Complete Solutions to Examination Questions 4

1. (a) How do we sketch the graph of $y=3 \cos \left(\frac{x}{2}\right)$?

Well it is a cos graph with amplitude of 3 and only half a waveform between 0 and 2π because the cos argument is $x / 2$:

(b) Using the waveform section in the textbook with reference to (4.28), (4.29) and (4.30) we have the following:
The period T is the time taken to complete one cycle, that is $T=\frac{2 \pi}{1 / 2}=4 \pi$. The frequency f is defined as $f=\frac{1}{T}=\frac{1}{4 \pi} \mathrm{~Hz}$. The amplitude of the given function is 3 .
2. Taking inverse cos of both sides gives $3 \theta=\cos ^{-1}\left(-\frac{1}{2}\right)=120^{\circ}$. By formula
(4.17) The general solution of $\cos (\theta)=R$ is $\theta=(360 \times n)^{\circ} \pm \alpha$ where $\alpha=\cos ^{-1}(R)$ the general solution is given by

$$
\begin{aligned}
& 3 \theta=(360 \times n)^{\circ} \pm 120^{\circ} \\
& \theta \underset{\text { Dividing by } 3}{=} \frac{(360 \times n)^{\circ} \pm 120^{\circ}}{3}=\frac{(360 \times n)^{\circ}}{3} \pm \frac{120^{\circ}}{3}=(120 n)^{\circ} \pm 40^{\circ}
\end{aligned}
$$

3. How do we convert $\sin x-\sqrt{3} \cos x$ into $r \cos (x-\alpha)$?

Finding the angle α is difficult but to determine r is a straightforward application of Pythagoras, that is $r=\sqrt{(-\sqrt{3})^{2}+1^{2}}=\sqrt{4}=2$.
Plotting the quadrant where $\sin x-\sqrt{3} \cos x$ lies:

By using a calculator or TABLE 1 we have

$$
\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)=-30^{\circ}
$$

Clearly -30° is the wrong quadrant. Hence

$$
\alpha=180^{\circ}-30^{\circ}=150^{\circ}
$$

Substituting $r=2$ and $\alpha=150^{\circ}$ we have

$$
\sin x-\sqrt{3} \cos x=2 \cos \left(x-150^{\circ}\right)
$$

4. Cross-multiplying the Left Hand Side of $\frac{\sin A}{\sin B}+\frac{\cos A}{\cos B}=2 \frac{\sin (A+B)}{\sin 2 B}$ gives

$$
\begin{aligned}
\frac{\sin A \cos B+\cos A \sin B}{\sin B \cos B} & =\frac{\sin (A+B)}{\sin B \cos B}
\end{aligned} \quad\left[\begin{array}{l}
\text { Because } \\
\sin A \cos B+\cos A \sin B=\sin (A+B)
\end{array}\right]
$$

How do we evaluate $\frac{\sin 75^{\circ}}{\sin 60^{\circ}}$?
We need to write the 75° and 60° in terms of well known trigonometric ratios such as those in TABLE 1. We can write

$$
75^{\circ}=45^{\circ}+30^{\circ} \text { and } 60^{\circ}=2\left(30^{\circ}\right)
$$

Substituting these into the above we have

$$
\frac{\sin 75^{\circ}}{\sin 60^{\circ}}=\frac{\sin \left(45^{\circ}+30^{\circ}\right)}{\sin \left(2\left[30^{\circ}\right]\right)}
$$

We can evaluate this by using the above proven result $\frac{\sin A}{\sin B}+\frac{\cos A}{\cos B}=2 \frac{\sin (A+B)}{\sin 2 B}$.
Dividing this by 2 we have

$$
\begin{equation*}
\frac{\sin (A+B)}{\sin 2 B}=\frac{1}{2}\left[\frac{\sin A}{\sin B}+\frac{\cos A}{\cos B}\right] \tag{}
\end{equation*}
$$

