Complete Solutions to Examination Questions 14

1. The characteristic equation is

$$
m^{2}+2 m+2=0
$$

Solving this quadratic equation by the formula method $m=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ with $a=1, b=2$ and $c=2$ gives

$$
\begin{aligned}
m=\frac{-2 \pm \sqrt{2^{2}-(4 \times 1 \times 2)}}{2 \times 1} & =\frac{-2 \pm \sqrt{-4}}{2} \\
& =\frac{-2}{2} \pm j \frac{2}{2}=-1 \pm j
\end{aligned}
$$

The general solution is given by

$$
\begin{equation*}
y=e^{-x}[A \cos (x)+B \sin (x)] \tag{*}
\end{equation*}
$$

Substituting the given initial condition $y=1$ at $x=0$ into (*):

$$
\underbrace{e_{0}^{0}}_{=1}[A \underbrace{\cos (0)}_{=1}+B \underbrace{\sin (0)}_{=0}]=A=1
$$

To use the other initial condition we need to differentiate (*):

$$
\begin{aligned}
& y=e^{-x}[A \cos (x)+B \sin (x)] \\
& \frac{\mathrm{d} y}{\mathrm{~d} x} \underset{\substack{\text { By Product } \\
\text { Rule }}}{=}-e^{-x}[A \cos (x)+B \sin (x)]+e^{-x}[-A \sin (x)+B \cos (x)] \\
& \quad=e^{-x}[-A \cos (x)-B \sin (x)-A \sin (x)+B \cos (x)]
\end{aligned}
$$

Substituting the other initial condition $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ at $x=0$ into this result:

$$
\underbrace{e^{0}}_{=1}[-A \underbrace{\cos (0)}_{=1}-B \underbrace{\sin (0)}_{=0}-A \underbrace{\sin (0)}_{=0}+B \underbrace{\cos (0)}_{=1}]=-A+B=0
$$

From above we have $A=1$ therefore $B=1$. Our general solution is found by substituting these values $A=1$ and $B=1$ into (${ }^{*}$):

$$
y=e^{-x}[\cos (x)+\sin (x)]
$$

2. (i) The characteristic equation is $m^{2}+16=0$. Solving this gives

$$
\begin{aligned}
& m^{2}=-16 \\
& m=\sqrt{-16}= \pm j 4=0 \pm j 4
\end{aligned}
$$

Since we have complex roots

$$
\begin{equation*}
y=A \cos (4 x)+B \sin (4 x) \tag{*}
\end{equation*}
$$

We are given the initial conditions $y(0)=3$ and $y^{\prime}(0)=-2$. Substituting the first of these conditions $y(0)=3$ which means that when $x=0, y=3$ into $(*)$:

$$
A \underbrace{\cos (4 \times 0)}_{=1}+B \underbrace{\sin (4 \times 0)}_{=0}=3 \text { gives } A=3
$$

Next we apply the second condition $y^{\prime}(0)=-2$ which means that when $x=0, y^{\prime}=-2$.
Differentiating (*) gives

$$
y^{\prime}=-4 A \sin (4 x)+4 B \cos (4 x) \quad\left[\begin{array}{l}
\text { Because }[\cos (k x)]^{\prime}=-k \sin (k x) \\
\text { and }[\sin (k x)]^{\prime}=k \cos (k x)
\end{array}\right]
$$

Substituting $x=0, y^{\prime}=-2$ into the above yields

$$
\begin{aligned}
-4 A \underbrace{\sin (4 \times 0)}_{=0}+4 B \underbrace{\cos (4 \times 0)}_{=1} & =-2 \\
4 B & =-2 \Rightarrow B=-\frac{2}{4}=-\frac{1}{2}
\end{aligned}
$$

Our particular solution is found by substituting $A=3$ and $B=-\frac{1}{2}$ into $\left({ }^{*}\right)$:

$$
y=A \cos (4 x)+B \sin (4 x)=3 \cos (4 x)-\frac{1}{2} \sin (4 x)
$$

(ii) For solving the given differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-15 y=2 e^{4 x}$ we first find the homogeneous solution:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-15 y=0
$$

