Complete Solutions to Examination Questions 7

1. We have:
(i) The velocity v is given by differentiating the distance $s=30 t-6 t^{2}$ with respect to time t :

$$
v=\frac{\mathrm{ds}}{\mathrm{~d} t}=30-12 t
$$

The initial velocity is found by substituting $t=0$ into $v=30-12 t$:

$$
v=30-(12 \times 0)=30
$$

The initial velocity is $30 \mathrm{~m} / \mathrm{s}$.
(ii) The velocity after 3 seconds is given by substituting $t=3$ into $v=30-12 t$:

$$
v=30-(12 \times 3)=-6
$$

We have after 3 seconds the velocity is $-6 \mathrm{~m} / \mathrm{s}$.
(iii) The acceleration a is determined by differentiating the velocity with respect to time:

$$
a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}[30-12 t]=-12
$$

The constant acceleration is $-12 \mathrm{~m} / \mathrm{s}^{2}$.
2. (a) To determine the maxima and minima of $y=x^{3}-3 x+1$ we need to first find the stationary points. How do we find the stationary points?
The stationary points occur where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$. Therefore differentiating the given function we have

$$
\begin{array}{r}
y=x^{3}-3 x+1 \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-3=0
\end{array}
$$

Solving the quadratic yields:

$$
3 x^{2}-3=3\left(x^{2}-1\right)=0 \quad \Rightarrow \quad x^{2}=1 \quad \Rightarrow \quad x= \pm 1
$$

To distinguish between the two points at $x=-1$ and $x=+1$ we differentiate again:

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-3 \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6 x
\end{aligned}
$$

Substituting $x=-1$ into $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x$ gives $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 \times(-1)=-6<0$ [Negative]. Hence we have maximum at $x=-6$.
Similarly substituting $x=+1$ into $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x$ gives $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 \times(1)=6>0$ [Positive] therefore we have a minimum at $x=+1$.
The corresponding y values are found by substituting $x=-1$ and $x=+1$ into $y=x^{3}-3 x+1$:

$$
\begin{gathered}
x=-1, \quad y=(-1)^{3}-3(-1)+1=-1+3+1=3 \\
x=+1, \quad y=1^{3}-3(1)+1=1-3+1=-1
\end{gathered}
$$

We have local maximum at $(-1,3)$ and local minimum at $(1,-1)$.
(b) (i) Substituting $t=2$ into $x=t^{3}-2 t^{2}+t$ gives

$$
x=2^{3}-2(2)^{2}+2=2
$$

The particle is 2 m away from \mathbf{Z}.
(ii) The speed v of the particle is given by differentiating x with respect to t :

$$
\begin{gathered}
x=t^{3}-2 t^{2}+t \\
v=\frac{\mathrm{d} x}{\mathrm{~d} t}=3 t^{2}-4 t+1
\end{gathered}
$$

The speed after 2 seconds is $v=3(2)^{2}-4(2)+1=5 \mathrm{~m} / \mathrm{s}$.
(iii) The acceleration a after 2 seconds is determined by differentiating v :

$$
\begin{aligned}
a=\frac{\mathrm{d} v}{\mathrm{~d} t} & =\frac{\mathrm{d}}{\mathrm{dt}}\left[3 t^{2}-4 t+1\right] \\
& =6 t-4
\end{aligned}
$$

Substituting $t=2$ into $a=6 t-4$ gives the acceleration after 2 seconds, $a=6(2)-4=8 \mathrm{~m} / \mathrm{s}^{2}$.
(iv) The particle is at rest when $x=0$. Equating our given x to zero and solving we have

$$
\begin{aligned}
& t^{3}-2 t^{2}+t=0 \\
& t\left(t^{2}-2 t+1\right)=0 \\
& t(t-1)^{2}=0 \quad \text { gives } t=0, \quad t=1
\end{aligned}
$$

The particle is at rest when $t=0$ or $t=1 \mathrm{~s}$.
(v) The acceleration $a=6 t-4$ is zero at

$$
6 t-4=0 \text { gives } t=\frac{4}{6}=\frac{2}{3}
$$

The acceleration is zero when $t=\frac{2}{3} \mathrm{~s}$.
3. Let the rectangle have dimensions x and y, that is we have

