

 b. , (ans. 5, -3)

 using the standard quadratic formula,

 √

.

 Define variables a, b, and c for equation a and then create the equation for each root. To repeat for

equation b assign the new coefficient values and re-execute the expression by using one of the methods

detailed earlier for re-executing commands. Be sure to use brackets to enforce correct order of

evaluation.

2.4 Functions
MATLAB comes with numerous functions for solving maths problems. The core MATLAB program comes

with a default set of basic math functions for trigonometry, exponentials/logs, complex numbers etc as well as

functions for more complex maths – polynoimals, coordinate conversion, interpolation and so on. Then there

are the toolboxes which extend the capabilities of MATLAB in areas such as statistics, signal processing,

optimisation and many more.

Table 2-3 provides a very short list of some key maths functions, some of which you will need in the

exercises.

Function Description
sin, cos, tan Standard trig functions. The input must be in radians.
asin, acos, atan The inverse trig functions. The angle returned is in radians.
sinh, cosh, tanh Hyperbolic functions.
exp Exponential

exp(x) =
log natural logarithm.
log10 Base 10 log
nthroot Returns the real n

th
 root of a specified number.

nthroot(-2, 3) returns the cubed root of -2. This does not
behave in exactly the same way as the '^' operator described
earlier which will return a complex root.

sqrt Square root
abs The absolute value or, if the number is complex, the magnitude.

Table 2-3. Common functions

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.8
© Richard Greenaway 2011

Here are a few examples.

>> y = 2*sin(pi/4)

y =

 1.4142

>> angle = acos(-1)

angle =

 3.1416

>> log(exp(1))

ans =

 1

2.4.1 Function Overloading

This is a somewhat strange idea if you are not used to object oriented programming but it is important to

understand the concept because you will be meeting it.

Do the following exercise.

Exercise 2-3

1. Create an array of values as follows.

 ≫ array = 10*rand([1 10])

 This creates an array of ten random numbers between 0 and 10.

2. Now apply the diff function to that array.

 >> diff(array)

 The function diff calculates the differences between adjacent values in the array.

3. Now try the following.

 >> diff('x^2')

 What do you see? When an expression is entered as a string, diff treats it as a symbolic expression and

determines the differential.

The function diff behaves differently depending on the type of input. Such behaviour is called overloading.

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.9
© Richard Greenaway 2011

2.5 Controlling Output

2.5.1 Suppressing Output

We often do not want to see the result of intermediate calculations. To do this we terminate the assignment

statement or expression with a semi-colon.

>> x=9; y=2*x/3; z=y^2+y*sqrt(x)

z =

 54

The values of x and y are hidden. We also note here that we can place several statements on one line,

separated by commas or semi- colons.

It is a good idea to get used to using the semi-colon especially when using arrays. It is possible to have pages

and pages of output. If you find a calculation going on and on you can stop it by pressing the keys Ctrl and C

simultaneously.

2.5.2 Controlling output with the format command

The format command can be used to control the output format of numeric values displayed in the Command

Window.

To set the format, use the following syntax.

≫ format type

Where type is options listed in the following table.

Type Result
short (default) Scaled fixed-point format, with 4 digits after the decimal point. For example, 3.1416.

If you are displaying a matrix with a wide range of values, consider using short g.
long Scaled fixed-point format with 14 to 15 digits after the decimal point for double; and 7

digits after the decimal point for single. For example, 3.141592653589793.
short e Floating-point format, with 4 digits after the decimal point. For example, 3.1416e+000.
long e Floating-point format, with 14 to 15 digits after the decimal point for double; and 7 digits

after the decimal point for single. For example, 3.141592653589793e+000.
short g Fixed- or floating-point, whichever is more readable, with 4 digits after the decimal point.

 The format function affects only how numbers display, not how MATLAB computes or saves them.

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.10
© Richard Greenaway 2011

For example, 3.1416.
long g Fixed- or floating-point, whichever is more readable, with 14 to 15 digits after the decimal

point for double; and 7 digits after the decimal point for single. For example,
3.14159265358979.

short eng Engineering format that has 4 digits after the decimal point, and a power that is a multiple
of three. For example, 3.1416e+000.

long eng Engineering format that has exactly 16 significant digits and a power that is a multiple of
three. For example, 3.14159265358979e+000.

Table 2-4 Format command options

Example.

>> 10*pi

ans =

 31.4159

>> format long

>> 10*pi

ans =

 31.415926535897931

2.6 Getting Help
MATLAB provides an excellent help system available in the command window and as a separate help

interface.

You may have already noticed the auto-prompting which appears when you type a function name as

illustrated in fig. 1. These function hints show the parameter options available and a link to more information.