The characteristic equation is

$$
\begin{aligned}
& m^{2}+2 m-15=0 \\
& (m-3)(m+5)=0 \quad \text { [Factorizing }] \\
& m_{1}=3, \quad m_{2}=-5
\end{aligned}
$$

Our complementary function is $y_{c}=A e^{3 x}+B e^{-5 x}$. What is the trail function for the particular integral in this case?
$Y=C e^{4 x}$. Differentiating this gives

$$
\begin{array}{ll}
Y^{\prime}=4 C e^{4 x} & {\left[\text { Because }\left(e^{k x}\right)^{\prime}=k e^{k x}\right]} \\
Y^{\prime \prime}=16 C e^{4 x} & {\left[\text { Because }\left(e^{k x}\right)^{\prime}=k e^{k x}\right]}
\end{array}
$$

Substituting these into the given differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-15 y=2 e^{4 x}$ yields

$$
\begin{aligned}
16 C e^{4 x}+2\left(4 C e^{4 x}\right)-15 C e^{4 x} & =2 e^{4 x} \\
(16 C+8 C-15 C) e^{4 x} & =2 e^{4 x} \\
9 C & =2 \text { implies that } C=\frac{2}{9}
\end{aligned}
$$

Hence the particular integral is $Y=C e^{4 x}=\frac{2}{9} e^{4 x}$.
Our general solution to the differential equation is

$$
y=y_{c}+Y=A e^{3 x}+B e^{-5 x}+\frac{2}{9} e^{4 x}
$$

3. (a) We need to solve the given differential equation $\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}+25 \mathrm{~s}=0$. The characteristic equation is

$$
m^{2}+25=0 \quad \text { gives } m=\sqrt{-25}= \pm j 5
$$

The general solution is

$$
\begin{equation*}
s=A \cos (5 t)+B \sin (5 t) \tag{安}
\end{equation*}
$$

Substituting the given initial condition when $t=0, s=2$ we have

$$
A \underbrace{\cos (5 \times 0)}_{=1}+B \underbrace{\sin (5 \times 0)}_{=0}=2 \text { gives } A=2
$$

The other initial condition in $\frac{\mathrm{d} s}{\mathrm{~V} t}=5$ when $t=0$. Differentiating (\% (\%) yields

Deleted:

$$
\frac{\mathrm{d} s}{\mathrm{~d} t}=-5 A \sin (5 t)+5 B \cos (5 t) \quad\left[\begin{array}{l}
\operatorname{Because}[\cos (k t)]^{\prime}=-k \sin (k t) \\
\text { and }[\sin (k t)]^{\prime}=k \cos (k t)
\end{array}\right]
$$

Substituting the other initial condition:

$$
-5 A \underbrace{\sin (5 \times 0)}_{=0}+5 B \underbrace{\cos (5 \times 0)}_{=1}=5 \text { gives } 5 B=5 \Rightarrow B=1
$$

Putting $A=2$ and $B=1$ into (必) gives

Deleted:

$$
s=2 \cos (5 t)+\sin (5 t)
$$

(b) We need to find s at $t=\frac{\pi}{4}$:

$$
\begin{aligned}
& s=2 \cos \left(5 \frac{\pi}{4}\right)+\sin \left(5 \frac{\pi}{4}\right) \\
& =2\left(-\frac{1}{\sqrt{2}}\right)+\left(-\frac{1}{\sqrt{2}}\right)=-\frac{1}{\sqrt{2}}[2+1]=-\frac{3}{\sqrt{2}}
\end{aligned}
$$

(c) The spring is initially at rest means that the acceleration $\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=0$. Using $\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}+25 \mathrm{~s}=0$ gives that $s=0$.
4. The characteristic equation of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=0.001 x^{2}$ is

$$
m^{2}+1=0 \text { implies that } m= \pm \sqrt{-1}= \pm j
$$

The complementary function is given by

$$
y_{c}=A \cos (x)+B \sin (x)
$$

Since $f(x)=0.001 x^{2}$ we trail the particular integral

$$
Y=C x^{2}+D x+E
$$

Differentiating this gives

$$
\begin{aligned}
& \frac{\mathrm{d} Y}{\mathrm{~d} x}=2 C x+D \\
& \frac{\mathrm{~d}^{2} Y}{\mathrm{~d} x^{2}}=2 C
\end{aligned}
$$

By substituting these into the given differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=0.001 x^{2}$ we can find the \mid values of C, D_{v} and E. We have

Deleted:

$$
\begin{align*}
& 2 C+C x^{2}+D x+E=0.001 x^{2} \\
& C x^{2}+D x+(2 C+E)=0.001 x^{2}
\end{align*}
$$

Equating the x^{2} coefficients of (\dagger) :

$$
C=0.001
$$

Equating the x coefficients of (\dagger) :

$$
D=0
$$

Equating the constant coefficients of (\dagger) :

$$
\begin{aligned}
& 2 C+E=0 \\
& 2(0.001)+E=0 \quad[\text { Because } C=0.001] \\
& E=-0.002
\end{aligned}
$$

Thus the particular integral is found by substituting these values $C=0.001, D=0$ and $E=-0.002$ into $Y=C x^{2}+D x+E$ which gives

$$
Y=0.001 x^{2}-0.002
$$

Hence our general solution is given by

$$
\begin{equation*}
y=y_{c}+Y=A \cos (x)+B \sin (x)+0.001 x^{2}-0.002 \tag{*}
\end{equation*}
$$

We can find the values of A and B by using the given initial conditions

$$
y(0)=0, \quad y^{\prime}(0)=1.5
$$

$y(0)=0$ means that when $x=0, y=0$. Substituting this into $\left(^{*}\right)$ gives

$$
A \underbrace{\cos (0)}_{=1}+B \underbrace{\sin (0)}_{=0}+0.001(0)^{2}-0.002=A-0.002=0
$$

Hence $A=0.002$. To use the other initial condition $y^{\prime}(0)=1.5$ which means that when $x=0, y^{\prime}=1.5$ so we need to differentiate (${ }^{*}$):

$$
\begin{aligned}
& y=A \cos (x)+B \sin (x)+0.001 x^{2}-0.002 \\
& y^{\prime}=-A \sin (x)+B \cos (x)+0.002 x
\end{aligned}
$$

Substituting $x=0$ and $y^{\prime}=1.5$ into this yields

$$
-A \underbrace{\sin (0)}_{=0}+B \underbrace{\cos (0)}_{=1}+0.002(0)=B=1.5
$$

Our particular solution is found by substituting $A=0.002$ and $B=1.5$ into (*):

$$
\begin{aligned}
y & =0.002 \cos (x)+1.5 \sin (x)+0.001 x^{2}-0.002 \\
& =1.5 \sin (x)+0.001\left[2 \cos (x)+x^{2}-2\right]
\end{aligned}
$$

5. The characteristic equation of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=-4 x$ is

$$
m^{2}+m-2=0
$$

Solving this quadratic equation:

$$
m^{2}+m-2=(m-1)(m+2)=0 \quad \text { gives } m_{1}=1, m_{2}=-2
$$

Our complementary function is $y_{c}=A e^{x}+B e^{-2 x}$. What is our trail function in this case?
Since we have $f(x)=-4 x$ therefore $Y=C x+D$. Differentiating this:

$$
\begin{aligned}
& Y=C x+D \\
& Y^{\prime}=C \\
& Y^{\prime \prime}=0
\end{aligned}
$$

Substituting these results into the given differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=-4 x$ yields

$$
\begin{aligned}
0+C-2(C x+D) & =-4 x \\
C-2 C x-2 D & =-4 x
\end{aligned}
$$

Equating coefficients of x :

$$
-2 C=-4 \text { implies that } C=2
$$

Equating constants:

$$
\begin{aligned}
& C-2 D=0 \\
& 2-2 D=0 \quad \text { implies that } D=\frac{2}{2}=1
\end{aligned}
$$

Our particular integral is $Y=C x+D=2 x+3$. This means that our general solution is

$$
\begin{equation*}
y=y_{c}+Y=A e^{x}+B e^{-2 x}+2 x+1 \tag{}
\end{equation*}
$$

