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3 Creating, Organising & Processing Data 
In this Workshop the matrix type is introduced which is the basic type in MATLAB. You will be shown how 

to create and manipulate matrices and arithmetic operations will be covered in detail.  Before looking at the 

matrix we will study how to manipulate complex numbers. 

3.1 Complex Numbers 

As we have already seen, the symbols i and j by default represent the imaginary number √  , thus we can 

represent a complex number in MATLAB as follows 

z = 2 + 5j 

 

In keeping with engineering practice we will use j. Note however that MATLAB always returns i in answers. 

Alternatively you can create a complex value using the complex function. 

>> z = complex(2,5) 

 

z = 

 

   2.0000 + 5.0000i 

 

>> 

 

You can add, subtract, multiply and divide complex numbers just as you would real numbers.  

>> z1 = 3 - 4j 

 

z1 = 

 

   3.0000 - 4.0000i 

 

>> z2 = 1 - j 

 

z2 = 

 

   1.0000 - 1.0000i 

 

>> z1 + z2 

 

ans = 

 

   4.0000 - 5.0000i 

 

There are various functions available for operating on complex numbers, some of which are listed in Table 

3-1. 

Table 3-1 

 

Function Description 
real Returns the real part of a complex number. 
imag Returns the imaginary part of a complex number. 
conj Returns the complex conjugate. 
abs Returns the magnitude of a complex number. 
angle Returns the argument (phase angle) of the complex number. 
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Recall that a complex number,       , can be represented in polar form as  

       

where  

   √           and            (
 

 
) 

The magnitude, R, can be obtained directly using the abs function and likewise θ can be obtained using 

angle. 

 

>> z = 4 + 7j 

 

z = 

 

   4.0000 + 7.0000i 

 

>> R = abs(z) 

 

R = 

 

    8.0623 

 

>> theta = angle(z) 

 

theta = 

 

    1.0517 

 

>> z = R*exp(i*theta) 

 

z = 

 

   4.0000 + 7.0000i 

 

>> 

 

You could of course calculate the argument using the inverse tangent (atan function)  but angle will always 

be correct regardless of the quadrant in which the value lies in the complex plane. 

Exercise 3-1 

 

1.  Given that        and       , calculate the following.  

 i)      

  ii)           

 iii)      

  iv)     

 

 

 

 

2. For        

 

 i) Determine    
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 De Moivre's theorem states that 

 

           

 

 ii) Convert the value z to exponential form and recalculate   using De Moivre's theorem. 

 

 

 

3. A circuit with a resistor and inductor in series has total impedance given by 

 

          

 

 Where R is the resistor value and L is the inductance. If an AC current of frequency f Hz is driving the 

load, the voltage as measured across the two components will be out of phase with the current by an 

amount θ, equal to the phase angle (argument) of z. 

 i) Determine the phase of the output voltage when 

                         

 

 ii) Convert the angle to degrees 

 

 iii) Confirm the result by calculating the angle directly from the equation, 

 

       (
 

 
) 

 

 where   is the imaginary part and   is the real part. 

 

 

3.2 Matrices 
The most basic MATLAB data structure is the matrix: a two-dimensional, rectangularly shaped data structure 

capable of storing multiple elements of data in an easily accessible format. These data elements can be 

numbers, characters, logical states of true or false, or even other MATLAB structure types. MATLAB uses 

these two-dimensional matrices to store single numbers and linear series of numbers as well. In these cases, 

the dimensions are 1-by-1 and 1-by-n respectively, where n is the length of the numeric series. That is, the 

simple variables you have encountered so far such as x = 10 can be considered as a 1 x 1 matrix.  

MATLAB also supports data structures that have more than two dimensions. These data structures are 

referred to as arrays in the MATLAB documentation. We will not cover arrays in this course. 

We will first discuss how to create, access and manipulate matrices and then cover how operators and 

functions operate on matrices. 

