Complete Solutions to Examination Questions 2

1. (a) To find the roots of $x^{2}-2 x-4=0$ we use the quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ with $a=1, b=-2$ and $c=-4$:

$$
\begin{aligned}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & =\frac{-(-2) \pm \sqrt{(-2)^{2}-[4 \times 1 \times(-4)]}}{2 \times 1} \\
& =\frac{2 \pm \sqrt{4+16}}{2} \\
& =\frac{2 \pm \sqrt{20}}{2} \\
& =1 \pm \sqrt{5} \quad \quad \quad \text { Because } \sqrt{20}=\sqrt{4 \times 5}=2 \sqrt{5}] \\
& =1-\sqrt{5}, 1+\sqrt{5}=-1.236,3.236
\end{aligned}
$$

(b) We can complete the square on $x^{2}-2 x-4$ to find where the minimum occurs:

$$
x^{2}-2 x-4=(x-1)^{2}-1-4=(x-1)^{2}-5
$$

Hence the minimum occurs at $x=1$ with a y value of -5 :

2. (a) To find the roots of $3 x^{2}-2 x-9=0$ we use the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ with $a=3, b=-2$ and $c=-9$:

$$
\begin{aligned}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & =\frac{-(-2) \pm \sqrt{(-2)^{2}-[4 \times 3 \times(-9)]}}{2 \times 3} \\
& =\frac{2 \pm \sqrt{4+108}}{6} \\
& =\frac{2 \pm \sqrt{112}}{6} \\
& =\frac{2 \pm 10.583}{6} \\
& =\frac{2-10.583}{6}, \frac{2+10.583}{6}=-1.43,2.10
\end{aligned}
$$

(b) Completing the square on the given quadratic $3 x^{2}-2 x-9$ is more difficult because of the coefficient of x^{2} is 3 which means we need to divide by 3 . However it is easier to see that the minimum value occurs halfway between the roots, -1.43 and 2.10 , which is

$$
\frac{-1.43+2.10}{2}=0.335
$$

3. The expansion of $(1+x)^{6}$ was carried out in question 1a Exercise 2 f :

$$
(1+x)^{6}=1+6 x+15 x^{2}+20 x^{3}+15 x^{4}+6 x^{5}+x^{6}
$$

How do we find an approximation to $(11 / 10)^{6}$?
Use the above result of the expansion of $(1+x)^{6}$ with $x=\frac{1}{10}=0.1$ because

$$
\frac{11}{10}=1+\frac{1}{10}=1+0.1
$$

To give the final answer correct to three decimal places we need to work to four decimal places:

$$
\begin{aligned}
(1+0.1)^{6} & =1+6(0.1)+15(0.1)^{2}+20(0.1)^{3}+15(0.1)^{4}+6(0.1)^{5}+(0.1)^{6} \\
& =1+0.6+0.15+0.02+0.0015+0+0 \\
& =1.7715=1.772(3 \mathrm{dp})
\end{aligned}
$$

4. By using Pascal's triangle for $n=5$ we have $1,5,10,5$ and 1 . We have

$$
\begin{equation*}
(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5} \tag{*}
\end{equation*}
$$

How do we determine $\left(x^{2}+\frac{1}{x}\right)^{5}$?
Substitute $a=x^{2}$ and $b=\frac{1}{x}$ into the above (*):

$$
\begin{aligned}
&\left(x^{2}+\frac{1}{x}\right)^{5}=\left(x^{2}\right)^{5}+5\left(x^{2}\right)^{4}\left(\frac{1}{x}\right)+10\left(x^{2}\right)^{3}\left(\frac{1}{x}\right)^{2}+10\left(x^{2}\right)^{2}\left(\frac{1}{x}\right)^{3}+5 x^{2}\left(\frac{1}{x}\right)^{4}+\left(\frac{1}{x}\right)^{5} \\
& \begin{array}{l}
\begin{array}{l}
\text { Using the rules } \\
\text { of indices }\left(a^{m}\right)^{n}=a^{m n}
\end{array} \\
=
\end{array} x^{10}+5 x^{8}\left(\frac{1}{x}\right)+10 x^{6}\left(\frac{1}{x^{2}}\right)+10 x^{4}\left(\frac{1}{x^{3}}\right)+5 x^{2}\left(\frac{1}{x^{4}}\right)+\frac{1}{x^{5}} \\
& \begin{array}{l}
\begin{array}{l}
\text { Using the rules } \\
\text { of indices } a^{m} / a^{n}=a^{m-n}
\end{array}
\end{array} x^{10}+5 x^{7}+10 x^{4}+10 x+\frac{5}{x^{2}}+\frac{1}{x^{5}}
\end{aligned}
$$