We need to find the particular solution which satisfies the given initial conditions $y(0)=4$,
$y^{\prime}(0)=5$. What does $y(0)=4$ mean?
When $x=0, y=4$. Substituting these into $\left(^{*}\right)$ yields

$$
\begin{aligned}
A e^{0}+B e^{-(2 \times 0)}+(2 \times 0)+1=A+B+0+1 & =4 \\
A+B & =4-1=3
\end{aligned}
$$

To use the other initial condition we need to differentiate $\left(^{*}\right)$:

$$
y^{\prime}=A e^{x}-2 B e^{-2 x}+2
$$

Applying the initial condition $y^{\prime}(0)=5$ we have

$$
\begin{aligned}
& A e^{0}-2 B e^{-(2 \times 0)}+2=A-2 B+2=5 \\
& A-2 B=5-2=3
\end{aligned}
$$

Solving the simultaneous equations

$$
\left.\begin{array}{l}
A+B=3 \\
A-2 B=3
\end{array}\right\} \quad \text { implies that } A=3, B=0
$$

Our particular solution is given by substituting these values of $A=3$ and $B=0$ into (*):

$$
\begin{aligned}
& y=A e^{x}+B e^{-2 x}+2 x+1 \\
& =3 e^{x}-\left(0 \times e^{-2 x}\right)+2 x+1=3 e^{x}+2 x+1
\end{aligned}
$$

6. (a) The characteristic equation of $2 y^{\prime \prime}+5 y^{\prime}+3 y=0$ is

$$
\begin{aligned}
& 2 m^{2}+5 m+3=0 \\
& (2 m+3)(m+1)=0 \quad \text { implies that } m_{1}=-\frac{3}{2}, m_{2}=-1
\end{aligned}
$$

Our general solution is

$$
\begin{equation*}
y=A e^{-\frac{3}{2} x}+B e^{-x} \tag{*}
\end{equation*}
$$

Substituting the given initial condition $y(0)=3[$ when $x=0, y=3]$ into $(*)$:

$$
A e^{-\frac{3}{2} \times 0}+B e^{0}=A+B=3
$$

We need to differentiate $\left({ }^{*}\right)$ to use the other initial condition:

$$
\begin{aligned}
& y=A e^{-\frac{3}{2} x}+B e^{-x} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{3}{2} A e^{-\frac{3}{2} x}-B e^{-x} \quad\left[\operatorname{Using}\left(e^{k x}\right)^{\prime}=k e^{k x}\right]
\end{aligned}
$$

Applying the other initial condition $y^{\prime}(0)=-4$ which means that when $x=0, y^{\prime}=-4$:

$$
-\frac{3}{2} A e^{-\frac{3}{2} \times 0}-B e^{0}=-\frac{3}{2} A-B=-4
$$

We need to solve the simultaneous equations

$$
\left.\begin{array}{rl}
A+B=3 \\
-\frac{3}{2} A-B & =-4
\end{array}\right\} \text { gives } A=2 \text { and } B=1
$$

The particular solution is determined by substituting $A=2$ and $B=1$ into (*):

$$
y=A e^{-\frac{3}{2} x}+B e^{-x}=2 e^{-\frac{3}{2} x}+e^{-x}
$$

The solution is $y=2 e^{-\frac{3}{2} x}+e^{-x}$.
(b) First we find the characteristic equation of $y^{\prime \prime}-y^{\prime}=\sin (2 x)$:

$$
\begin{aligned}
& m^{2}-m=0 \\
& m(m-1)=0 \quad m_{1}=0, m_{2}=1
\end{aligned}
$$

The complementary function is given by

$$
y_{c}=A e^{0}+B e^{x}=A+B e^{x} \quad\left[\text { Because } e^{0}=1\right]
$$

Our trail function is $Y=C \cos (2 x)+D \sin (2 x)$. We need to differentiate this in order to find the values of C and D.

$$
\begin{aligned}
& Y=C \cos (2 x)+D \sin (2 x) \\
& \frac{\mathrm{d} Y}{\mathrm{~d} x}=-2 C \sin (2 x)+2 D \cos (2 x) \\
& \frac{\mathrm{d}^{2} Y}{\mathrm{~d} x^{2}}=-4 C \cos (2 x)-4 D \sin (2 x)
\end{aligned}
$$