 

3.2.1 Creating Matrices 
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3.2.1.1 Constructing a Simple Matrix 

The simplest way to create a matrix in MATLAB is to use the matrix constructor operator, []. Create a row in 

the matrix by entering elements (shown as E below) within the brackets. Separate each element with a comma 

or space: 

row = [E1, E2, ..., Em]      or    row = [E1 E2 ... Em] 

For example, to create a one row matrix of five elements, type 

>> A = [12 62 93 -8 22] 

 

A = 

 

    12    62    93    -8    22 

 

To start a new row, terminate the current row with a semicolon: 

A = [row1; row2; ...; rown] 

 

This example constructs a 3 row, 5 column (or 3-by-5) matrix of numbers. Note that all rows must have the 

same number of elements: 

A = [12 62 93 -8 22; 16 2 87 43 91; -4 17 -72 95 6] 

A = 

    12    62    93    -8    22 

    16     2    87    43    91 

    -4    17   -72    95     6 

 

Exercise 3-2 

Create the following matrix. 

 

[
     
      
      

] 

 

 

3.2.1.2 Generating a Numeric Sequence 

You will often have need to create a numeric sequence, a vector of equally spaced values, for instance 

creating a the x-values for a function you wish to evaluate over a range and plot.  

The colon operator (first:last) generates a 1-by-n matrix (or vector) of sequential numbers from the first value 

to the last. The default sequence is made up of incremental values, each 1 greater than the previous one: 

A = 10:15 

A = 

    10    11    12    13    14    15 

 

The numeric sequence does not have to be made up of positive integers. It can include negative numbers and 

fractional numbers as well: 
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A = -2.5:2.5 

A = 

   -2.5000   -1.5000   -0.5000    0.5000    1.5000    2.5000 

 

You can change the step value by using the following extended syntax. 

A = first:step:last 

To generate a series of numbers from 10 to 50, incrementing by 5, use 

A = 10:5:50 

A = 

    10    15    20    25    30    35    40    45    50 

 

You can increment by noninteger values. This example increments by 0.2: 

A = 3:0.2:3.8 

A = 

    3.0000    3.2000    3.4000    3.6000    3.8000 

 

To create a sequence with a decrementing interval, specify a negative step value: 

A = 9:-1:1 

A = 

    9    8    7    6    5    4    3    2    1 

 

Exercise 3-3 

 

1.  Create a vector between -30 and 50 in steps of 10 

 

2.  Create a vector between 0 and    in steps of  π/10. 

3.2.1.3 Using Specialised Matrix Functions 

There are a number of functions provided for generating matrices, some of which are listed in Table 3-3 

 

Table 3-2 

 

 

>> A = rand(5) 

 

Function Description 
zeros Create a matrix or array of all zeros. 
ones Create a matrix or array of all ones. 
eye Create a matrix with ones on the diagonal and zeros elsewhere. 
magic Create a square matrix with rows, columns, and diagonals that add up to 

the same number. 
rand Create a matrix or array of uniformly distributed random numbers. 
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A = 

 

    0.7943    0.2630    0.0838    0.5383    0.9619 

    0.3112    0.6541    0.2290    0.9961    0.0046 

    0.5285    0.6892    0.9133    0.0782    0.7749 

    0.1656    0.7482    0.1524    0.4427    0.8173 

    0.6020    0.4505    0.8258    0.1067    0.8687 

 

 

 

3.2.1.4 Concatenating Matrices 

It is simple to concatenate matrices wither row-wise or column-wise using the semi-colon operator or comma 

operator in the same manner as they are used to construct a matrix.  Note the use of square brackets since we 

are creating a new matrix. 

>> % Concatenate two matrices row-wise 

>> A = ones(1,5) 

 

A = 

 

     1     1     1     1     1 

 

>> B = rand(3,5) 

 

B = 

 

    0.8147    0.9134    0.2785    0.9649    0.9572 

    0.9058    0.6324    0.5469    0.1576    0.4854 

    0.1270    0.0975    0.9575    0.9706    0.8003 

 

>> C = [A;B] 

 

C = 

 

    1.0000    1.0000    1.0000    1.0000    1.0000 

    0.8147    0.9134    0.2785    0.9649    0.9572 

    0.9058    0.6324    0.5469    0.1576    0.4854 

    0.1270    0.0975    0.9575    0.9706    0.8003 

 

 

>> % Concatenate two matrices column-wise 

>> D = [1; 2; 3; 4;] 

 

D = 

 

     1 

     2 

     3 

     4 

 

>> E = zeros(4,2) 