Substituting $A=45^{\circ}$ and $B=30^{\circ}$ into $\left(^{*}\right.$) gives

$$
\begin{aligned}
\frac{\sin 75^{\circ}}{\sin 60^{\circ}} \underset{\substack{\text { rom } \\
\text { above }}}{=} \frac{\sin \left(45^{\circ}+30^{\circ}\right)}{\sin \left(2\left[30^{\circ}\right]\right)} & =\frac{1}{2}\left[\frac{\sin 45^{\circ}}{\sin 30^{\circ}}+\frac{\cos 45^{\circ}}{\cos 30^{\circ}}\right] \\
& =\frac{1}{2}\left[\frac{1 / \sqrt{2}}{1 / 2}+\frac{1 / \sqrt{2}}{\sqrt{3} / 2}\right] \quad\left[\text { Because } \sin \left(45^{\circ}\right)=\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}\right] \\
& =\frac{1}{2}\left[\left(\frac{1}{\sqrt{2}} \div \frac{1}{2}\right)+\left(\frac{1}{\sqrt{2}} \div \frac{\sqrt{3}}{2}\right)\right] \\
& =\frac{1}{2}\left[\left(\frac{1}{\sqrt{2}} \times \frac{2}{1}\right)+\left(\frac{1}{\sqrt{2}} \times \frac{2}{\sqrt{3}}\right)\right] \\
& =\frac{1}{2} 2\left[\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{3}}\right)\right] \underset{\substack{\text { Taking out } \\
\text { common tactor } 1 / \sqrt{2}}}{=} \frac{1}{\sqrt{2}}\left[1+\frac{1}{\sqrt{3}}\right]
\end{aligned}
$$

5. What does cos $\left(\arctan \left(\frac{24}{7}\right)\right)$ mean?

Remember \arctan is $\tan ^{-1}$, that is $\arctan \left(\frac{24}{7}\right)=\tan ^{-1}\left(\frac{24}{7}\right)$. Let θ be the angle such that $\theta=\tan ^{-1}\left(\frac{24}{7}\right)$ therefore $\tan (\theta)=\frac{24}{7}$. We have

By Pythagoras $x=\sqrt{24^{2}+7^{2}}=25$. Therefore $\cos (\theta)=\frac{\text { adj }}{\text { hyp }}=\frac{7}{25}$:

$$
\cos \left(\arctan \left(\frac{24}{7}\right)\right)=\cos \left(\tan ^{-1}\left(\frac{24}{7}\right)\right)=\cos (\theta)=\frac{7}{25}
$$

6. We need to find the values of t which satisfy $\cos (2 t)-2 \sin ^{2}(t)=0$. How?

We use a trig identity but which one?
Use $\cos (2 t)=1-2 \sin ^{2}(t)$. Thus substituting this $\cos (2 t)=1-2 \sin ^{2}(t)$ into the given equation $\cos (2 t)-2 \sin ^{2}(t)=0$ yields:

$$
\begin{aligned}
1-2 \sin ^{2}(t)-2 \sin ^{2}(t)=1-4 \sin ^{2}(t) & =0 \\
\sin ^{2}(t) & =\frac{1}{4} \quad \text { [Transposing] }
\end{aligned}
$$

Taking the square root gives

$$
\sin (t)=-\frac{1}{2}, \frac{1}{2}
$$

What are the values of t where $\sin (t)=-\frac{1}{2}$?
Using our calculator or by the table of values in the text we have $t=\sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}$. The domain of t is between 0 and 2π therefore $t=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}$. We can use CAST to find the other angle:

$\sin (t)=-\frac{1}{2}$ (Negative) in the quadrants C and T .

The other angle t is given by $\pi+\frac{\pi}{6}=\frac{7 \pi}{6}$. Do we have any other values of t ?
Yes where $\sin (t)=+\frac{1}{2}$. In this case t lies in the quadrants A and S because we have positive value of sin. Hence $t=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$ and $\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$.
Collecting our t values we have $t=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$.
7. We can write $\frac{13 \pi}{12}$ as $\frac{3 \pi}{4}+\frac{\pi}{3}=\frac{13 \pi}{12}$. We have $\cos \left(\frac{13 \pi}{12}\right)=\cos \left(\frac{3 \pi}{4}+\frac{\pi}{3}\right)$ $=\cos \left(\frac{3 \pi}{4}\right) \cos \left(\frac{\pi}{3}\right)-\sin \left(\frac{3 \pi}{4}\right) \sin \left(\frac{\pi}{3}\right) \quad\left[\begin{array}{l}\text { Using } \cos (A+B)= \\ \cos (A) \cos (B)-\sin (A) \sin (B)\end{array}\right]$ $=-\frac{1}{\sqrt{2}} \frac{1}{2}-\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} \quad\left[\begin{array}{l}\text { Because } \cos \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}, \sin \left(\frac{3 \pi}{4}\right)=\frac{1}{\sqrt{2}}, \\ \cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \text { and } \sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}\end{array}\right]$

$$
\underset{\substack{\text { Takingouta } \\ \text { Comon Factor }}}{\bar{幺}}-\frac{1}{\sqrt{2}} \frac{1}{2}[1+\sqrt{3}]
$$