Putting this into the given differential equation $y^{\prime \prime}-y^{\prime}=\sin (2 x)$:

$$
\begin{aligned}
-4 C \cos (2 x)-4 D \sin (2 x)-[-2 C \sin (2 x)+2 D \cos (2 x)] & =\sin (2 x) \\
(-4 C-2 D) \cos (2 x)+(2 C-4 D) \sin (2 x) & =\sin (2 x)
\end{aligned}
$$

Equating coefficients of $\cos (2 x)$:

$$
-4 C-2 D=0
$$

Equating coefficients of $\sin (2 x)$:

$$
2 C-4 D=1
$$

Solving these simultaneous equations:

$$
\left.\begin{array}{r}
-4 C-2 D=0 \\
2 C-4 D=1
\end{array}\right\} \Rightarrow C=\frac{1}{10}, D=-\frac{1}{5}
$$

The particular integral is

$$
\begin{aligned}
Y & =C \cos (2 x)+D \sin (2 x) \\
& =\frac{1}{10} \cos (2 x)-\frac{1}{5} \sin (2 x)=\frac{1}{10}[\cos (2 x)-2 \sin (2 x)]
\end{aligned}
$$

The general solution is given by

$$
y=y_{c}+Y=A+B e^{x}+\frac{1}{10}[\cos (2 x)-2 \sin (2 x)]
$$

7. (a) We can test the function $y=\frac{1}{2} x \sin (x)$ is a solution of the given differential equation by differentiating this and then substituting the results into the differential equation.

$$
\begin{aligned}
& y=\frac{1}{2} x \sin (x) \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \underbrace{[\sin (x)+x \cos (x)]}_{\text {Using the product rule }} \\
& \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{2}[\cos (x)+\cos (x)-x \sin (x)]=\frac{1}{2}[2 \cos (x)-x \sin (x)]
\end{aligned}
$$

Substituting these results into the LHS of $y^{\prime \prime}+y=\sin (x)$ gives

$$
\begin{aligned}
y^{\prime \prime}+y & =\frac{1}{2}[2 \cos (x)-x \sin (x)]+\frac{1}{2} x \sin (x) \\
& =\cos (x)
\end{aligned}
$$

Thus $y=\frac{1}{2} x \sin (x)$ is not a solution of the given differential equation $y^{\prime \prime}+y=\sin (x)$.
(b) This time we test $y=-\frac{1}{2} x \cos (x)$. We have

$$
\begin{aligned}
y= & -\frac{1}{2} x \cos (x) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & \left.=-\frac{1}{2}[\cos (x)-x \sin (x)] \quad \quad \text { By product rule }\right] \\
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =-\frac{1}{2}[-\sin (x)-(\sin (x)+x \cos (x))] \\
& =-\frac{1}{2}[-2 \sin (x)-x \cos (x)]=\frac{1}{2}[2 \sin (x)+x \cos (x)]
\end{aligned}
$$

Substituting this into the LHS of $y^{\prime \prime}+y=\sin (x)$ gives

$$
\begin{aligned}
y^{\prime \prime}+y & =\frac{1}{2}[2 \sin (x)+x \cos (x)]-\frac{1}{2} x \cos (x) \\
& =\sin (x)
\end{aligned}
$$

This $y=-\frac{1}{2} x \cos (x)$ is a solution of the given differential equation.
8. We need to solve $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=e^{3 x}$. We first find the complementary function:

$$
\begin{gathered}
m^{2}+m-2=0 \\
(m-1)(m+2)=0 \quad \text { gives } m_{1}=1, m_{2}=-2
\end{gathered}
$$

Our complementary function is equal to

$$
y_{c}=A e^{x}+B e^{-2 x}
$$

Because $f(x)=e^{3 x}$ therefore our trail function is $Y=C e^{3 x}$. Differentiating this gives

$$
\begin{array}{ll}
\frac{\mathrm{d} Y}{\mathrm{~d} x}=3 C e^{3 x} & {\left[\text { Because }\left(e^{k x}\right)^{\prime}=k e^{k x}\right]} \\
\frac{\mathrm{d}^{2} Y}{\mathrm{~d} x^{2}}=9 C e^{3 x} & {\left[\text { Because }\left(e^{k x}\right)^{\prime}=k e^{k x}\right]}
\end{array}
$$