The perimeter P is 20 so we have

$$
\begin{aligned}
2 x+2 y & =20 \\
x+y & =10 \quad[\text { Dividing through by } 2] \\
y & =10-x
\end{aligned}
$$

The area A of the rectangle is

$$
A=x y=x(10-x)=10 x-x^{2} \quad[\text { Substituting } y=10-x]
$$

Differentiating this and equating to zero gives a stationary point of A :

$$
\begin{aligned}
& A=10 x-x^{2} \\
& \frac{\mathrm{~d} A}{\mathrm{~d} x}=10-2 x=0 \quad \text { yields } x=5
\end{aligned}
$$

We have a stationary point of A at $x=5$. How do we find whether this gives a max or min? Differentiate again:

$$
\begin{aligned}
& \frac{\mathrm{d} A}{\mathrm{~d} x}=10-2 x \\
& \frac{\mathrm{~d}^{2} A}{\mathrm{~d} x^{2}}=-2<0
\end{aligned}
$$

Hence $x=5$ gives maximum area A. What is y equal to?
Substituting $x=5$ into $y=10-x=10-5=5$. Hence we have maximum area at $x=y=5$ feet (a square).
4. We have the following box:

We are given that volume of the box is 12 therefore we have

$$
x^{2} y=12 \Rightarrow y=\frac{12}{x^{2}}
$$

To get the least expensive box we need to use the least amount of material or otherwise minimise the total surface area A. What is the total surface area A equal to?

$$
A=x^{2}+4 x y \quad \text { [base plus the four sides] }
$$

By (\dagger) we substitute $y=\frac{12}{x^{2}}$ into A :

$$
\begin{aligned}
A=x^{2}+4 x y & =x^{2}+4 x\left(\frac{12}{x^{2}}\right) \\
& =x^{2}+48 x^{-1}
\end{aligned}
$$

The cost C of the material is given by $C=30 x^{2}+\left(10 \times 48 x^{-1}\right)=30 x^{2}+480 x^{-1}$.
We need to differentiate this in order to find the minimum cost:

$$
\begin{aligned}
& C=30 x^{2}+480 x^{-1} \\
& \frac{\mathrm{~d} C}{\mathrm{~d} x}=60 x-480 x^{-2}=60 x-\frac{480}{x^{2}}=0
\end{aligned}
$$

Solving this equation $60 x-\frac{480}{x^{2}}=0$:

$$
60 x=\frac{480}{x^{2}} \quad \Rightarrow \quad 60 x^{3}=480 \quad \Rightarrow \quad x^{3}=8 \quad \Rightarrow \quad x=2
$$

In order to confirm that this indeed does give the minimum surface area we have to differentiate again:

$$
\begin{aligned}
& \frac{\mathrm{d} C}{\mathrm{~d} x}=60 x-480 x^{-2} \\
& \frac{\mathrm{~d}^{2} C}{\mathrm{~d} x^{2}}=60+960 x^{-3}
\end{aligned}
$$

Substituting $x=2$ into the second derivative yields $\frac{\mathrm{d}^{2} C}{\mathrm{~d} x^{2}}>0$ [Positive] which means when $x=2$ we have minimum cost. What is the value of y ?
Substituting $x=2$ into $y=\frac{12}{x^{2}}$ we have $y=\frac{12}{2^{2}}=3$. The costs are minimised when $x=2$ in. and $y=3$ in..
5. The Maclaurin series for $\frac{e^{2 x}}{1+x}=e^{2 x}(1+x)^{-1}$ can be found by using the series for e^{x} :

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \tag{7.15}
\end{equation*}
$$

We need to replace x with $2 x$ in this series

$$
\begin{aligned}
e^{2 x} & =1+2 x+\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{3}}{3!}+\frac{(2 x)^{4}}{4!}+\ldots \\
& \left.=1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\frac{2}{3} x^{4}+\ldots \quad \text { [Simplifying the coefficients }\right]
\end{aligned}
$$

We also need to find the binomial expansion of $(1+x)^{-1}$:

$$
(1+x)^{-1}=1-x+x^{2}-x^{3}+x^{4}-\cdots
$$

Multiplying these two together gives

$$
\begin{aligned}
\frac{e^{2 x}}{1+x} & =e^{2 x}(1+x)^{-1} \\
& =\left(1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\frac{2}{3} x^{4}+\ldots\right)\left(1-x+x^{2}-x^{3}+x^{4}-\ldots\right) \\
& =1-x+x^{2}-x^{3}+2 x\left(1-x+x^{2}\right)+2 x^{2}(1-x)+\frac{4}{3} x^{3}+\ldots \\
& =1-x+x^{2}-x^{3}+2 x-2 x^{2}+2 x^{3}+2 x^{2}-2 x^{3}+\frac{4}{3} x^{3}+\ldots \\
& =1+x+x^{2}+\frac{1}{3} x^{3}+\ldots
\end{aligned}
$$

The first four non-zero terms are $1+x+x^{2}+\frac{1}{3} x^{3}+\ldots$
6. (i) Applying the binomial series

$$
\begin{equation*}
(1+x)^{n}=1+n x+\left[\frac{n(n-1)}{2!}\right] x^{2}+\left[\frac{n(n-1)(n-2)}{3!}\right] x^{3}+\ldots \tag{7.24}
\end{equation*}
$$

to the given binomial term $(1+3 x)^{1 / 3}$ with $n=1 / 3$ and x replaced with $3 x$:

$$
\begin{aligned}
(1+3 x)^{1 / 3} & =1+\frac{1}{3}(B x)+\left[\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{2!}\right](3 x)^{2}+\left[\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!}\right](3 x)^{3}+\ldots \\
& =1+x+\left[\frac{\frac{1}{3}\left(-\frac{2}{3}\right)}{2}\right] 9 x^{2}+\left[\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{6}\right] 27 x^{3}+\ldots \\
& =1+x+\left[-\frac{1}{9}\right] 9 x^{2}+\left[\left(\frac{10}{27}\right) \frac{1}{6}\right] 27 x^{3}+\ldots \\
& =1+x-x^{2}+\frac{5}{3} x^{3}+\ldots \quad \quad \text { Cancelling 9's and 27's] }
\end{aligned}
$$

(ii) We know

$$
\begin{align*}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \quad \Rightarrow \quad e^{-x^{2}}=1+\left(-x^{2}\right)+\frac{\left(-x^{2}\right)^{2}}{2!}+\ldots \tag{7.15}\\
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \quad \Rightarrow \quad \cos (2 x)=1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\ldots \tag{7.17}
\end{align*}
$$

Substituting these into the given product function $e^{-x^{2}} \cos (2 x)$ we have

$$
\begin{aligned}
e^{-x^{2}} \cos (2 x) & =\left[1-x^{2}+\frac{\left(-x^{2}\right)^{2}}{2!}-\ldots\right]\left[1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\ldots\right] \\
& =\left[1-x^{2}+\frac{x^{4}}{2}-\ldots\right]\left[1-\frac{4 x^{2}}{2}+\frac{16 x^{4}}{24}-\ldots\right] \\
& =1\left[1-2 x^{2}+\frac{2}{3} x^{4}-\ldots\right]-x^{2}\left[1-2 x^{2}+\ldots\right]+\frac{x^{4}}{2}\left[1-2 x^{2}+\ldots\right] \\
& \left.=1-2 x^{2}+\frac{2}{3} x^{4}-x^{2}+2 x^{4}+\frac{x^{4}}{2}+\ldots \quad \text { [Expanding }\right] \\
& =1-3 x^{2}+\left(\frac{2}{3}+\frac{1}{2}+2\right) x^{4}+\ldots=1-3 x^{2}+\frac{19}{6} x^{4}+\ldots
\end{aligned}
$$

Our expansion gives $1-3 x^{2}+\frac{19}{6} x^{4}+\ldots$.
7. The graph of $y=e^{2 x}$ is our normal exponential graph which crosses the y-axis at 1 .

The graph of the quadratic $y=3-x^{2}$ crosses the x-axis at $3-x^{2}=0$ which gives $x= \pm \sqrt{3}$.
At $x=0, y=3$ and this is the maximum value. The two graphs are:

The root of the equation $e^{2 x}=3-x^{2}$ is the intersection of the two graphs $y=e^{2 x}$ and $y=3-x^{2}$ as shown above. One of the roots lies between 0 and $\sqrt{3}$ as seen above but you can show this by algebraic means as follows:
Let $f(x)=e^{2 x}+x^{2}-3$ then substituting $x=0$ and $x=\sqrt{3}$ gives

$$
\begin{gathered}
\left.f(0)=e^{0}+0^{2}-3=1-3=-2 \quad \text { [Negative }\right] \\
f(\sqrt{3})=e^{2 \sqrt{3}}+(\sqrt{3})^{2}-3=e^{2 \sqrt{3}}+3-3=e^{2 \sqrt{3}}>0 \quad[\text { Positive }]
\end{gathered}
$$

Since the graph goes from negative to positive between 0 and $\sqrt{3}$ therefore there must be a root between 0 and $\sqrt{3}$.
The Newton Raphson formula is

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{7.25}
\end{equation*}
$$

With $f(x)=e^{2 x}+x^{2}-3$ we have $f\left(x_{n}\right)=e^{2 x_{n}}+x_{n}^{2}-3$ and

$$
f^{\prime}\left(x_{n}\right)=2 e^{2 x_{n}}+2 x_{n} \quad[\text { Differentiating }]
$$

Substituting these into (7.25) gives our result:

$$
\begin{equation*}
x_{n+1}=x_{n}-\left(\frac{e^{2 x_{n}}+x_{n}^{2}-3}{2 e^{2 x_{n}}+2 x_{n}}\right) \tag{}
\end{equation*}
$$

By looking at the above graphs we consider a first approximation $x_{1}=0.5$. Putting $n=1$ and $x_{1}=0.5$ into (*) yields:

$$
\begin{aligned}
x_{2}=x_{1}-\left(\frac{e^{2 x_{1}}+x_{1}^{2}-3}{2 e^{2 x_{1}}+2 x_{1}}\right) & =0.5-\left(\frac{e^{2(0.5)}+0.5^{2}-3}{2 e^{2(0.5)}+2(0.5)}\right) \\
& =0.5-\left(\frac{-0.03172}{6.43656}\right)=0.50493
\end{aligned}
$$

Substituting $x_{2}=0.50493$ and $n=2$ into $\left({ }^{*}\right)$ gives

$$
\begin{aligned}
x_{3}=x_{2}-\left(\frac{e^{2 x_{2}}+x_{2}^{2}-3}{2 e^{2 x_{2}}+2 x_{2}}\right) & =0.50493-\left(\frac{e^{(2 \times 0.50493)}+(0.50493)^{2}-3}{2 e^{(2 \times 0.50493)}+2(0.50493)}\right) \\
& =0.50493-\left(\frac{0.00017}{6.50029}\right)=0.50490
\end{aligned}
$$

Note that x_{2} rounded to 4 dp is 0.5049 and x_{3} rounded to 4 dp is also 0.5049 . Since these agree to 4 dp therefore our approximation to the root to 4 dp is 0.5049 .
8. (a) The equation of the tangent to $y=x^{3}-6 x$ is given by differentiating this y with respect to x to give the gradient.

$$
\begin{aligned}
y & =x^{3}-6 x \\
\frac{d y}{d x} & =3 x^{2}-6
\end{aligned}
$$

The gradient m at $(2,-4)$ is found by substituting $x=2$ into this $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-6$:

$$
m=\frac{\mathrm{d} y}{\mathrm{~d} x}=3(2)^{2}-6=6
$$

The equation of the tangent is given by $y=m x+c$ where $m=6$. We also know that the line goes through the point $(2,-4)$ which means that when $x=2, y=-4$. Substituting these into $y=m x+c=6 x+c$ gives

$$
-4=6(2)+c \quad \Rightarrow \quad c=-16
$$

The equation of the tangent is $y=6 x-16$.
(b) The maximum of $f(x)=2 x^{2}-x^{4}$ can be determined by differentiating this function and equating the result to zero which gives the stationary points:

$$
\begin{aligned}
& f(x)=2 x^{2}-x^{4} \\
& f^{\prime}(x)=4 x-4 x^{3}=0
\end{aligned}
$$

How do we solve $4 x-4 x^{3}=0$?
Factorise out the $4 x$:

$$
4 x-4 x^{3}=4 x\left(1-x^{2}\right)=0 \quad \text { gives } \quad x=0 \text { or } \quad x=-1,+1
$$

To find which of these stationary points gives a maximum we need to differentiate again.