Hence we have $\left(x^{2}+\frac{1}{x}\right)^{5}=x^{10}+5 x^{7}+10 x^{4}+10 x+\frac{5}{x^{2}}+\frac{1}{x^{5}}$.
5. How do we complete the square on $3 x^{2}-6 x+1$?

Take the coefficient of x^{2}, which is 3 , out:

$$
\begin{aligned}
3 x^{2}-6 x+1 & =3\left(x^{2}-2 x+\frac{1}{3}\right) \\
& =3\left[(x-1)^{2}-1+\frac{1}{3}\right]=3\left[(x-1)^{2}-\frac{2}{3}\right]=0
\end{aligned}
$$

How do we solve $3\left[(x-1)^{2}-\frac{2}{3}\right]=0$?
Divide both sides by 3 and then transpose to make x the subject of the formula:

$$
\begin{aligned}
(x-1)^{2}-\frac{2}{3} & =0 \\
(x-1)^{2} & =\frac{2}{3} \text { taking the square root gives } x-1= \pm \sqrt{\frac{2}{3}}
\end{aligned}
$$

Therefore $x=1 \pm \sqrt{\frac{2}{3}}=1-\sqrt{\frac{2}{3}}, 1+\sqrt{\frac{2}{3}}$. Using our calculator gives

$$
x=0.184,1.817
$$

6. (a) We need to factorize $f(x)=9 x^{2}-12 x-5$ and equate to zero.

$$
9 x^{2}-12 x-5=(3 x+1)(3 x-5)=0
$$

Solving this $(3 x+1)(3 x-5)=0$ gives $3 x+1=0,3 x-5=0$ which means that

$$
x=-\frac{1}{3}, \quad x=\frac{5}{3}
$$

The x-intercepts are $\left(-\frac{1}{3}, 0\right)$ and $\left(\frac{5}{3}, 0\right)$.
(b) How do we complete the square on the given quadratic expression $9 x^{2}-12 x-5$?

Take out 9:

$$
\begin{aligned}
9 x^{2}-12 x-5 & =9\left(x^{2}-\frac{12}{9} x-\frac{5}{9}\right) \\
& =9\left(x^{2}-\frac{4}{3} x-\frac{5}{9}\right) \quad \\
& =9\left[\left(x-\frac{2}{3}\right)^{2}-\frac{4}{9}-\frac{5}{9}\right] \quad\left[\text { Because } \frac{12}{9}=\frac{4}{3}\right] \\
& =9\left[\left(x-\frac{2}{3}\right)^{2}-1\right]=9\left(x-\frac{2}{3}\right)^{2}-9
\end{aligned}
$$

Since x^{2} coefficient is positive (9) therefore we have a minimum. The minimum value is -9 when $x=\frac{2}{3}$. Hence the vertex of the graph is $\left(\frac{2}{3},-9\right)$.
7. (a) How do we find the quadratic equation of the given graph?

This means that the maximum value is 3 at $x=2$. Since we have maximum therefore the x^{2} coefficient is negative. This means we have $-(x-2)^{2}$ because the maximum value occurs at $x=2$. Hence we have the quadratic $3-(x-2)^{2}$ because the maximum value is 3 . Expanding this out yields

$$
\begin{aligned}
3-(x-2)^{2} & =3-\left(x^{2}-4 x+4\right) \\
& =3-x^{2}+4 x-4=-1+4 x-x^{2}
\end{aligned}
$$

(b) Similarly for the given quadratic:

This time we have a minimum which means that the coefficient of x^{2} is positive. Since the minimum occurs at $(-2,-1)$ therefore the quadratic is given by:

$$
\begin{aligned}
(x+2)^{2}-1 & =x^{2}+4 x+4-1 \\
& =x^{2}+4 x+3
\end{aligned}
$$