Substituting these into the given differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=e^{3 x}$:

$$
\begin{aligned}
9 C e^{3 x}+3 C e^{3 x}-2 C e^{3 x} & =e^{3 x} \\
10 C e^{3 x} & =e^{3 x} \quad \text { implies that } C=\frac{1}{10}
\end{aligned}
$$

The particular integral is $Y=C e^{3 x}=\frac{1}{10} e^{3 x}$. The general solution is given by

$$
y=y_{c}+Y=A e^{x}+B e^{-2 x}+\frac{1}{10} e^{3 x}
$$

The solution to the given differential equation is $A e^{x}+B e^{-2 x}+\frac{1}{10} e^{3 x}$.
9. The characteristic equation is

$$
m^{2}+1=0 \text { implies that } m= \pm \sqrt{-1}= \pm j
$$

Our complementary function $y_{c_{V}}$ is

Deleted:

$$
y_{c}=A \cos (x)+B \sin (x)
$$

The trial function in this case is

$$
Y=x[C \cos (x)+D \sin (x)]
$$

Differentiating this function by using the product rule we have

$$
\left.\begin{array}{l}
\frac{\mathrm{d} Y}{\mathrm{~d} x}
\end{array}=1[C \cos (x)+D \sin (x)]+x[-C \sin (x)+D \cos (x)]\right] \begin{aligned}
\frac{\mathrm{d}^{2} Y Y}{\mathrm{~d} x^{2}} & =D \cos (x)+[C+D x][-\sin (x)]+(-C) \sin (x)+[D-C x] \cos (x) \\
& =[2 D-C x] \cos (x)-[2 C+D x] \sin (x)
\end{aligned}
$$

Substituting this into the given differential equation $y^{\prime \prime}+y=\cos x$:

$$
\begin{array}{r}
{[2 D-C x] \cos (x)-[2 C+D x] \sin (x)+x[C \cos (x)+D \sin (x)]=\cos (x)} \\
2 D \cos (x)-2 C \sin (x)=\cos (x)
\end{array}
$$

From the last equation we have $D=\frac{1}{2}$ and $C=0$. This means our particular integral is

$$
\begin{aligned}
Y & =x[C \cos (x)+D \sin (x)] \\
& =x\left[(0) \cos (x)+\frac{1}{2} \sin (x)\right]=\frac{1}{2} x \sin (x)
\end{aligned}
$$

Thus our general solution is

$$
\begin{equation*}
y=y_{c}+Y=A \cos (x)+B \sin (x)+\frac{1}{2} x \sin (x) \tag{*}
\end{equation*}
$$

We can find a particular solution because we have been given initial conditions. Substituting the initial condition $y(0)=0$ which means that when $x=0$ then $y=0$:

$$
A \underbrace{\cos (0)}_{=1}+B \underbrace{\sin (0)}_{=0}+\frac{1}{2}(0) \sin (0)=A=0
$$

The other initial condition is $y^{\prime}(0)=5 / 2$ means that when $x=0, y^{\prime}=5 / 2$. We need to differentiate $\left(^{*}\right)$ in order to use this condition:

$$
y^{\prime}=-A \sin (x)+B \cos (x)+\frac{1}{2} \underbrace{[\sin (x)+x \cos (x)]}_{\text {Using the product rule }}
$$

Substituting $x=0$ and $y^{\prime}=5 / 2$ into this yields:

$$
-A \underbrace{\sin (0)}_{=0}+B \underbrace{\cos (0)}_{=1}+\frac{1}{2}[\sin (0)+0 \cos (0)]=B=\frac{5}{2}
$$

Hence our particular solution is given by putting $A=0$ and $B=\frac{5}{2}$ into $\left({ }^{*}\right)$:

$$
\begin{aligned}
y & =A \cos (x)+B \sin (x)+\frac{1}{2} x \sin (x) \\
& =0 \cos (x)+\frac{5}{2} \sin (x)+\frac{1}{2} x \sin (x) \\
& =\frac{1}{2}[5 \sin (x)+x \sin (x)]
\end{aligned}
$$