$$
\begin{aligned}
& f^{\prime}(x)=4 x-4 x^{3} \\
& f^{\prime \prime}(x)=4-12 x^{2}
\end{aligned}
$$

Substituting $x=-1$ or $x=+1$ gives

$$
f^{\prime \prime}(x)=4-12=-8<0 \quad[\text { Negative }]
$$

Both these x values $x=-1$ and $x=+1$ yields a maximum and the maximum value is

$$
f(1)=2(1)^{2}-1^{4}=1 \quad\left[\text { Because } f(x)=2 x^{2}-x^{4}\right]
$$

The maximum value is 1 and it occurs at $x=-1$ and $x=+1$.
[At $x=0$ we have a minimum].
9. How do we find the binomial expansion of $\left(1-x^{2}\right)^{-1 / 2}$?

By applying the binomial series

$$
\begin{equation*}
(1+x)^{n}=1+n x+\left[\frac{n(n-1)}{2!}\right] x^{2}+\left[\frac{n(n-1)(n-2)}{3!}\right] x^{3}+\ldots \tag{7.24}
\end{equation*}
$$

with $n=-\frac{1}{2}$ and x being replaced by $-x^{2}$:

$$
\begin{aligned}
\left(1-x^{2}\right)^{-1 / 2} & =1-\frac{1}{2}\left(-x^{2}\right)+\left[\frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right)}{2!}\right]\left(-x^{2}\right)^{2}+\left[\frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)}{3!}\right]\left(-x^{2}\right)^{3}+\ldots \\
& =1+\frac{1}{2} x^{2}+\left[\frac{-\frac{1}{2}\left(-\frac{3}{2}\right)}{2}\right] x^{4}+\left[\frac{-\frac{1}{2}\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{6}\right]\left(-x^{6}\right)+\ldots \quad \text { [Simplifying] } \\
& =1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{15}{48} x^{6}+\ldots=1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{5}{16} x^{6}+\ldots
\end{aligned}
$$

The binomial series is $\left(1-x^{2}\right)^{-1 / 2}=1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{5}{16} x^{6}+\ldots$.
How do we use this series to find $(0.99)^{-1 / 2}$?
Substitute $x=0.1$ into $\left(1-x^{2}\right)^{-1 / 2}=1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{5}{16} x^{6}+\ldots$ because

$$
\begin{aligned}
&\left(1-0.1^{2}\right)^{-1 / 2}=(1-0.01)^{-1 / 2}=(0.99)^{-1 / 2} \\
&(0.99)^{-1 / 2}=\left(1-0.1^{2}\right)^{-1 / 2}=1+\frac{1}{2}(0.1)^{2}+\frac{3}{8}(0.1)^{4}+\frac{5}{16}(0.1)^{6}+\ldots \\
&=1+\frac{1}{2}(0.01)+\frac{3}{8}(0.0001)+\frac{5}{16}(0.000001)+\ldots \\
&=1.005038
\end{aligned}
$$

10. (a) How do we write down the general term for $\sum_{r=1}^{\infty} u_{r}=x-\frac{x^{2}}{4}+\frac{x^{3}}{9}-\frac{x^{4}}{16} \ldots$?

Neglecting the sign in front of the term we have $\frac{x^{r}}{r^{2}}$. Since we have an alternating series where the terms oscillate between plus and minus therefore we can write this as $(-1)^{r+1}$.
Thus the general term is given by $u_{r}=\frac{(-1)^{r+1} x^{r}}{r^{2}}$. The series is

$$
x-\frac{x^{2}}{4}+\frac{x^{3}}{9}-\frac{x^{4}}{16} \ldots=\sum_{r=1}^{\infty} \frac{(-1)^{r+1} x^{r}}{r^{2}}
$$