 

E = 

 

     0     0 

     0     0 

     0     0 

     0     0 

 

>> F = [D,E] 

 

F = 

 

     1     0     0 
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     2     0     0 

     3     0     0 

     4     0     0 

 

>> 

 

3.2.2 Accessing Elements 

You can access a single element in an array using the following notation 

A(row,column) 

>> A = [2 6 9; 4 2 8; 3 5 1] 

 

A = 

 

     2     6     9 

     4     2     8 

     3     5     1 

 

>> A(2,3) 

 

ans = 

 

     8 

To access multiple elements we us the colon operator. Subscript expressions involving colons refer to portions 

of a matrix. The expression 

A(1:m, n) 

 

refers to the elements in rows 1 through m of column n of matrix A. 

A colon on its own specifies the whole row or column. 

 

>> A(:,2) 

 

ans = 

 

     6 

     2 

     5 

 

The indexing syntax used above to return parts of a matrix can also be used for selectively assigning values to 

an existing matrix. 

For instance. 

>> A = 1:10 

 

A = 

 

     1     2     3     4     5     6     7     8     9    10 

 

>> A(2:4) = 0 

 

A = 
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     1     0     0     0     5     6     7     8     9    10 

 

You can remove a row or column by assigning an 'empty' matrix - []. 

>> A = rand(4) 

 

A = 

 

    0.1419    0.9595    0.9340    0.3922 

    0.4218    0.6557    0.6787    0.6555 

    0.9157    0.0357    0.7577    0.1712 

    0.7922    0.8491    0.7431    0.7060 

 

>> A(2,:) = [] 

 

A = 

 

    0.1419    0.9595    0.9340    0.3922 

    0.9157    0.0357    0.7577    0.1712 

    0.7922    0.8491    0.7431    0.7060 

 

 

Exercise 3-4 

 

1.  Create a 9 x 9 matrix of random numbers. 

 

2. Set the central 3x3 square elements to zero. 

 

3.  Create a 9 x 1 vector  of ones.  

 

4.  Replace the 8th column with this vector. 

 

5.  Reduce the matrix to a 7 x 7 by removing the outer columns and rows. 

 

 

  The result should look something like this. 

 

    0.7447    0.7757    0.6443    0.5870    0.2277    0.1111    1.0000 

    0.1890    0.4868    0.3786    0.2077    0.4357    0.2581    1.0000 

    0.6868    0.4359         0         0         0    0.4087    1.0000 

    0.1835    0.4468         0         0         0    0.5949    1.0000 

    0.3685    0.3063         0         0         0    0.2622    1.0000 

    0.6256    0.5085    0.9390    0.8443    0.1848    0.6028    1.0000 

    0.7802    0.5108    0.8759    0.1948    0.9049    0.7112    1.0000 

 

 

 

3.2.3 Other Matrix Operations 

Here are some other useful matrix operations. 
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3.2.3.1 Transpose 

A matrix can be transposed simply using the apostrophe operator. 

>> A = [ 1 2 3; 4 5 6; 7 8 9] 

 

A = 

 

     1     2     3 

     4     5     6 

     7     8     9 

 

>> B = A' 

 

B = 

 

     1     4     7 

     2     5     8 

     3     6     9 

 

3.2.3.2 Flip a Matrix 

The flipud and fliplr functions can be used to flip a matrix horizontally or vertically. 

>> A = [ 1 2 3; 4 5 6; 7 8 9] 

 

A = 

 

     1     2     3 

     4     5     6 

     7     8     9 

 

>> B =flipud(A) 

 

B = 

 

     7     8     9 

     4     5     6 

     1     2     3 

 

3.3 Functions and Matrices 
One of the powerful features of MATLAB is the way functions handle inputs of vectors and matrices.  

Consider for example the standard trigonometric functions sin, cos etc. In MATLAB, as in all generic 

languages, if you pass a value to the function it will return the associated result of the specified operation. 

However if you pass a matrix, the function will return a matrix of the same size containing the results 

calculated for all the input values.  