Our solution is $y=\frac{1}{2}[5 \sin (x)+x \sin (x)]$.
10. The characteristic equation is given by

$$
m^{2}+9=0 \text { gives } m= \pm j 3
$$

Our complementary function is

$$
y_{c}=A \cos (3 t)+B \sin (3 t)
$$

Our trial function is

$$
Y=C t^{2}+D t+E+F t \cos (3 t)+G t \sin (3 t)
$$

We need to find the values of the unknowns C, D, E, F and G.How?
By differentiating twice and substituting into the given differential equation:

$$
\begin{aligned}
\frac{\mathrm{d} Y}{\mathrm{~d} x} & =2 C t+D+F[(1) \cos (3 t)-3 t \sin (3 t)]+G[(1) \sin (3 t)+3 t \cos (3 t)] \\
& =2 C t+D+F \cos (3 t)-3 t F \sin (3 t)+G \sin (3 t)+3 G t \cos (3 t) \\
\frac{\mathrm{d}^{2} Y}{\mathrm{~d} x^{2}} & =2 C-3 F \sin (3 t)-3 F[(1) \sin (3 t)+3 t \cos (3 t)]+3 G \cos (3 t)+3 G[(1) \cos (3 t)-3 t \sin (3 t)] \\
& =2 C-3 F \sin (3 t)-3 F \sin (3 t)-9 t F \cos (3 t)+3 G \cos (3 t)+3 G \cos (3 t)-9 G t \sin (3 t) \\
& =2 C-6 F \sin (3 t)-9 t F \cos (3 t)+6 G \cos (3 t)-9 G t \sin (3 t)
\end{aligned}
$$

Substituting these results into the differential equation yields $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+9 y=9 t^{2}-12 \cos (3 t)$

$$
\begin{align*}
2 C-6 F & \sin (3 t)-9 t F \cos (3 t)+6 G \cos (3 t)-9 G t \sin (3 t) \\
& +9\left(C t^{2}+D t+E+F t \cos (3 t)+G t \sin (3 t)\right)=9 t^{2}-12 \cos (3 t) \\
2 C-6 F & \sin (3 t)-9 t F \cos (3 t)+6 G \cos (3 t)-9 G t \sin (3 t) \\
& +9 C t^{2}+9 D t+9 E+9 F t \cos (3 t)+9 G t \sin (3 t)=9 t^{2}-12 \cos (3 t) \\
2 C-6 F & \sin (3 t)+6 G \cos (3 t)+9 C t^{2}+9 D t+9 E=9 t^{2}-12 \cos (3 t)
\end{align*}
$$

Equating coefficients of t^{2} in (\dagger) :

$$
9 C=9 \text { gives } C=1
$$

Equating coefficients of t in (\dagger):

$$
9 D=0 \text { gives } D=0
$$

Equating coefficients of constants in (\dagger) :

$$
2 C+9 E=0
$$

From above we have $C=1$ therefore $2 C+9 E=2+9 E=0$ implies that $E=-\frac{2}{9}$.
Equating coefficients of $\cos (3 t)$ in (\dagger) :

$$
6 G=-12 \text { gives } G=-2
$$

Equating coefficients of $\sin (3 t)$ in (\dagger) :

$$
-6 F=0 \text { gives } F=0
$$

We have $C=1, D=0, E=-\frac{2}{9}, F=0$ and $G=-2$. Thus our particular integral is

$$
\begin{aligned}
Y & =C t^{2}+D t+E+F t \cos (3 t)+G t \sin (3 t) \\
& =t^{2}+(0) t-\frac{2}{9}+(0) t \cos (3 t)-2 t \sin (3 t) \\
& =t^{2}-\frac{2}{9}-2 t \sin (3 t)
\end{aligned}
$$

Our general solution is

$$
y=y_{c}+Y=A \cos (3 t)+B \sin (3 t)+t^{2}-\frac{2}{9}-2 t \sin (3 t)
$$

11. (a) We need to solve $\ddot{x}=-9 x$ which has the characteristic equation given by

$$
m^{2}=-9 \text { implies that } m= \pm \sqrt{-9}= \pm j 3
$$

Our general solution is

$$
\begin{equation*}
x=A \cos (3 t)+B \sin (3 t) \tag{安}
\end{equation*}
$$

Substituting the given initial condition $x=-1$ when $t=0$ into（次）：

$$
A \underbrace{\cos (3 \times 0)}_{=1}+B \underbrace{\sin (3 \times 0)}_{=0}=A=-1
$$

To use the other initial condition $\dot{x}=3$ when $t=0$ we need to differentiate（

$$
\begin{aligned}
& x=A \cos (3 t)+B \sin (3 t) \\
& \dot{x}=-3 A \sin (3 t)+3 B \cos (3 t)
\end{aligned}
$$

Substituting $t=0, \dot{x}=3$ into this：

$$
-3 A \underbrace{\sin (3 \times 0)}_{=0}+3 B \underbrace{\cos (3 \times 0)}_{=1}=3 B=3 \text { gives } B=1
$$

Our particular solution is found by putting $A=-1$ and $B=1$ into（颙）：

$$
x=A \cos (3 t)+B \sin (3 t)=-\cos (3 t)+\sin (3 t)
$$

We need to place this into amplitude－phase form $R \sin (\omega t+\phi)$ ．In general

$$
a \cos (\theta)+b \sin (\theta)=R \sin (\theta+\alpha) \text { where } R=\sqrt{a^{2}+b^{2}} \text { and } \alpha=\tan ^{-1}\left(\frac{a}{b}\right)
$$

For $x=-\cos (3 t)+\sin (3 t)$ we have $a=-1$ and $b=1$ therefore $R=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}$ and $\alpha=\tan ^{-1}\left(\frac{-1}{1}\right)=-\frac{\pi}{4}$ ．We have

$$
x=-\cos (3 t)+\sin (3 t)=\sqrt{2} \sin \left(3 t-\frac{\pi}{4}\right)
$$

The amplitude is $R=\sqrt{2}$ and period $\frac{2 \pi}{3}$ ．
To sketch the graph of $x=\sqrt{2} \sin \left(3 t-\frac{\pi}{4}\right)=\sqrt{2} \sin \left[3\left(t-\frac{\pi}{12}\right)\right]$ is the sine graph with amplitude of $\sqrt{2}$ and covering 3 cycles between 0 to 2π and shifted to the right by $\frac{\pi}{12} \| \mathrm{rad}$ ：

Deleted：
Formatted：Highlight

(b) We first find the homogeneous solution of $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}-2 \frac{\mathrm{~d} x}{\mathrm{~d} t}+10 x=20 t+6$ which means we have zero on the RHS:

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}-2 \frac{\mathrm{~d} x}{\mathrm{~d} t}+10 x=0
$$

The characteristic equation is given by

$$
m^{2}-2 m+10=0
$$

To solve this quadratic equation we need to use the formula:

$$
\begin{aligned}
m=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & =\frac{-(-2) \pm \sqrt{(-2)^{2}-(4 \times 10)}}{2} \\
& =\frac{2 \pm \sqrt{-36}}{2} \\
& =\frac{2}{2} \pm j \frac{6}{2}=1 \pm j 3
\end{aligned}
$$

Our complementary function is given by

$$
x_{c}=e^{t}[A \cos (3 t)+B \sin (3 t)]
$$

Our trial function is $X=C t+D$. Differentiating this gives

$$
\begin{aligned}
& X=C t+D \\
& X^{\prime}=C \\
& X^{\prime \prime}=0
\end{aligned}
$$

Substituting these into the given differential equation $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}-2 \frac{\mathrm{~d} x}{\mathrm{~d} t}+10 x=20 t+6$:

$$
0-2 C+10(C t+D)=10 C t-2 C+10 D=20 t+6
$$

Equating coefficients of t :

$$
10 C=20 \text { gives } C=2
$$

Equating constants:

$$
-2 C+10 D=-2(2)+10 D=6 \text { implies that } D=1
$$

The particular integral is equal to $X=2 t+1$. Hence our solution is given by

$$
\begin{aligned}
x & =x_{c}+X \\
& =e^{t}[A \cos (3 t)+B \sin (3 t)]+2 t+1
\end{aligned}
$$