Figure 1. Function prompting.

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.11
© Richard Greenaway 2011

For all functions, operators, keywords etc, you can display help in the command window simply by typing

help <item>.

>> help sin

 SIN Sine of argument in radians.

 SIN(X) is the sine of the elements of X.

 See also asin, sind.

 Overloaded methods:

 codistributed/sin

 Reference page in Help browser

 doc sin

Alternatively if you type doc <item> the help browser window will open providing fully-formatted help.

≫ doc sin

The help browser provides detailed help on all aspects of using MATLAB.

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.12
© Richard Greenaway 2011

2.7 M – Files: Creating MATLAB Scripts and Functions
It would obviously be tedious and difficult to do complex tasks if we had to manually enter everything in the

command window each time we wanted to carry out the task. However, we can automate an activity, that is

we can write a program, by placing commands and expressions in a special file called an m-file which is

simply a text file with the extension .m. There are two types of m-file. The first and simplest is a script, which

simply lists the commands you wish to execute as if you had entered them in the command window. To run

those commands, type the name of the script in the command window (without the extension).

Here is an example which calculates the solutions to Exercise 2.2, Q 4.

% ExampleScript.m

% Example M-file script

% Lines begining with '%' are comment lines which are ignored

% This script calculates the answers to Exercise 2.2, Q4

disp('Solution to equation (a)');

a = 2; b = 22; c = 36;

x = (-b + (b^2-(4*a*c))^(1/2))/(2*a)

x = (-b - (b^2-(4*a*c))^(1/2))/(2*a)

disp('Solution to equation (b)');

a = 1; b = -2; c = -15;

x = (-b + (b^2-(4*a*c))^(1/2))/(2*a)

x = (-b - (b^2-(4*a*c))^(1/2))/(2*a)

Note the lines beginning with the % character. Anything following is ignored by MATLAB, you can write

comments to notate the script. The disp() function is simply a way to put some output in the command

window.

Download the script and try running it.

>> ExampleScript

Solution to equation (a)

x =

 -2

x =

 -9

Solution to equation (b)

x =

 5

x =

 -3

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.13
© Richard Greenaway 2011

To create or edit an existing script use the edit command in the command window

≫ edit ExampleScript

If the file exists, it will be loaded into a special editor. If not, the editor will run with a blank page. The editor

is simply a specialised text editor, you can create an m-file using notepad if you prefer. However, it has

powerful features to enable you to debug code and so it is recommended that you use it.

2.7.1 Functions

You can create your own functions to add to those supplied with MATLAB. Functions are m-files with a

special header line which defines them as a function. The main difference between a script and a function is

that a function accepts input from and returns output to its caller, whereas scripts do not. You define

MATLAB functions in a file that begins with a line containing the function key word. You cannot define a

function within a script file or at the MATLAB command line.

Here is an example which re-writes the solution to Exercise 2.2, Q4 as function. Instead of defining the

quadratic coefficients as variables you pass the values as parameters to the function. It then returns the roots as

output parameters.

function [x1 x2] = quadratic(a,b,c)

% QUADRATIC

%

% [x1 x2] = quadratic(a,b,c)

%

% Return the roots of the quatratic equation

%

% ax^2 + bx + c

%

%

x1 = (-b + (b^2-(4*a*c))^(1/2))/(2*a);

x2 = (-b - (b^2-(4*a*c))^(1/2))/(2*a);

The m-file should have the same name as the function (ie quadratic.m). You then run it as you would any

standard MATLAB function.

The first line in the file must have the format shown in the example

function [y1 y2 ..] = functionname(x1, x2, …)

Any comments placed directly after the first line will be displayed in the MATLAB help system in exactly

the same way as any of the built-in functions.

 It is recommended that you use scripts to save and document your work. It's easy and powerful.

 The editor will not be covered in any more detail here, you can always consult the MATLAB help .

University of Hertfordshire 2 – Basic MATLAB Operation November 2010

4PAM1008 – Engineering Mathematics Page 2.14
© Richard Greenaway 2011

>> help quadratic

 QUADRATIC

 [x1 x2] = quadratic(a,b,c)

 Return the roots of the quatratic equation

 ax^2 + bx + c

Execute it as you would any function …

>> [x1 x2] = quadratic(2,22,36)

x1 =

 -2

x2 =

 -9

>>

2.8 Further Exercises

Exercise 2-4

1. Evaluate ()

 For a =5, b = -2, c = 3

2. Given that u = 2, v = , √

, evaluate w

3. Evaluate the following.

 (i)

 (ii)

 (iii) ()

4. Determine ()

 ⁄

5. Determine √ ()

