Complete Solutions to Examination Questions 12

1. We are given $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$, $\mathbf{s} = 4\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}$ and we need to determine $\mathbf{r} \times \mathbf{s}$. How? Use (12.24):

$$\mathbf{r} \times \mathbf{s} = (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) \times (4\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}) = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & -4 \\ 4 & -5 & -2 \end{pmatrix}$$

$$= \mathbf{i} \det \begin{pmatrix} 3 & -4 \\ -5 & -2 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} 2 & -4 \\ 4 & -2 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix}$$

$$= \mathbf{i} (-6 - 20) - \mathbf{j} (-4 + 16) + \mathbf{k} (-10 - 12)$$

$$= -26\mathbf{i} - 12\mathbf{j} - 22\mathbf{k}$$

2. (a) (i) To find the work done, we need to find the scalar product $\mathbf{F} \cdot \mathbf{r}$:

$$\mathbf{F} \cdot \mathbf{r} = (6\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}) \cdot (9\mathbf{i} + 6\mathbf{j} + \mathbf{k})$$
$$= (6 \times 9) + (2 \times 6) + (-5 \times 1) = 61\mathbf{J} \text{ (J = Joule)}$$

(ii) Let the angle between **F** and **r** be θ . How do we find θ ?

Use (12.14)
$$\cos(\theta) = \frac{\mathbf{F} \cdot \mathbf{r}}{|\mathbf{F}||\mathbf{r}|}$$
. What is $|\mathbf{F}|$ and $|\mathbf{r}|$ equal to?

$$|\mathbf{F}| = |6\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}| = \sqrt{6^2 + 2^2 + (-5)^2} = \sqrt{65}$$

 $|\mathbf{r}| = |9\mathbf{i} + 6\mathbf{j} + \mathbf{k}| = \sqrt{9^2 + 6^2 + 1^2} = \sqrt{118}$

Substituting these $\mathbf{F} \cdot \mathbf{r} = 61$ and $|\mathbf{F}| = \sqrt{65}$, $|\mathbf{r}| = \sqrt{118}$ into $\cos(\theta) = \frac{\mathbf{F} \cdot \mathbf{r}}{|\mathbf{F}||\mathbf{r}|}$ gives

$$\cos(\theta) = \frac{\mathbf{F} \cdot \mathbf{r}}{|\mathbf{F}||\mathbf{r}|} = \frac{61}{\sqrt{65}\sqrt{118}}$$

Taking inverse cosine results in $\theta = \cos^{-1} \left(\frac{61}{\sqrt{65}\sqrt{118}} \right) = 45.85^{\circ}$.

(b) (i) We need to find the velocity and acceleration in terms of time by differentiating:

velocity =
$$\dot{\mathbf{r}} = (3t^2 - 6t)\mathbf{i} + (12t - 2)\mathbf{j}$$

acceleration = $\ddot{\mathbf{r}} = (6t - 6)\mathbf{i} + 12\mathbf{j}$

(ii) Initial velocity and acceleration is found by substituting t = 0 into the results of part (b) (i):

initial velocity =
$$\left[3(0)^2 - (6 \times 0)\right]\mathbf{i} + \left[12(0) - 2\right]\mathbf{j} = -2\mathbf{j}$$

initial acceleration =
$$\lceil 6(0) - 6 \rceil \mathbf{i} + 12 \mathbf{j} = -6\mathbf{i} + 12 \mathbf{j}$$

(iii) The horizontal velocity is zero when the coefficient of \mathbf{i} in $(3t^2 - 6t)\mathbf{i} + (12t - 2)\mathbf{j}$ is zero:

$$3t^2 - 6t = 0$$
$$3t(t-2) = 0 \implies t = 0, t = 2$$

The horizontal velocity is zero at t = 0, t = 2.