Consider calculating the sine of 3 values.  Here is how you would do it in the C programming language. 

double result [3]; 

 

double  vector [3] = { 0.01 , 3.1415926536/2, 3.1415926536 }; 

for (int i = 0 ; i<3 ;i++) 

{ 

   result[i] = sin(vector[i]); 

} 

 

In MATLAB it takes just one line … 
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>> sin([0.001 pi/2 pi]) 

 

ans = 

 

    0.0010    1.0000    0.0000 

 

Now consider functions which operate on multiple values by default. To calculate the average of a set of 

values we use the mean function and pass a vector containing those values.  

>> a = rand(1,10) 

 

a = 

 

    0.8147    0.9058    0.1270    0.9134    0.6324    0.0975    0.2785    0.5469    0.9575    

0.9649 

 

>> mean(a) 

 

ans = 

 

    0.6239 

 

Now, in the case where the input is a matrix the behaviour is different from that of functions like sin. mean 

does not calculate the average of all the values but treats each column as a separate vector. 

 

>> A = rand(10,5) 

 

A = 

 

    0.4505    0.1067    0.4314    0.8530    0.4173 

    0.0838    0.9619    0.9106    0.6221    0.0497 

    0.2290    0.0046    0.1818    0.3510    0.9027 

    0.9133    0.7749    0.2638    0.5132    0.9448 

    0.1524    0.8173    0.1455    0.4018    0.4909 

    0.8258    0.8687    0.1361    0.0760    0.4893 

    0.5383    0.0844    0.8693    0.2399    0.3377 

    0.9961    0.3998    0.5797    0.1233    0.9001 

    0.0782    0.2599    0.5499    0.1839    0.3692 

    0.4427    0.8001    0.1450    0.2400    0.1112 

 

>> mean(A) 

 

ans = 

 

    0.4710    0.5078    0.4213    0.3604    0.5013 

 

This columnwise behaviour occurs frequently. Another example is data plotting, where if you pass a matrix to 

the plot function, it will treat each column in the matrix as a separate data set. Thus if you pass an n x 3 

matrix to plot you will get a graph with 3 lines plotted. 

 

 

Here is an example. 
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Example.  3-1 
 

>> % Create the values of theta for which we sill calculate sine and cosine 

>> x = 0:0.1:2*pi; 

>> % Transpose it to make it a column vector 

>> x = x'; 

>> % Calculate sine and cosine for those angles and put the results in an n x 2 matrix 

>> result = [sin(x) , cos(x) ]; 

>> % plot the sine and cosine curves against angle 

>> plot(x,result) 

 

 

 

The plot should look like this … 

  

Fig. 1 The result from Example.  3-1 

 

Exercise 3-5 

 

Calculate 

           (     )          (   ) 

 

for         at intervals of 0.1 radians.  

 

Plot the results. 

 

You must use the sin and plot functions only once. 

 

HINT 

After you create the numeric sequence you must convert it from a row of numbers to a column of numbers 

using the transpose operator. 

 

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
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3.4 Arithmetic Operations 
You have already used arithmetic operators when dealing with single values. We will now generalise their use 

to matrices. You should begin to see how powerful MATLAB is at processing data and how easy it is to 

operate on complete data sets without the need for traditional loop constructs used in generic programming 

languages. 

3.4.1 Addition and Subtraction 

Two matrices of the same size can be added or subtracted. The operation is done on an element by element 

basis. You can also add a scalar to a matrix. 

>> A = ones(3) 

 

A = 

 

     1     1     1 

     1     1     1 

     1     1     1 

 

>> B = A + 4 

 

B = 

 

     5     5     5 

     5     5     5 

     5     5     5 

 

>> C = eye(3) 

 

C = 

 

     1     0     0 

     0     1     0 

     0     0     1 

 

>> D = B + C 

 

D = 

 

     6     5     5 

     5     6     5 

     5     5     6 

 

 

3.4.2 Multiplication 

The multiply operator, *,  we have seen earlier in fact implements a matrix multiply operation. That is, the 

product of an m×p matrix A with an p×n matrix B is an m×n matrix C whose entries are 

    ∑       

 

   

 

 

And in general, 

      

So, in MATLAB, 
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>> A = [ 1 2 3; 4 5 6] 

 

A = 

 

     1     2     3 

     4     5     6 

 

>> B = [1 2 ; 3 4 ; 5 6] 

 

B = 

 

     1     2 

     3     4 

     5     6 

 

>> A*B 

 

ans = 

 

    22    28 

    49    64 

 

>> B*A 

 

ans = 

 

     9    12    15 

    19    26    33 

    29    40    51 

 

Remember, the inner matrix dimensions must agree. That is, the number of columns in the left operand must 

equal the number of rows in the right operand. 