8. Since $\tan (\theta)=-2$ is in the fourth quadrant we have:

The hypotenuse $x=\sqrt{2^{2}+1^{2}}=\sqrt{5}$. We have

$$
\sin (\theta)=-\frac{2}{\sqrt{5}} \text { and } \cos (\theta)=\frac{1}{\sqrt{5}}
$$

Using the double angle formula $\cos (2 \theta)=1-2 \sin ^{2}(\theta)$ we have

$$
\cos (\theta)=1-2 \sin ^{2}\left(\frac{\theta}{2}\right)
$$

Re-arranging this gives

$$
\begin{aligned}
\sin ^{2}\left(\frac{\theta}{2}\right) & =\frac{1}{2}[1-\cos (\theta)] \\
\sin \left(\frac{\theta}{2}\right) & = \pm \sqrt{\frac{1}{2}[1-\cos (\theta)]} \quad \text { [Taking Square Root] }
\end{aligned}
$$

Substituting the above result $\cos (\theta)=\frac{1}{\sqrt{5}}$ we have

$$
\begin{aligned}
\sin \left(\frac{\theta}{2}\right) & = \pm \sqrt{\frac{1}{2}[1-\cos (\theta)]} \\
& = \pm \sqrt{\frac{1}{2}\left[1-\frac{1}{\sqrt{5}}\right]}
\end{aligned}
$$

We are given that θ is in the fourth quadrant which means that $\frac{3 \pi}{2}<\theta<2 \pi$. Dividing this by 2 :

$$
\frac{3 \pi}{4}<\frac{\theta}{2}<\pi
$$

Therefore $\frac{\theta}{2}$ is in the second quadrant where the sin value is positive. Removing the negative square root we have

$$
\sin \left(\frac{\theta}{2}\right)=\sqrt{\frac{1}{2}\left[1-\frac{1}{\sqrt{5}}\right]}
$$

9. Since θ is in the second quadrant such that $\sin (\theta)=\frac{3}{5}$, we have:

By applying Pythagoras and noting that x lies to the left of the origin we have

$$
x=-\sqrt{5^{2}-3^{2}}=-4
$$

Remember the negative only signifies length x is to the left of the origin.
Therefore using the definition of cosine and tangent

$$
\cos (\theta)=-\frac{4}{5}, \quad \tan (\theta)=-\frac{3}{4}
$$

What other trigonometric ratios do we need to find?

$$
\begin{aligned}
& \operatorname{cosec}(\theta)=\frac{1}{\sin (\theta)}=\frac{1}{3 / 5}=\frac{5}{3} \\
& \sec (\theta)=\frac{1}{\cos (\theta)}=\frac{1}{-4 / 5}=-\frac{5}{4} \\
& \cot (\theta)=\frac{1}{\tan (\theta)}=\frac{1}{-3 / 4}=-\frac{4}{3}
\end{aligned}
$$

10. How do we verify $\frac{1}{\cos (x) \csc ^{2}(x)}=\sec (x)-\cos (x)$?

Note that $\csc (x)=\operatorname{cosec}(x)=\frac{1}{\sin (x)}$ which means that $\frac{1}{\csc (x)}=\frac{1}{\operatorname{cosec}(x)}=\sin (x)$.
Substituting this into the given equation we have

$$
\begin{aligned}
\frac{1}{\cos (x) \csc ^{2}(x)}=\frac{\sin ^{2}(x)}{\cos (x)} & {\left[\text { Because } \frac{1}{\csc ^{2}(x)}=\sin ^{2}(x)\right] } \\
=\frac{1-\cos ^{2}(x)}{\cos (x)} & =\frac{1}{\cos (x)}-\frac{\cos ^{2}(x)}{\cos (x)} \\
& =\sec (x)-\cos (x) \quad\left[\text { Because } \frac{1}{\cos (x)}=\sec (x)\right]
\end{aligned}
$$