3. We have to determine $\mathbf{a} \times \mathbf{b}$ given $\mathbf{a} = (3, 5, -2)$ and $\mathbf{b} = (2, 4, 7)$. This notation means $\mathbf{a} = 3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$. Using the determinant to find $\mathbf{a} \times \mathbf{b}$ gives

$$\mathbf{a} \times \mathbf{b} = (3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}) \times (2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 5 & -2 \\ 2 & 4 & 7 \end{pmatrix}$$
$$= \mathbf{i} \det \begin{pmatrix} 5 & -2 \\ 4 & 7 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} 3 & -2 \\ 2 & 7 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix}$$
$$= \mathbf{i} (35 + 8) - \mathbf{j} (21 + 4) + \mathbf{k} (12 - 10)$$
$$= 43\mathbf{i} - 25\mathbf{j} + 2\mathbf{k}$$

4. We need to evaluate $\mathbf{B} = \frac{\mu q}{4\pi} \cdot \frac{\mathbf{v} \times \mathbf{r}}{|\mathbf{r}|^2}$ given $\mathbf{r} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$. The vector product $\mathbf{v} \times \mathbf{r}$ can be found by using (12.24):

$$\mathbf{v} \times \mathbf{r} = (\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) \times (3\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 3 \\ 3 & 1 & -2 \end{pmatrix}$$
$$= \mathbf{i} \det \begin{pmatrix} -2 & 3 \\ 1 & -2 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} 1 & 3 \\ 3 & -2 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix}$$
$$= \mathbf{i} (4 - 3) - \mathbf{j} (-2 - 9) + \mathbf{k} (1 + 6)$$
$$= \mathbf{i} + 11\mathbf{j} + 7\mathbf{k}$$

The modulus squared $|\mathbf{r}|^2$ is evaluated by

$$|\mathbf{r}|^2 = |3\mathbf{i} + \mathbf{j} - 2\mathbf{k}|^2 = 3^2 + 1^2 + (-2)^2 = 14$$

Substituting these evaluations $\mathbf{v} \times \mathbf{r} = \mathbf{i} + 11\mathbf{j} + 7\mathbf{k}$ and $|\mathbf{r}|^2 = 14$ into $\mathbf{B} = \frac{\mu q}{4\pi} \cdot \frac{\mathbf{v} \times \mathbf{r}}{|\mathbf{r}|^2}$:

$$\mathbf{B} = \frac{\mu q}{4\pi} \cdot \frac{\mathbf{v} \times \mathbf{r}}{|\mathbf{r}|^2} = \frac{\mu q}{4\pi} \cdot \frac{\mathbf{i} + 11\mathbf{j} + 7\mathbf{k}}{14} = \frac{(\mathbf{i} + 11\mathbf{j} + 7\mathbf{k})\mu q}{56\pi}$$

- 5. We work with the following vectors $\mathbf{a} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and $\mathbf{c} = -\mathbf{i} + 2\mathbf{j} \mathbf{k}$:
- (i) Using the determinant definition to evaluate $\mathbf{a} \times \mathbf{c}$ we have

$$\mathbf{a} \times \mathbf{c} = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) \times (-\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 1 \\ -1 & 2 & -1 \end{pmatrix}$$

$$= \mathbf{i} \det \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$= \mathbf{i} (1 - 2) - \mathbf{j} (-2 + 1) + \mathbf{k} (4 - 1)$$

$$= -\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$

(ii) We have found $\mathbf{a} \times \mathbf{c} = -\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ in part (i), but what is $\mathbf{c} \times \mathbf{a}$ equal to?

$$\mathbf{c} \times \mathbf{a} = -(\mathbf{a} \times \mathbf{c}) = -(-\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = \mathbf{i} - \mathbf{j} - 3\mathbf{k}$$

What does the notation $\mathbf{a} \cdot (\mathbf{c} \times \mathbf{a})$ mean?

Means the dot product of \boldsymbol{a} and $\boldsymbol{c}{\times}\boldsymbol{a}$. Thus

$$\mathbf{a} \cdot (\mathbf{c} \times \mathbf{a}) = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) \cdot (\mathbf{i} - \mathbf{j} - 3\mathbf{k})$$
$$= 2 + 1 - 3 = 0$$

(iii) Using the result of part (i) $\mathbf{a} \times \mathbf{c} = -\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ we have

$$(\mathbf{a} \times \mathbf{c}) \times \mathbf{b} = (-\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \times (2\mathbf{i} + 2\mathbf{j} - \mathbf{k})$$

$$= \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & 3 \\ 2 & 2 & -1 \end{pmatrix}$$

$$= \mathbf{i} \det \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} -1 & 3 \\ 2 & -1 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} -1 & 1 \\ 2 & 2 \end{pmatrix}$$

$$= \mathbf{i} (-1 - 6) - \mathbf{j} (1 - 6) + \mathbf{k} (-2 - 2) = -7\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}$$