>> A = [ 1 2 3 4; 5 6 7 8] 

 

A = 

 

     1     2     3     4 

     5     6     7     8 

 

>> B = [1 2 ; 3 4 ; 5 6] 

 

B = 

 

     1     2 

     3     4 

     5     6 

 

>> A * B 

??? Error using ==> mtimes 

Inner matrix dimensions must agree. 
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3.4.3 Division (Solving Systems of Linear Equations) 

Recall that we can use matrices to solve systems of linear equations. 

The following equations 

       

          

can be represented in matrix form as 

*
  
   

+ *
 
 +  *

 
   

+ 

The general form for a system of linear equations is 

     

which can be solved as follows. 

           

        

In MATLAB we could solve the equation set above as follows. 

>> A = [1 3 ; 3 -2] 

 

A = 

 

     1     3 

     3    -2 

 

>> b = [7 ; -12] 

 

b = 

 

     7 

   -12 

 

>> inv(A)*b 

 

ans = 

 

   -2.0000 

    3.0000 

 

However, there is a quicker way to do this without explicitly determining the inverse matrix and that is to 

carry out a matrix left division using the back-slash operator. 

>> A = [1 3 ; 3 -2] 

 

A = 

 

     1     3 

     3    -2 

 

>> b = [7 ; -12] 

 

b = 

 

     7 

   -12 
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>> u = A\b 

 

u = 

 

    -2 

     3 

 

Functionally,  A\B corresponds to inv(A)*b. 

 

Exercise 3-6 

Solve the following equations 

 

1.   

          

         

2.  

        

        

 Explain this answer 

3.   

        

         

 Explain this answer 

4.  

           

           

             

 

5.  Repeat question 4 by calculating the inverse explicitly. 

 

 

 

 

3.4.4 Matrix Power 

Since, for example 

       

The power operator simply does a matrix multiply of a matrix by itself n times where n is the exponent. 
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3.5 Element-wise (Array) Arithmetic Operations 
When operating on matrices there are other forms of arithmetic operation which are of importance, in 

particular operations which act on the elements of a matrix or vector individually, known in MATLAB as 

array operations.  

3.5.1 Array Multiplication (the Hadamard Product) 

Array multiplication (known as the  Hadamard Product) is used extensively in MATLAB. This is the entry-

wise product of two matrices of the same size, or of a matrix and a scalar. The Hadamard product of A and B 

is  

      

where, 

           

In MATLAB we use the dot-star operator : '.*' to compute this product. 

>> A = [1 2 ;3 4] 

 

A = 

 

     1     2 

     3     4 

 

>> A.*A 

 

ans = 

 

     1     4 

     9    16 

 

This operator is particularly useful in MATLAB because it allows us to do an element-by-element multiply of 

data in a single command. That is we can generate multiple data points for complex functions which are the 

product of two or more other functions in one line of code.  

3.5.2 Array Division 

The  division equivalent of array multiplication is exactly what you would expect. If matrix A is divided by 

matrix B, the result is a matrix of the same size where each element is the result of dividing the corresponding 

elements of A by B. 

 

>> a = ones(1,5) 

 

a = 

 

     1     1     1     1     1 

 

>> b = 1:5 

 

b = 

 

     1     2     3     4     5 

 

>> a./b 
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ans = 

 

    1.0000    0.5000    0.3333    0.2500    0.2000 

 

3.5.3 Array Power 

Finally, array power can be used to raise individual elements of a matrix to powers. The exponent can be a 

scalar in which case all elements of the matrix are raised to the same power or a matrix of the same size as the 

operand in which case each element of the matrix is raised to the power of the value in the corrrsponding 

element of the exponent matrix. 

>> a = ones(1,4)*2 

 

a = 

 

     2     2     2     2 

 

>> b = 1:4 

 

b = 

 

     1     2     3     4 

 

>> a.^b 

 

ans = 

 

     2     4     8    16 

 

Now try the following exercises. 

Exercise 3-7 

Consider the following function. 

 

 

 ( )     (
 

 
)     ( ) 

       

 

 

Generate values for the given function at intervals of  
 

  
 between 0 and     and plot the resulting data 

following the steps below. 

 

1.  Generate a vector of theta values at the specified interval and over the specified range for N=6. (section 

3.2.1.2) 

 

2. Determine y for all values of theta. 

 

 Since y  is the product of two functions,     ( ) ( ). To calculate  (  ) we must evaluate  (  ) and 

 (  ) and then take the product and do this for each value of θ. Thus you use the array product. 

Similarly, you must use the array power operator to calculate       

 

3.   Now plot the function using the plot command.  Type  help plot to see how to use it. 
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3.6 Relational Operations  and Logical Vectors 
 

Relational operators compare operands quantitatively, using operators like "less than" and "not equal to." The 

following table provides a summary.  

 

< Less than 

<= Less than or equal to 

> Greater than 

>= Greater than or equal to 

== Equal to 

~= Not equal to 

Table 3-3 

 

Logical operators return a logical true or false represented as 1 and 0 respectively as illustrated in the example 

below. 

>> 3 > 6 

 

ans = 

 

     0 

 

>> 3 < 6 

 

ans = 

 

     1 

 

The answer generated is not the integer value 1 but the logical value 1. A value of type logical can only have 

two states, either 1 (true) or 0 (false).  When applied to a matrix or vector a relational operator works on an 

element-by-element basis. 

 

>> a = 1:5 

 

a = 

 

     1     2     3     4     5 

 

>> b = ones(1,5)*3 

 

b = 

 

     3     3     3     3     3 

 

>> a > b 

 

ans = 

 

     0     0     0     1     1 
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That is, a > b is false for the first three elements and true for the last two. 

What makes this type of operation so powerful is that logical vectors can be used to index elements in a 

matrix, thus we can find data within a data set (a vector or matrix) which conform to some relational test. An 

example should make this clear. 

>> x = 0 : pi/20 : 3*pi;     % Generate theta values 

>> y = sin(x); 

>> neg = y < 0;    % find all values of sin(x) less than 0 

>> y(neg) = 0;     % set all those values to 0 

>> plot(x,y); 

The result looks like this. 

 

The operation y<0 returns a logical vector with 1s in elements corresponding to values in the y vector less 

than zero and 0s in all the other elements. This vector is stored as the variable neg. When neg is used to index 

y (as in y(neg)), it indexes all elements in y less than zero, and so y(neg)= 0 replaces all negative values 

with zero. 

We can reduce the number of steps required to do the above exercise to 4 as follows. 

Exercise 3-8 

 

Carry out the following steps. 

 

>> x = 0 : pi/20 : 3*pi; 

>> y = sin(x); 

>> y = y .* (y > 0); 

>> plot(x,y) 
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Can you see how that works? Do it yourself and look at the output from each step. You can break down the 

operations in any way you want.  For instance, look at what y>0 does by typing it on its own and then do the  

array multiply . 

Here is an exercise to try. 

Exercise 3-9 

 

1.  Plot the graph of      between  
 

 
  and  

 

 
 . 

 

 Define angles x at intervals of      .  

 

 theta  = -3/2*pi : pi/100 : 3/2*pi; 

 y = tan(theta); 

 plot(theta,y); 

 

 If you've done it correctly you should get a plot that looks like this. 

 

 

 
 

It doesn't look much like a tan θ curve unfortunately, why is that? Well as θ approaches odd-multiples of π/2, 

tan θ approaches ±∞. Look at the y-axis and you'll see that the peak values are huge. The structure of the 

curve is lost. 

To solve this problem we need to locate the values of tan θ that are very large (negative and positive) and 

replace them with zeros. 

 

 

2. Replace the values of y which are greater than some arbitrary large number (it's not crucial, but look at 

the plot above) by zero and then re-plot the graph. 

 

 We can do this as follows. Locate all values less than our 'arbitrary' large number. 
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 result = (abs(y) < 1e10); 

 

 The  vector result will have ones where  the (absolute) value of y is less than 10
10

 and zeros elsewhere. 

So if we multiply y by this vector, that should get rid of the large values.  

 

 You don't have to split the task, you can remove the large values from y in a single line.  

 

Try that now and then re-plot the data.  If you get it right it should look like this. 
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Exercise 3-10 

 

We are going to plot a function known as the sinc function which has the following form. 

  
    

 
 

1. Define theta values between -3π/2 and 3π/2 in steps of  π/10. 

 

 theta = -3/2*pi : pi/10 : 3/2*pi; 

 

2. Now create the sinc function. Remember you have use array division. 

 

 y = sin(theta)./theta; 

 

3.  Now plot the result using the plot function. 

 

 plot(theta,y) 

 

 

 
 

Notice that the curve has no value at theta = 0. That's because. 

 

    

 
 

 

 
 

 

which, as far as MATLAB is concerned, is undefined
1
. 

MATLAB handles it very well, in such a situation it returns the special value NaN (not-a-number) which is 

ignored when plotting, hence the gap in the plot. We nevertheless have a missing value, so how can we deal in 

general with problems like this? 

                                                      
1
 It is evident from the curve of course that  

    

 
 is defined which can be proven from L'Hôpital's rule which states that 

if        ( )         ( )    then       
 ( )

 ( )
       

  ( )

  ( )
 and therefore  

    

 
|
   

  
  (    )

  
⁄

  
  ⁄

|
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If we replace the angle 0 with a very small number (ie an approximation to zero) then our function will work. 

MATLAB provides such a number, eps. eps returns the 'distance' between contiguous floating point numbers 

as they are represented in MATLAB, the  'resolution' of floating point numbers if you like.  

  

4. Type eps in the command window to see what value it is. 

 

5.  Now see what happens when you put this angle into the equation. Calculate,     (   )     .  

 

So now all we have to do is find θ = 0 in our vector of θ values and replace it with eps and recalculate the sinc 

function. Again, we can do it with logical vectors. 

 

6. In the theta vector replace all occurrences of 0 with eps. 

  theta2 = theta + (theta == 0)*eps; 

  

 Compare the values in theta2 with those in theta. How does the line above work. 

 

7. Recalculate the sinc function and re-plot it. 

 
 

3.7 Operator Precedence 
You can build expressions that use any combination of arithmetic, relational, and logical operators. 

Precedence levels determine the order in which MATLAB evaluates an expression. Within each precedence 

level, operators have equal precedence and are evaluated from left to right. The precedence rules for 

MATLAB operators are shown in this list, ordered from highest precedence level to lowest precedence level: 

1. Parentheses () 

2. Transpose (.'), power (.^), complex conjugate transpose ('), matrix power (^) 

3. Unary plus (+), unary minus (-), logical negation (~) 

4. Multiplication (.*), right division (./), left division (.\), matrix multiplication (*), matrix right 

division (/), matrix left division (\) 

5. Addition (+), subtraction (-) 

6. Colon operator (:) 

7. Less than (<), less than or equal to (<=), greater than (>), greater than or equal to (>=), equal to 

(==), not equal to (~=) 

8. Element-wise AND (&) 

9. Element-wise OR (|) 

10. Short-circuit AND (&&) 

11. Short-circuit OR (||) 
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3.8 Saving and Reading Data 

3.8.1 Saving Data 

Data in the MATLAB workspace can be saved to special files with the extension mat. Typing save on the 

command line will save all the data to the default file matlab.mat. Alternatively you can save selected 

variables to a file name of your choice. 

The following command will save two matrices, A and c to the file test.mat. 

>> save 'test' A c 

 

When you save data to a file it will overwrite any existing file of the same name so you will lose whatever 

data had been previously saved. If you want to add data to an existing file then use the -append option as 

follows. 

>> save 'test' B -append 

 

The file test.mat will now contain 3 variables, A, B and c. 

There are various other ways to export data from MATLAB to formats such as csv, excel files, text files etc.  

 

3.8.2 Reading Data 

Data previously saved to mat files can be read back in to the MATLAB workspace using the load function. 

If the data was saved to the default matlab.mat file then simply type load and all the variables will be restored 

to the workspace. For other files you must specify the filename.  

>> load 'test' 

 

 

 

 