11. In the textbook we have only converted from a combination of sine and cosine to
a cosine only waveform. In this case we will use the otherwise option, that is convert the Left Hand Side of $\sin x+3 \cos x=2.4$ into $R \cos (x-\alpha)$. By
(4.75) $\quad a \cos (\theta)+b \sin (\theta)=R \cos (\theta-\alpha)$ where $R=\sqrt{a^{2}+b^{2}}$ and $\alpha=\tan ^{-1}\left(\frac{b}{a}\right)$
with $a=3$ and $b=1$ we have

$$
\begin{aligned}
& R=\sqrt{3^{2}+1^{2}}=\sqrt{10} \\
& \alpha=\tan ^{-1}\left(\frac{1}{3}\right)=18.43^{\circ} \quad[\text { By calculator }]
\end{aligned}
$$

Solving the given equation we have

$$
\sin x+3 \cos x=\sqrt{10} \cos \left(x-18.43^{\circ}\right)=2.4
$$

Dividing through by $\sqrt{10}$ and taking inverse cosine we have

$$
\begin{aligned}
\cos \left(x-18.43^{\circ}\right)=\frac{2.4}{\sqrt{10}}= & 0.76 \\
x-18.43^{\circ}=\cos ^{-1}(0.76) & =40.54^{\circ} \\
x & =40.54^{\circ}+18.43^{\circ}=58.97^{\circ}
\end{aligned}
$$

Hence $x=58.97^{\circ}$. Are there any other angles?
Yes because cos is positive in the fourth quadrant as well.

The angle shown is $360^{\circ}-\cos ^{-1}(0.76)=360^{\circ}-40.54^{\circ}=319.46^{\circ}$. Using this angle we have

$$
\begin{aligned}
x-18.43^{\circ} & =319.46^{\circ} \\
x & =319.46^{\circ}+18.43^{\circ}=337.89^{\circ}
\end{aligned}
$$

The angles are $x=58.97^{\circ}, 337.89^{\circ}$.
12. (a) How do we show $\sin \left(x-\frac{3 \pi}{2}\right)=\cos (x)$?

Apply the identity $\sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B)$ with $A=x$ and $B=\frac{3 \pi}{2}$:

$$
\begin{aligned}
\sin \left(x-\frac{3 \pi}{2}\right) & =\sin (x) \underbrace{\cos \left(\frac{3 \pi}{2}\right)}_{=0}-\cos (x) \underbrace{\sin \left(\frac{3 \pi}{2}\right)}_{=-1} \\
& =0-\cos (x)(-1)=\cos (x)
\end{aligned}
$$

(b) Writing $\sec (x)=\frac{1}{\cos (x)}$ into the LHS of the given equation $\sec x-\cos x=\sin x \tan x$:

$$
\begin{aligned}
\sec (x)-\cos (x) & =\frac{1}{\cos (x)}-\cos (x) \\
& =\frac{1-\cos ^{2}(x)}{\cos (x)} \\
& =\frac{\sin ^{2}(x)}{\cos (x)} \quad \quad\left[\text { Because } \cos ^{2}(x)+\sin ^{2}(x)=1\right] \\
& =\sin (x) \frac{\sin (x)}{\cos (x)}=\sin (x) \tan (x) \quad\left[\text { Because } \frac{\sin }{\cos }=\tan \right]
\end{aligned}
$$

13. We are given that

Which rule do we use to find the length b ?
We can apply the sine rule because we have two angles and one length.

$$
\begin{equation*}
\frac{a}{\sin (A)}=\frac{b}{\sin (B)} \tag{*}
\end{equation*}
$$

Substituting $a=20, A=30^{\circ}$ and $B=45^{\circ}$ into (*) we have

$$
\frac{20}{\sin \left(30^{\circ}\right)}=\frac{b}{\sin \left(45^{\circ}\right)}
$$

Transposing this gives $b=\frac{20}{\sin \left(30^{\circ}\right)} \times \sin \left(45^{\circ}\right)=28.28$.
14. Using the identity $\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$ with $A=\arctan 1$ and $B=\arccos x$ we have

$$
\begin{align*}
\cos (\arctan 1+\arccos x) & =\cos (A) \cos (B)-\sin (A) \sin (B) \\
& =\cos (\arctan 1) \cos (\arccos x)-\sin (\arctan 1) \sin (\arccos x)
\end{align*}
$$

Using our table of values we have $\arctan 1=45^{\circ}$. Let θ be the angle such that $\cos (\theta)=x$ then $\theta=\arccos (x)$. Drawing a right-angled triangle with hypotenuse $=1$ and adjacent $=x$ because $\cos (\theta)=x$:

Using the sine definition (4.1) we have $\sin (\theta)=\frac{\sqrt{1-x^{2}}}{1}=\sqrt{1-x^{2}}$.
Substituting $\arctan 1=45^{\circ}$ and $\theta=\arccos (x)$ into (\dagger) yields:

$$
\begin{aligned}
\cos (\arctan 1+\arccos x) & =\cos (\arctan 1) \cos (\arccos x)-\sin (\arctan 1) \sin (\arccos x) \\
& =\cos \left(45^{\circ}\right) \underbrace{\cos (\theta)}_{=x}-\sin \left(45^{\circ}\right) \underbrace{\sin (\theta)}_{=\sqrt{1-x^{2}}} \\
& =\frac{1}{\sqrt{2}} x-\frac{1}{\sqrt{2}} \sqrt{1-x^{2}} \quad \quad\left[\text { Because } \cos \left(45^{\circ}\right)=\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}\right] \\
& =\frac{1}{\sqrt{2}}\left[x-\sqrt{1-x^{2}}\right] \quad \quad\left[\text { Factorising } \frac{1}{\sqrt{2}}\right]
\end{aligned}
$$

Therefore the expression in x is $\frac{1}{\sqrt{2}}\left[x-\sqrt{1-x^{2}}\right]$.
15. The given waveform is $v(t)=57 \sin (67 \pi t-0.26)$. Remember we know from the main text that

For $v(t)=57 \sin (67 \pi t-0.26)$ we have $R=57$ and $\omega=67 \pi$. Using these values:
(i) Amplitude $=57$, period time $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{67 \pi}=\frac{2}{67}=29.85 \times 10^{-3}=29.85 \mathrm{~ms}$. Using $f=\frac{1}{T}$ we have frequency $f=\frac{1}{29.85 \times 10^{-3}}=33.5 \mathrm{~Hz}$. The phase is 0.26 rads. How do we convert this into degrees?
By applying (4.27) x rads $=\left(\frac{x \times 180}{\pi}\right) \circ$:

$$
0.26=\frac{0.26 \times 180}{\pi}=15^{\circ}
$$

The phase angle in degrees is 15°.
How do we find the phase time?
By using (4.33) $R \sin (\omega t-\alpha)$ lags $R \sin (\omega t)$ by $\frac{\alpha}{\omega}$. Hence

$$
\text { Phase time }=\frac{0.26}{67 \pi}=1.235 \times 10^{-3}=1.235 \mathrm{~ms}
$$

Hence the phase time is 1.235 ms .
(ii) Substitute $t=0$ into the given equation $v(t)=57 \sin (67 \pi t-0.26)$:

$$
v(0)=57 \sin (67 \pi(0)-0.26)=57 \sin (-0.26)=-14.65
$$

At $t=0$ the voltage is -14.65 volts.
(iii) Substituting $t=8 \mathrm{~ms}=8 \times 10^{-3}$ into $v(t)=57 \sin (67 \pi t-0.26)$ gives

$$
\begin{aligned}
v\left(8 \times 10^{-3}\right) & =57 \sin \left(67 \pi\left(8 \times 10^{-3}\right)-0.26\right) \\
& =57 \sin (1.42)=56.35
\end{aligned}
$$

The voltage at $t=8 \mathrm{~ms}$ is 56.35 volts.
(iv) How do we find the time when the voltage is first a maximum?

This occurs when $\sin (67 \pi t-0.26)=1$ because the maximum sine value is 1 . Taking inverse sine gives

$$
\begin{aligned}
67 \pi t-0.26=\sin ^{-1}(1) & =\frac{\pi}{2} \\
67 \pi t & =\frac{\pi}{2}+0.26 \\
t & =\frac{\pi}{2(67 \pi)}+\frac{0.26}{67 \pi}=8.70 \times 10^{-3}
\end{aligned}
$$

The voltage is first a maximum at time $t=8.70 \mathrm{~ms}$.
(v) When does $v=40$ volts?

Substituting $v(t)=40$ into $v(t)=57 \sin (67 \pi t-0.26)$:

$$
\begin{aligned}
57 \sin (67 \pi t-0.26) & =40 \\
\sin (67 \pi t-0.26) & =\frac{40}{57}=0.70
\end{aligned}
$$

Taking inverse sin gives

$$
67 \pi t-0.26=\sin ^{-1}(0.70)=0.775
$$

Transposing to make t the subject gives

$$
t=\frac{0.775+0.26}{67 \pi}=4.92 \times 10^{-3}
$$

The waveform $v(t)$ reaches 40 volts at $t=4.92 \mathrm{~ms}$.
We can sketch $v(t)$ over one cycle by using the above evaluations:

