Complete Solutions to Examination Questions 3

1. The graph of $f(x)=-3-2 x$ is a straight line with gradient equal to -2 and y intercept equal to -3 . Where does the graph cross the x axis?
Where $f(x)=0$ which means $-3-2 x=0$ and this implies that $x=-\frac{3}{2}$:

The domain and range is the set of all real numbers.
2. (a) The graph of $y=-3|x|+2$ is similar to the graph of $y=|x|$. We can obtain the graph of $y=-3|x|+2$ from $y=|x|$ by carrying out the following:
(i) inverting because of the minus sign
(ii) squashing horizontally by a factor of 3 because of the 3 in front of $|x|$
(iii) shifted up by 2 units because of the +2

(b) The graph of $f(x)=(x+3)^{2}-4$ is the x^{2} graph but shifted to the left by 3 units and down by 4 units:

The axis of symmetry is $x=-3$.
3. The graph of $f(x)=2-\sqrt{x+1}$ is basically the graph of \sqrt{x} with some adjustments.

How does the graph of \sqrt{x} change in order to give $f(x)=2-\sqrt{x+1}$?
(i) $\sqrt{x+1}$ shifts the graph of \sqrt{x} to the left by 1 unit.
(ii) $-\sqrt{x+1}$ reflects the graph in the x axis.
(iii) $f(x)=2-\sqrt{x+1}$ shifts the graph up by 2 units.

By combining these we have

By examining the graph, we have that the domain of $f(x)$ is $x \geq-1$ and range is $f(x) \leq 2$.
4. The evaluation of $(R-C)(600)$ is given by substituting $x=600$ into $R(x)=85 x$ minus $C(x)=65 x+3500$:

$$
\begin{gathered}
(R-C)(x)=85 x-(65 x+3500)=20 x-3500 \\
(R-C)(600)=(20 \times 600)-3500=12000-3500=8500
\end{gathered}
$$

$(R-C)(600)=8500$ means the company makes a profit of $\$ 8500$ because we have evaluated revenue minus costs.
5. How do we evaluate $\frac{f(x+h)-f(x)}{h}$ for $f(x)=\frac{1}{3 x}$?

In this case $f(x)=\frac{1}{3 x}$ and $f(x+h)=\frac{1}{3(x+h)}$. Substituting these into $f(x+h)-f(x)$:

$$
\begin{aligned}
f(x+h)-f(x) & =\frac{1}{3(x+h)}-\frac{1}{3 x} \\
& =\frac{1}{3 x+3 h}-\frac{1}{3 x} \\
& =\frac{3 x-(3 x+3 h)}{3 x(3 x+3 h)}=-\frac{3 h}{9\left(x^{2}-x h\right)}=-\frac{h}{3\left(x^{2}-x h\right)}
\end{aligned}
$$

Dividing this result by h yields:

$$
\frac{f(x+h)-f(x)}{h}=-\frac{h}{3\left(x^{2}-x h\right) h}=-\frac{1}{3\left(x^{2}-x h\right)}
$$

6. a. The function $(g \circ f)(-1)$ means $g(f(-1))$ given $f(x)=\frac{1-2 x}{3 x}$ and

$$
\begin{aligned}
& g(x)=3 x^{2}-9 x: \\
& \begin{aligned}
g(f(-1)) & =g\left(\frac{1-2(-1)}{3(-1)}\right) \quad\left[\text { Because } f(x)=\frac{1-2 x}{3 x}\right] \\
=g\left(\frac{3}{-3}\right) & =g(-1) \\
& =3(-1)^{2}-9(-1)=12 \quad\left[\text { Because } g(x)=3 x^{2}-9 x\right]
\end{aligned}
\end{aligned}
$$

b. Similarly we have

$$
\begin{aligned}
(f \circ g)(2) & =f(g(2)) & & \\
& =f\left(3(2)^{2}-9(2)\right) & & {\left[\text { Because } g(x)=3 x^{2}-9 x\right] } \\
& =f(-6) & & \\
& =\frac{1-2(-6)}{3(-6)}=-\frac{13}{18} & & {\left[\text { Because } f(x)=\frac{1-2 x}{3 x}\right] }
\end{aligned}
$$

7. Let y equal $f(x)=\frac{x-5}{2 x+3}$ and then transpose to make x the subject of the formula:

$$
\begin{aligned}
& y=\frac{x-5}{2 x+3} \\
& y(2 x+3)=x-5 \\
& 2 x y+3 y=x-5 \\
& 3 y+5=x-2 x y=x(1-2 y) \\
& \quad \frac{3 y+5}{1-2 y}=x
\end{aligned}
$$

Hence the inverse function is given by $f^{-1}(x)=\frac{3 x+5}{1-2 x}$ provided $x \neq \frac{1}{2}$.
8. (a) We have

$$
\lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x+2}=\lim _{x \rightarrow-2} \frac{(x+2)(x-3)}{x+2} \equiv_{\substack{\text { Cancelling } \\ x+2}} \lim _{x \rightarrow-2}(x-3)=-5
$$

(b) How do we find $\lim _{x \rightarrow 8} \frac{\sqrt{x+1}-3}{x-8}$?

Multiply numerator and denominator by $\sqrt{x+1}+3$:

$$
\begin{aligned}
\lim _{x \rightarrow 8} \frac{\sqrt{x+1}-3}{x-8} & =\lim _{x \rightarrow 8} \frac{(\sqrt{x+1}-3)(\sqrt{x+1}+3)}{(x-8)(\sqrt{x+1}+3)} \\
& =\lim _{x \rightarrow 8} \frac{x+1-9}{(x-8)(\sqrt{x+1}+3)} \\
& =\lim _{x \rightarrow 8} \frac{x-8}{(x-8)(\sqrt{x+1}+3)} \\
& \sum_{\substack{\text { Canceling } \\
x-8}}^{\lim _{x \rightarrow 8} \frac{1}{(\sqrt{x+1}+3)}=\frac{1}{6}}
\end{aligned}
$$

(c) We need to evaluate $\lim _{x \rightarrow \infty} \frac{1-12 x}{4 x+5}$. Writing $1-12 x=16-3(4 x+5)$ we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{1-12 x}{4 x+5} & =\lim _{x \rightarrow \infty} \frac{16-3(4 x+5)}{4 x+5} \\
& =\lim _{x \rightarrow \infty}\left(\frac{16}{4 x+5}\right)-3 \lim _{x \rightarrow \infty}\left(\frac{4 x+5}{4 x+5}\right) \\
& =0-3=-3
\end{aligned}
$$

9. What does $f g(x)$ mean?

This means first find $g(x)$ and then find f of this with the argument being $g(x)$:

$$
\begin{aligned}
f(g(x)) & =f\left(\frac{3}{x}+2\right) \\
& \left.=4-\left(\frac{3}{x}+2\right)^{2} \quad \quad \quad \text { Because } f(x)=4-x^{2}\right] \\
& =4-\left(\frac{3+2 x}{x}\right)^{2} \\
& =4-\frac{9+2(3)(2 x)+(2 x)^{2}}{x^{2}}=\frac{4 x^{2}-9-12 x-4 x^{2}}{x^{2}}=-\frac{9+12 x}{x^{2}}
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
f(f(x)) & =f\left(4-x^{2}\right) \\
& =4-\left(4-x^{2}\right)^{2} \\
& =4-\underbrace{\left(16-2(4) x^{2}+\left(x^{2}\right)^{2}\right)}_{\text {Using }(a-b)^{2}=a^{2}-2 a b+b^{2}} \\
& =4-16+8 x^{2}-x^{4}=-x^{4}+8 x^{2}-12
\end{aligned}
$$

What does $g^{-1}(x)$ mean?
$g^{-1}(x)$ is the inverse function of g. How do we find the inverse function?
Let $y=g(x)$ and then make x the subject of this formula. Thus we have

$$
\begin{aligned}
& y=\frac{3}{x}+2 \\
& y x=3+2 x \\
& y x-2 x=3 \\
& x(y-2)=3 \quad \Rightarrow \quad x=\frac{3}{y-2}
\end{aligned}
$$

Therefore $g^{-1}(x)=\frac{3}{x-2}$ provided $x \neq 2$.
10. We need to find the inverse of $f(x)=2-x^{2}, x \leq 0$. Let $y=f(x)$ and then transpose to
make x the subject. We have

$$
\begin{aligned}
& y=2-x^{2} \\
& x^{2}=2-y \\
& x= \pm \sqrt{2-y}
\end{aligned}
$$

Since we are given that $x \leq 0$ therefore $x=-\sqrt{2-y}$ which means $f^{-1}(x)=-\sqrt{2-x}$ provided $x \leq 2$.
The graph of $f(x)=2-x^{2}$ is the inverted graph of x^{2} which has been shifted up by 2 units. We can sketch $f^{-1}(x)=-\sqrt{2-x}$ by reflecting the graph of $f(x)=2-x^{2}$ in the line $y=x$:

11. Substituting $t=0$ into the given formula $p(t)=5+2 t-t^{2}$ we have

$$
p(0)=5+2(0)-0^{2}=5
$$

Substituting $t=4$ gives

$$
p(4)=5+2(4)-4^{2}=-3
$$

Since $p(t)$ goes from positive to negative (goes from west to east) between $t=0$ and $t=4$ therefore Jennifer must have visited the Creamery during these hours.
12. (a) We need to evaluate $\lim _{x \rightarrow(-1)} \frac{x^{4}-3 x^{2}-8}{x^{2}-\sqrt{4 x+8}}$. Since the denominator is not zero at $x=-1$ therefore we can substitute this into the above:

$$
\lim _{x \rightarrow(-1)} \frac{x^{4}-3 x^{2}-8}{x^{2}-\sqrt{4 x+8}}=\frac{(-1)^{4}-3(-1)^{2}-8}{(-1)^{2}-\sqrt{4(-1)+8}}=\frac{-10}{-1}=10
$$

(b) How do we evaluate $\lim _{x \rightarrow(-2)} \frac{x^{2}-3 x-10}{x^{2}+x-2}$?

We can factorize the numerator and denominator as

$$
\frac{x^{2}-3 x-10}{x^{2}+x-2}=\frac{(x-5)(x+2)}{(x+2)(x-1)} \underset{\substack{\text { Cancelling } \\ x+2}}{=} \frac{x-5}{x-1}
$$

Hence we have $\lim _{x \rightarrow(-2)} \frac{x^{2}-3 x-10}{x^{2}+x-2}=\lim _{x \rightarrow(-2)} \frac{x-5}{x-1}=\frac{-7}{-3}=\frac{7}{3}$.
(c) We need to split the numerator of $\frac{h+\sqrt{4+h}-2}{h}$ as:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{h+\sqrt{4+h}-2}{h}=\lim _{h \rightarrow 0}\left(\frac{h}{h}\right)+\lim _{h \rightarrow 0}\left(\frac{\sqrt{4+h}-2}{h}\right) \tag{*}
\end{equation*}
$$

How do we evaluate $\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}$?
Multiply numerator and denominator by $\sqrt{4+h}+2$:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h} & =\lim _{h \rightarrow 0} \frac{(\sqrt{4+h}-2)(\sqrt{4+h}+2)}{h(\sqrt{4+h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{4+h-4}{h(\sqrt{4+h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{4+h}+2)}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{4+h}+2}=\frac{1}{4}
\end{aligned}
$$

Substituting this $\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}=\frac{1}{4}$ into $\left(^{*}\right)$ yields:

$$
\lim _{h \rightarrow 0} \frac{h+\sqrt{4+h}-2}{h}=\lim _{h \rightarrow 0}\left(\frac{h}{h}\right)+\frac{1}{4}=1+\frac{1}{4}=\frac{5}{4}
$$