(b) We use the ratio test to find the radius of convergence of this series. Let $u_{r}=\frac{(-1)^{r+1} x^{r}}{r^{2}}$ then $u_{r+1}=\frac{(-1)^{(r+1)+1} x^{r+1}}{(r+1)^{2}}=\frac{(-1)^{r+2} x^{r+1}}{(r+1)^{2}}$. Applying the ratio test (7.30) we have

$$
\left.\begin{array}{rlr}
L=\lim _{r \rightarrow \infty}\left|\frac{u_{r+1} \mid}{u_{r}}\right| & =\lim _{r \rightarrow \infty}\left|\frac{(-1)^{r+2} x^{r+1}}{(r+1)^{2}} \div \frac{(-1)^{r+1} x^{r}}{r^{2}}\right| & \\
& =\lim _{r \rightarrow \infty}\left|\frac{(-1)^{r+1}(-1) x^{r} x}{(r+1)^{2}} \times \frac{r^{2}}{(-1)^{r+1} x^{r}}\right| & \\
& =\lim _{r \rightarrow \infty}\left|(-1) \frac{x}{(r+1)^{2}} \times r^{2}\right| & {\left[\begin{array}{l}
\text { Inverting the second } \\
\text { fraction and multiplying }
\end{array}\right]} \\
& =\lim _{r \rightarrow \infty} \mid(-1)^{r+1} \text { and } x^{r}
\end{array}\right] x\left(\frac{r}{r+1}\right)^{2} \left\lvert\, \quad\left[\begin{array}{l}
\text { Dividing Numerator and } \\
\text { Denominator by } r
\end{array}\right]\right.
$$

We have $L=|x|$. Remember the ratio test states that the series converges for $L<1$ therefore the series converges for $|x|<1$ which means that the radius of convergence R is equal to 1 . The ratio test fails for $L=|x|=1$ which means $x=-1$ or $x=+1$.
Does the series converge at $x=+1$?
Substituting $x=+1$ into the given series we have

$$
\sum_{r=1}^{\infty} \frac{(-1)^{r+1} 1^{r}}{r^{2}}=\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r^{2}}
$$

This series converges because it is the p -series with $p=2$. Hence the series converges at $x=R$.
We do not have to test this series at $x=-1$ because the question only stipulates to test the convergence at $x=R$.
11. We can find the radius of convergence of $\sum 2^{n} n^{3} x^{n}$ by using the ratio test (7.30).

Let $a_{n}=2^{n} n^{3} x^{n}$ then $a_{n+1}=2^{n+1}(n+1)^{3} x^{n+1}$. Substituting these into $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ gives

$$
\begin{array}{rlrl}
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(n+1)^{3} x^{n+1}}{2^{n} n^{3} x^{n}}\right| & \\
& =\lim _{n \rightarrow \infty}\left|\frac{2^{n} 2(n+1)^{3} x^{n} x}{2^{n} n^{3} x^{n}}\right| & & \\
& =\lim _{n \rightarrow \infty}\left|\frac{2(n+1)^{3} x}{n^{3}}\right| & & {\left[\text { Cancelling } 2^{n} \text { and } x^{n}\right]} \\
& =\lim _{n \rightarrow \infty}\left|2 x\left(\frac{n+1}{n}\right)^{3}\right| & & {\left[\text { Because } \frac{(n+1)^{3}}{n^{3}}=\left(\frac{n+1}{n}\right)^{3}\right]} \\
& =\lim _{n \rightarrow \infty}\left|2 x\left(1+\frac{1}{n}\right)^{3}\right|=|2 x|(1) & & {\left[\text { Because as } n \rightarrow \infty, 1+\frac{1}{n} \rightarrow 1+0=1\right]}
\end{array}
$$

The series converges for $L=|2 x|=2|x|<1$. This means the series converges for $|x|<\frac{1}{2}$ which gives the radius of convergence R equal to $1 / 2$.
12. The Taylor series expansion about the point $x=0$ is the Maclaurin series. The Maclaurin series for e^{x} is given by

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \tag{7.15}
\end{equation*}
$$

To find the expansion of $\left(1+e^{x^{2}}\right)(1-x)$ we use (7.15) with x replaced with x^{2} :

$$
\begin{array}{rlr}
\left(1+e^{x^{2}}\right)(1-x) & =[1+\underbrace{\left(1+x^{2}+\frac{\left(x^{2}\right)^{2}}{2!}+\ldots\right)}_{=e^{x^{2}}}](1-x) & \\
& =\left[2+x^{2}+\frac{x^{4}}{2}+\ldots\right](1-x) & \text { [Simplifying] } \\
& =(2-2 x)+\left(x^{2}-x^{3}\right)+\left(\frac{x^{4}}{2}-\frac{x^{5}}{2}\right)+\ldots & \text { [Expanding] } \\
& =2-2 x+x^{2}-\ldots &
\end{array}
$$

