Glossary A to \mathbf{N}

Term	Definition	Page References	
acceleration	Rate of change of velocity. Symbol a. SI unit is $\mathrm{m} / \mathrm{s}^{2}$.	$56,70,106$, $303,349-$ $354, ~ 499-$ 502	Acceleration due gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
adjacent	Side of a triangle next to the angle.	$172-178$	
ampere	SI unit of electrical current. Symbol A.	33	2

angular velocity	The amount of rotation a spinning object does per unit time. Symbol is ω and SI unit is radians per second - rad/s	$\begin{aligned} & 204-6, \\ & 211,352- \\ & 4,552 \end{aligned}$	
Argand diagram	A diagram which represents complex numbers in the plane.	$\begin{aligned} & 526-30, \\ & 540,543- \\ & 44 \end{aligned}$	
argument of a complex number	The angle which gives the direction of the complex number.	537	 θ is the argument of the complex number
asymptote	An asymptote is a line that approaches a given curve.	122	 The line $x=\frac{\pi}{2}$ is an asymptote to the curve.
atto	1 atto is 10^{-18}.	33	

B			
bar chart	A graphical representation of data by plotting bars.	812-814	
base of logarithm	If $b^{x}=a$ then $x=\log _{b}(a)$ where b is the base of the logarithm.	250-2	$\log _{6} \frac{(a)}{\text { base of } \log }$
bending moment	The moment resulting from a force which causes bending of a beam. SI unit is Nm.	88	
boundary value problems	A differential equation with conditions given at different points.	742-3	Consider a beam of length L. The boundary conditions could be the deflections at the points $x=0$ and $x=L$.

calculus	The study of rates of change.	272-276	Many physical systems involve rates of change which can be described through calculus.
Cantor set	By taking the interval $[0,1]$ and removing the middle third each time results in the Cantor set.	379	
capacitor	An electronic device used for storing electrical charge.	689	Almost all electronic gadgets contain capacitors such as TV, mobile phones, computers and cd players.
Cartesian coordinate system	$x-y$ plane representing the Cartesian coordinate system named after the French mathematician (philosopher) Rene Descartes.	$\begin{aligned} & 102,145 \\ & 181 \end{aligned}$	
CAST	Mnemonic which gives the quadrant with the positive trigonometric ratio.	189-90	
coefficient	The number in front of the variable or multiplied by the variable.	103, 113	$\underbrace{7 x+1=0}_{7 \text { is the coefficient of } \mathrm{x}}$
column vector	A n by $1 \underline{\underline{\text { matrix }}}\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)$	$\begin{array}{\|l\|} \hline 583,599, \\ 615,617 \end{array}$	
common logarithm	Logarithm to the base 10. Symbol is log.	248-9	Inverse of 10^{x}.

common ratio	Ratio of consecutive terms in a geometric series.	378	For example the common ratio of: $\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\cdots$ is $1 / 10$.
complex conjugate	Reflecting the complex number $x+j y$ in the horizontal axis gives the complex conjugate $x-j y$. (The imaginary part changes sign.)	$\begin{aligned} & 520-2 \\ & 524,536 \end{aligned}$	
complex number	A number made up by a real part and an imaginary part, $a+b \sqrt{-1}$.	517	For example $2+3 \sqrt{-1}=2+3 j$ is a complex number.
composite function	Combining two or more functions. Normal notation is $g \circ f$.	153-5	
constant of integration	When differentiating a constant we get zero so integrating a function must have a constant and this is called the constant of integration.	400	The C in the following is the constant of integration.
cosecant	Is equal to $\frac{\text { hypotenuse }}{\text { opposite }}$ in a right-angled triangle. Normally denoted by cosec.	$\begin{aligned} & 178-179, \\ & 263 \end{aligned}$	
cotangent	Is equal to $\frac{\text { adjacent }}{\text { opposite }}$ in a right-angled triangle. Normally denoted by cot.	$\begin{aligned} & 178-179, \\ & 263 \end{aligned}$	

D

| decibel (dB) | Used to
 measure sound
 in electronic or
 communication
 systems. | 249 | Examples are:
 Normal conversation is about 65 decibel.
 Hair dryer is approximately 90 decibel.
 Chainsaw is 100 to 110 decibel. |
| :--- | :--- | :--- | :--- | :--- |
| Degree of
 polynomial | The highest
 power of the
 variable in the
 polynomial. | 444 | The degree of the following polynomial is 7: |

| differential
 equation | An equation
 which contains
 a derivative. | 673 | $\left.\begin{array}{c}\text { An example of a differential equation is: } \\ \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}\end{array}\right] 6 y=\cos (x)$ |
| :--- | :--- | :--- | :--- | :--- |

E

eigenspace	The set of all the eigenvectors and the zero vector. Normally denoted by E_{λ}.	$\begin{aligned} & 622 . \\ & 623 \end{aligned}$	
eigenvalue	A scalar quantity λ that scales the corresponding eigenvector.	$\begin{aligned} & 613, \\ & 615 \end{aligned}$	
eigenvector	A vector belonging to an eigenvalue.	615	\mathbf{u} is an eigenvector belonging to an eigenvalue λ such that $\mathbf{A u}=\lambda \mathbf{u}$.
even function	A function which is symmetrical about the vertical axis.	$\begin{aligned} & 111, \\ & 169 \end{aligned}$	
exa (E)	Prefix in the metric system which represents 10^{18}.	33	1000000000000000000
exponent	The power or index of an expression.	32	
exponent function	The function e^{x} where $e=2.71828 \cdots$	241	

factors	The numbers or expressions which go exactly into another number or expression.	13. 15, 78 . 79, 81 - 85 ,	For example $10=1 \times 10=2 \times 5$ We say $1,2,5$ and 10 are factors of 10 . In algebra $a^{2}-b^{2}=(a-b)(a+b)$ $a-b$ and $a+b$ are factors of $a^{2}-b^{2}$.
farad (F)	SI unit of capacitance.	$\begin{aligned} & 33 \\ & 63 \end{aligned}$	In electronic gadgets the capacitor will have a value given in farad and is likely to be a small number such as microfarad, $\mu \mathrm{F}$.
femto (f)	Prefix in the metric system which represents 10^{-15}.	33	0.000000000000001
FOIL	Mnemonic for First, Outside, Inside and Last.	$\begin{aligned} & 75 \\ & 76 \\ & 81 \end{aligned}$	Used for expanding algebraic expressions with two brackets:
fraction	Ratio of two numbers.	$\begin{aligned} & 16 \\ & 18 \end{aligned}$	Examples are: $\frac{1}{2} \text { and } \frac{22}{7}$
frequency (statistics)	The number of times a particular event occurs.	807	If 10 students get 70% in a particular examination then we say 70% has a frequency of 10 .
frequency (physics)	The number of cycles of a waveform per unit of time. SI unit is hertz (Hz).	206	

Froude number	Gives the influence of gravity on a fluid motion. It has no dimensions.	73	The formula for the Froude number, $F r$, is given by $F r=\frac{v}{\sqrt{g L}}$
function	Relationship a ship, v is velocity of the ship, g is acceleration due to gravity and L is the length of the ship at water level. quantities x and y. For each x, the function will assign only one value of y which is normally denoted by $f(x)$.	137	

G

geometric series	Series with a common ratio between any two consecutive terms.	$\begin{aligned} & 378- \\ & 383 \end{aligned}$	For example the following is a geometric series: $\begin{aligned} 0.999 \ldots & =0.9+0.09+0.009+\cdots \\ & =\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\cdots \end{aligned}$ Common ratio is $\frac{1}{10}$.
giga (G)	Prefix in the metric system which represents 10^{9}.	33	1000000000
gradient	The ratio of rise over run.	$\begin{aligned} & 102 . \\ & 103 \end{aligned}$	
graph	A diagram that represents the relationship between two or more variables.	$\begin{aligned} & 101 \\ & 105 \end{aligned}$	Stock market data is represented by a graph where the x coordinate is time and the y coordinate is price:
gravity	A force that acts towards the centre of the earth.	$\begin{aligned} & 313, \\ & 658 \\ & 696, \\ & 787 \end{aligned}$	Consider a ball thrown vertically upwards: \qquad

H

| heat
 transfer | It is the
 transportation
 of heat from
 an object with
 high
 temperature to
 an object with
 a lower
 temperature. | 699
 700 |
| :--- | :--- | :--- | :--- | :--- | :--- |

independent variable	A variable which does not dependent on another variable. Normally the independent variable is denoted by x.	$\begin{aligned} & 102, \\ & 137 \end{aligned}$	
inductor	An electronic component which stores energy.	$\begin{aligned} & 435, \\ & 689 \end{aligned}$	An inductor is a coil of wire which resembles a doughnut.
integrand	The function being integrated.	400	$\int[\text { integrand }] d(\text { variable })$
integration	Inverse of differentiation.	400	
inverse function	The opposite or reverse of a given function.	$\begin{aligned} & 141- \\ & 144 \end{aligned}$	If $f(x)$ is the given function then the inverse is denoted by $f^{-1}(x)$:

J

joule (J)	SI unit of work or energy.	34	One joule is the work done in applying a force of 1 Newton in moving an object by 1 metre.

K

Kelvin (K)	SI unit of measuring temperature.	34	Zero Kelvin is called absolute zero. $0^{\circ} \mathrm{C}$ is equivalent to 273.16 K .1 K has the same size as 1° Celsius.
kilo (k)	Prefix in the metric system which represents 1000.	33	For example 1 km is 1000 m .
$\begin{aligned} & \text { kilogram } \\ & \text { (kg) } \end{aligned}$	The SI measurement of mass.	33	Kilogram (kg) is 1000 grams. (This is equivalent to the mass of a packet of sugar.)
kinematics	Part of mechanics which deals with motion of body.	$\begin{aligned} & 349 \\ & 52 \end{aligned}$	
Kirchhoff's voltage law	In a closed loop of a electrical circuit the applied voltage is equal to the voltage drops in the loop.	689	For example in the following loop, Kirchhoff's voltage law states that the supply voltage V_{S} is equal to $V_{1}+V_{2}+V_{3}$.

L

leading diagonal	The entries which go from top left to bottom right of a square matrix.	625			

M

Mach number	The ratio of the speed of an object through a fluid and speed of sound.	73	An aircraft of Mach 2 means that it travels twice the speed of sound, which is 761 mph . Hence Mach $2=2 \times 761=1522 \mathrm{mph}$
Matrix or matrices (plural)	An array of numbers in a bracket.	561	An efficient and systematic way of solving a set of linear equations is to use matrices.
maximum	The greatest value a function takes over a given interval.	$\begin{aligned} & 119, \\ & 329 . \\ & 330 \end{aligned}$	
mean	Gives the average of the data by adding all the data and dividing by the number of data.	$\begin{aligned} & 816 \\ & 817 \end{aligned}$	In the early nineties there was a TV programme called 2point4 children. This 2point4 was the mean number of children per family in Britain at that time. Mean of data $x_{1}, x_{2}, x_{3}, \cdots, x_{n}$ is denoted by \bar{x} and is $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n}$
median	The middle value in an ordered list.	$\begin{aligned} & 817 \\ & 818 \end{aligned}$	The median of the following data is 4 : $1,2,3,4,5,6,7$
mega (M)	Prefix in the metric system which represents 10^{6}.	33	Mega is one million, that is 1000000.
metre (m)	SI unit of length.	33	The metre has a length of 100 cm .
micro (μ)	Prefix in the metric system which represents 10^{-6}.	33	0.000001

milli	Prefix in the metric system which represents 10^{-3}.	33	Milli often crops up in electronics where current normally has a value given in milliamps, mA.
minimum	The smallest value a function takes over a given interval.	$\begin{aligned} & 119, \\ & 329 . \\ & 330 \end{aligned}$	
$\begin{aligned} & \text { micro } \\ & (\mu) \end{aligned}$	Prefix in the metric system which represents 10^{-6}.	33	0.000001
mode	The most popular value.	817	
moment	Measures the turning effect of a force that acts on an object which has a fixed point. SI unit is Nm and the symbol is M.	803	
mutually exclusive events	These events cannot occur at the same time.	834	There is no overlap between the two events E_{1} and E_{2}. For example if we throw a die then we cannot get both a 3 and a 4.

nano	Prefix in the metric system which represents 10^{-9}.	33	0.000000001
newton (N)	SI unit of force.	$\begin{aligned} & 34 \\ & 70 \end{aligned}$	If your mass is 70 kg then your weight (which is a force) would be $70 \times 9.81=686.7 \mathrm{~N}$ The weight of an apple is approximately 1 N .
Newton's law of cooling	The rate of change of temperature of a body is proportional to the difference between the temperature of the body and the surrounding temperature.	699	Newton's law of cooling tells you how long it takes for a cup of coffee to reach room temperature. The graph below illustrates Newton's law of cooling with temperature given by θ and time t.
numerator	Top expression or number in a fraction.	16	$\frac{n}{d} \longleftarrow \text { nume rator }$
numerical integration	The approximate evaluation of a definite integral by numerical methods.	473	The definite integral is approximated by considering the area:

Glossary O to Z

Odd function	A function with the property $f(-x)=-f(x)$.	$\begin{aligned} & 111, \\ & 169 \end{aligned}$	
ohm	SI unit of electrical resistance. Symbol is Ω.	33	A resistor of 1Ω means that if a voltage of 1 V is applied to this resistor then the current through this resistor would be 1A.
Ohm's law	The voltage across a conductor is proportional to the current through it.	689	The formula for Ohm's law is $V=I R$ where V is voltage, I is current and R is resistance.
opposite	The side opposite the given angle in a triangle.	$\begin{aligned} & 141- \\ & 142 \end{aligned}$	
ordinate	The y value of a point in the Cartesian coordinate system.	$\begin{aligned} & 475, \\ & 481 \end{aligned}$	
origin	The point where the axes intersect. Normally denoted by O.	102	

parameter	An independent variable, normally time t or angle θ, that gives the coordinates of a point.	308	The coordinates of a point (x, y) rotating about the origin can be given by the angle θ as follows:
	(

polynomial	An algebraic expression where the index of the variable must be a positive whole number or zero.	444	An example is $2 x^{10}+3 x^{9}+4 x^{5}+9 x+1$.
projectile	An object upon which the only force acting on it is gravity.	313	
	A whole number greater than 1 whose only divisors are 1 and itself.	13	The first few prime numbers are
prime			

R

| random
 variable | A variable
 associated
 by
 experiment
 and the
 value
 determined
 by chance. | 845 |
| :--- | :--- | :--- | :--- | :--- |

scalar	Only has magnitude.	$\begin{aligned} & \hline 562, \\ & 637 \end{aligned}$	The distance between two points is a scalar.
secant	Is equal to \qquad adjacent Normally denoted by sec.	$\begin{aligned} & 178 \\ & 263 \end{aligned}$	
series	The sum of mathematical terms in some order.	$\begin{aligned} & 358 \\ & 389 \end{aligned}$	An example is $1+2+3+4+5+6+\cdots$
SI units	Units of measurement based on the metric system.	32	Some SI quantities are: Length measured in metre. Time in second. Mass in kilogram.
Simple harmonic motion (SHM)	A motion of an object which is periodic such as the oscillation of a spring or a bicycle wheel.	304	
streamlines	Path traced out by a particle which moves with the flow of a fluid.	$\begin{aligned} & 104, \\ & 111, \\ & 679 \end{aligned}$	
symmetry	The quality of being exactly the same.	$\begin{aligned} & 168, \\ & 176, \\ & 781, \\ & 878 \\ & \text { and } \\ & 881 \end{aligned}$	

T

tera (T)	Prefix in the metric system which represents 10^{12}.	33	1000000000000	
three dimensional co-ordinate system	Three axes at right angles to each other and every point is identified by three co- ordinates $(x, \quad y, z)$.	774		The time needed to charge a capacitor through a resistor to 63% of its full charge. Symbol is τ.
time constant	242.	243		

V

variable	A value that changes.	53,55	
vector	A quantity that has magnitude and direction.	637	Examples of vectors are velocity, acceleration, force, displacement and moment.
velocity	Rate of change of position of an object. Symbol v and SI unit is m / s.	$57,70-73$, 84,91	
volt (V)	SI unit of voltage.	33	

W
watt (W) SI unit of power. 34 1W is equal to 1 joule per second. Consider walking up some steps at a rate of 0.5m/s and your weight is $75 \times 10=750 \mathrm{~N}$. The rate of working up these steps is $750 \times 0.5=375 \mathrm{~W}$ work The transfer of energy. 659