(iv) Let $\mathbf{r} = (x, 1, 0)$ which means $\mathbf{r} = x\mathbf{i} + \mathbf{j}$. The angle 60° between $\mathbf{b} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{r} = x\mathbf{i} + \mathbf{j}$ is given by

$$\cos(60^{\circ}) = \frac{\mathbf{r} \cdot \mathbf{b}}{|\mathbf{r}||\mathbf{b}|}$$

$$= \frac{(x\mathbf{i} + \mathbf{j}) \cdot (2\mathbf{i} + 2\mathbf{j} - \mathbf{k})}{|x\mathbf{i} + \mathbf{j}||2\mathbf{i} + 2\mathbf{j} - \mathbf{k}|}$$

$$= \frac{2x + 2}{\sqrt{x^2 + 1}\sqrt{2^2 + 2^2 + (-1)^2}} = \frac{2x + 2}{3\sqrt{x^2 + 1}}$$
(*)

What is $\cos(60^{\circ})$ equal to?

 $\cos(60^{\circ}) = \frac{1}{2}$. Substituting this into (*) gives

$$\frac{2x+2}{3\sqrt{x^2+1}} = \frac{1}{2}$$

$$2(2x+2) = 3\sqrt{x^2+1}$$

$$4(2x+2)^2 = 9(x^2+1)$$
 [Squaring both sides]

Expanding both sides we have

$$4(4x^{2} + 8x + 4) = 9(x^{2} + 1)$$
$$16x^{2} + 32x + 16 = 9x^{2} + 9$$
$$7x^{2} + 32x + 7 = 0$$

How do we solve this quadratic equation?

Use the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Using this with a = 7, b = 32, c = 7:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-32 \pm \sqrt{32^2 - (4 \times 7 \times 7)}}{2 \times 7}$$
$$= \frac{-32 \pm \sqrt{828}}{14} = -0.2304, -4.3411$$

into $\frac{2x+2}{3\sqrt{x^2+1}}$ gives $-\frac{1}{2}$. Hence our x value is -0.2304.

6. We work with the vectors $\mathbf{a} = \mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + \mathbf{k}$, $\mathbf{c} = 3\mathbf{i} - \mathbf{j} - 5\mathbf{k}$.

(i) Substituting
$$\mathbf{a} = \mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$$
, $\mathbf{b} = 2\mathbf{i} + \mathbf{k}$, $\mathbf{c} = 3\mathbf{i} - \mathbf{j} - 5\mathbf{k}$ into

$$\mathbf{a} - 2\mathbf{b} + \mathbf{c} = (\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}) - 2(2\mathbf{i} + \mathbf{k}) + (3\mathbf{i} - \mathbf{j} - 5\mathbf{k})$$

= $(1 - 4 + 3)\mathbf{i} + (2 - 1)\mathbf{j} + (-4 - 2 - 5)\mathbf{k} = \mathbf{j} - 11\mathbf{k}$

(ii) The dot product $\mathbf{b} \cdot \mathbf{c}$ is found by substituting the given vectors:

$$\mathbf{b} \cdot \mathbf{c} = (2\mathbf{i} + \mathbf{k}) \cdot (3\mathbf{i} - \mathbf{j} - 5\mathbf{k}) = 6 + 0 - 5 = 1$$

(iii) The vector product $\mathbf{b} \times \mathbf{c}$ is given by

$$\mathbf{b} \times \mathbf{c} = (2\mathbf{i} + \mathbf{k}) \times (3\mathbf{i} - \mathbf{j} - 5\mathbf{k})$$

$$= \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & 1 \\ 3 & -1 & -5 \end{pmatrix}$$

$$= \mathbf{i} \det \begin{pmatrix} 0 & 1 \\ -1 & -5 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} 2 & 1 \\ 3 & -5 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix}$$

$$= \mathbf{i} (0+1) - \mathbf{j} (-10-3) + \mathbf{k} (-2-0) = \mathbf{i} + 13\mathbf{j} - 2\mathbf{k}$$

(iv) Need to find $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) - \mathbf{a} \cdot (\mathbf{c} \times \mathbf{b})$. In part (iii) above we found $\mathbf{b} \times \mathbf{c} = \mathbf{i} + 13\mathbf{j} - 2\mathbf{k}$ which means that $\mathbf{c} \times \mathbf{b} = -(\mathbf{i} + 13\mathbf{j} - 2\mathbf{k}) = -\mathbf{i} - 13\mathbf{j} + 2\mathbf{k}$. We have to find $\mathbf{a} \times \mathbf{c}$ with $\mathbf{a} = \mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$ and $\mathbf{c} = 3\mathbf{i} - \mathbf{j} - 5\mathbf{k}$:

$$\mathbf{a} \times \mathbf{c} = (\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}) \times (3\mathbf{i} - \mathbf{j} - 5\mathbf{k})$$

$$= \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -4 \\ 3 & -1 & -5 \end{pmatrix}$$

$$= \mathbf{i} \det \begin{pmatrix} 2 & -4 \\ -1 & -5 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} 1 & -4 \\ 3 & -5 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$$

$$= \mathbf{i} (-10 - 4) - \mathbf{j} (-5 + 12) + \mathbf{k} (-1 - 6) = -14\mathbf{i} - 7\mathbf{j} - 7\mathbf{k}$$

Substituting $\mathbf{b} = 2\mathbf{i} + \mathbf{k}$ and $\mathbf{a} \times \mathbf{c} = -14\mathbf{i} - 7\mathbf{j} - 7\mathbf{k}$ into the first term of $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) - \mathbf{a} \cdot (\mathbf{c} \times \mathbf{b})$:

$$\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) = (2\mathbf{i} + \mathbf{k}) \cdot (-14\mathbf{i} - 7\mathbf{j} - 7\mathbf{k})$$
$$= \left\lceil 2 \times (-14) \right\rceil + \left\lceil 0 \times (-7) \right\rceil + \left\lceil 1 \times (-7) \right\rceil = -35$$

Similarly we have

$$\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b}) = (\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}) \cdot (-\mathbf{i} - 13\mathbf{j} + 2\mathbf{k})$$
$$= -1 - 26 - 8 = -35$$

Substituting $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) = -35$ and $\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b}) = -35$ into $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) - \mathbf{a} \cdot (\mathbf{c} \times \mathbf{b})$ yields $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) - \mathbf{a} \cdot (\mathbf{c} \times \mathbf{b}) = -35 - (-35) = 0$

(v) What does the notation $|\mathbf{r}|$ mean?

The modulus of the vector \mathbf{r} . We need to determine $|\mathbf{c}| - |\mathbf{a}|$:

$$|\mathbf{c}| - |\mathbf{a}| = |3\mathbf{i} - \mathbf{j} - 5\mathbf{k}| - |\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}|$$

$$= \sqrt{3^2 + (-1)^2 + (-5)^2} - \sqrt{1^2 + 2^2 + (-4)^2}$$

$$= \sqrt{35} - \sqrt{21} = 1.3335$$

(vi) We are given $\mathbf{b} = 2\mathbf{i} + \mathbf{k}$ therefore the unit vector in the direction of \mathbf{b} , denoted \hat{b} , is

$$\hat{b} = \frac{1}{\sqrt{2^2 + 1^2}} (2\mathbf{i} + \mathbf{k}) = \frac{1}{\sqrt{5}} (2\mathbf{i} + \mathbf{k}) = \frac{2}{\sqrt{5}} \mathbf{i} + \frac{1}{\sqrt{5}} \mathbf{k}$$

(vii) Let $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ be the vector which is perpendicular to vectors **a** and **b**. We have $\mathbf{r} \cdot \mathbf{a} = 0$ and $\mathbf{r} \cdot \mathbf{b} = 0$. From $\mathbf{r} \cdot \mathbf{a} = 0$ we have

$$\mathbf{r} \cdot \mathbf{a} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot (\mathbf{i} + 2\mathbf{j} - 4\mathbf{k})$$
$$= x + 2y - 4z = 0 \qquad (\dagger)$$

Using $\mathbf{r} \cdot \mathbf{b} = 0$ yields

$$\mathbf{r} \cdot \mathbf{b} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot (2\mathbf{i} + \mathbf{k})$$
$$= 2x + z = 0 \implies z = -2x$$

Let x = 1 then z = -2. Substituting these values into (†) gives

$$1+2y-4(-2)=0$$
 \Rightarrow $y=-\frac{9}{2}=-4.5$

Hence $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \mathbf{i} - 4.5\mathbf{j} - 2\mathbf{k}$. Finding the unit vector \mathbf{r} we have

$$\hat{\mathbf{r}} = \frac{1}{\sqrt{1^2 + (-4.5)^2 + (-2)^2}} (\mathbf{i} - 4.5\mathbf{j} - 2\mathbf{k})$$
$$= \frac{1}{\sqrt{25.25}} (\mathbf{i} - 4.5\mathbf{j} - 2\mathbf{k})$$

7. We can write the given vectors $\mathbf{u} = (1, -1, 1)$, $\mathbf{v} = \geq (0, 1, 2)$, $\mathbf{w} = (1, 0, 5)$ in terms of \mathbf{i} , \mathbf{j} and k which means $\mathbf{u} = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{j} + 2\mathbf{k}$, $\mathbf{w} = \mathbf{i} + 5\mathbf{k}$. The first vector product is

$$\mathbf{u} \times \mathbf{v} = (\mathbf{i} - \mathbf{j} + \mathbf{k}) \times (\mathbf{j} + 2\mathbf{k})$$

$$= \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$= \mathbf{i} \det \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

$$= \mathbf{i} (-2 - 1) - \mathbf{j} (2 - 0) + \mathbf{k} (1 - 0) = -3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$$

The cosine of the angle, say θ , between the vectors $\mathbf{u} \times \mathbf{v}$ and \mathbf{w} is given by

$$\cos(\theta) = \frac{(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}}{|\mathbf{u} \times \mathbf{v}| |\mathbf{w}|}$$
(*)

Determining the numerator and denominator of (*):

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = (-3\mathbf{i} - 2\mathbf{j} + \mathbf{k}) \cdot (\mathbf{i} + 5\mathbf{k}) = -3 + 5 = 2$$

$$|\mathbf{u} \times \mathbf{v}||\mathbf{w}| = |-3\mathbf{i} - 2\mathbf{j} + \mathbf{k}||\mathbf{i} + 5\mathbf{k}|$$
$$= \sqrt{(-3)^2 + (-2)^2 + 1^2} \sqrt{1^2 + 5^2}$$
$$= \sqrt{14}\sqrt{26}$$

Putting these results into (*) gives

$$\cos(\theta) = \frac{(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}}{|\mathbf{u} \times \mathbf{v}| |\mathbf{w}|} = \frac{2}{\sqrt{26}\sqrt{14}}$$
$$= \frac{2}{\sqrt{26 \times 14}} = \frac{2}{\sqrt{4 \times 91}} = \frac{2}{\sqrt{291}} = \frac{1}{\sqrt{91}} \qquad \text{[Cancelling 2's]}$$

Similarly we can find the cosine of the angle between $\mathbf{u} \times \mathbf{w}$ and \mathbf{v} :

$$\mathbf{u} \times \mathbf{w} = (\mathbf{i} - \mathbf{j} + \mathbf{k}) \times (\mathbf{i} + 5\mathbf{k})$$

$$= \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 1 \\ 1 & 0 & 5 \end{pmatrix}$$

$$= \mathbf{i} \det \begin{pmatrix} -1 & 1 \\ 0 & 5 \end{pmatrix} - \mathbf{j} \det \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix} + \mathbf{k} \det \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$= \mathbf{i} (-5 - 0) - \mathbf{j} (5 - 1) + \mathbf{k} (0 - (-1)) = -5\mathbf{i} - 4\mathbf{j} + \mathbf{k}$$

Need to determine $(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v}$ and $|\mathbf{u} \times \mathbf{w}|$, $|\mathbf{v}|$:

$$(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v} = (-5\mathbf{i} - 4\mathbf{j} + \mathbf{k}) \cdot (\mathbf{j} + 2\mathbf{k}) = 0 - 4 + 2 = -2$$
$$|\mathbf{u} \times \mathbf{w}| = |-5\mathbf{i} - 4\mathbf{j} + \mathbf{k}| = \sqrt{(-5)^2 + (-4)^2 + 1^2} = \sqrt{42}$$
$$|\mathbf{v}| = |\mathbf{j} + 2\mathbf{k}| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

Substituting $(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v} = -2$ and $|\mathbf{u} \times \mathbf{w}| = \sqrt{42}$, $|\mathbf{v}| = \sqrt{5}$ into $\cos(\theta) = \frac{(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v}}{|\mathbf{u} \times \mathbf{w}||\mathbf{v}|}$ yields $\cos(\theta) = \frac{(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v}}{|\mathbf{u} \times \mathbf{w}||\mathbf{v}|} = -\frac{2}{\sqrt{42}\sqrt{5}} = -\frac{2}{\sqrt{210}}$