13. The gradient of the tangent to $y=(2+x) e^{-x}$ at $(0,2)$ is found by differentiating this:

$$
\begin{aligned}
y & =(2+x) e^{-x} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & \left.=(1) e^{-x}-(2+x) e^{-x} \quad \text { [Using the product rule }(u v)^{\prime}=u^{\prime} v+v^{\prime} u\right] \\
& =(1-2-x) e^{-x} \quad \\
& =(-1-x) e^{-x}=-(1+x) e^{-x}
\end{aligned}
$$

Subs $x=0$, because we want to find the tangent at $(0,2)$, into $m=\frac{\mathrm{d} y}{\mathrm{~d} x}=-(1+x) e^{-x}$:

$$
m=\frac{\mathrm{d} y}{\mathrm{~d} x}=-(1+0) e^{-0}=-1 \quad[\text { Gradient }]
$$

The equation of the tangent is $y=m x+c=-x+c$. How do we find the value of c ?
Since the tangent goes through the point $(0,2)$ we know it satisfies that when $x=0$, $y=2$. Putting these values into $y=-x+c$ gives

$$
2=0+c
$$

The equation of the tangent is $y=2-x$.
14. We need to find the tangent line to $x^{2}+x y+y^{2}=e^{y-2}+6$. Similar to the solution of question 13. We first find $\frac{\mathrm{d} y}{\mathrm{~d} x}$:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{2}+x y+y^{2}\right]=\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{y-2}+6\right] \\
& 2 x+\underbrace{\left(y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)}_{\text {Product rule }}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=e^{y-2} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& 2 x+y=\left(e^{y-2}-x-2 y\right) \frac{\mathrm{d} y}{\mathrm{~d} x} \quad\left[\text { Collecting the } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { terms on one side }\right] \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x+y}{e^{y-2}-x-2 y}
\end{aligned}
$$

This is the gradient function of $x^{2}+x y+y^{2}=e^{y-2}+6$. How do we find the gradient at $(1,2)$?
Substitute $x=1, y=2$ into $m=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x+y}{e^{y-2}-x-2 y}$:

$$
m=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2(1)+2}{e^{2-2}-1-2(2)}=\frac{4}{-4}=-1
$$

The equation of the tangent is $y=m x+c=-x+c$ and goes through the point $(1,2)$:

$$
2=-1+c \text { gives } c=3
$$

Hence the equation of the tangent is $y=3-x$.
15. To sketch the graph of $P(r)=\left(\frac{4 r^{2}}{a^{2}}\right) e^{-2 r / a}$ we need to differentiate this function with respect to r to find the stationary points.

$$
\begin{array}{rlr}
P^{\prime}(r) & =\frac{\mathrm{d}}{\mathrm{~d} r}\left[\left(\frac{4 r^{2}}{a^{2}}\right) e^{-2 r / a}\right] \\
& =\frac{4}{a^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r^{2} e^{-2 r / a}\right] & {\left[\begin{array}{l}
\text { Taking out the constant } \left.\frac{4}{a^{2}}\right] \\
\\
\end{array}=\frac{1}{a^{2}}\left[2 r e^{-2 r / a}+r^{2}\left(-\frac{2}{a}\right) e^{-2 r / a}\right] \quad\left[\begin{array}{l}
\text { By Product Rule } \\
(u v))^{\prime}=u^{\prime} v+u v^{\prime}
\end{array}\right]\right.} \\
& =\frac{4 r e^{-2 r / a}}{a^{2}}\left[2+r\left(-\frac{2}{a}\right)\right] & {\left[\begin{array}{l}
\text { Taking out common factor } \\
r e^{-2 r / a}
\end{array}\right]} \\
& =\frac{4 r e^{-2 r / a}}{a^{2}}\left[\frac{2 a-2 r}{a}\right]=\frac{4 r e^{-2 r / a}}{a^{3}}[2 a-2 r]=\frac{8 r e^{-2 r / a}}{a^{3}}[a-r]
\end{array}
$$

For stationary points we need to equate $P^{\prime}(r)=0$. Using the above derivation we have

$$
P^{\prime}(r)=\frac{8 r e^{-2 r / a}}{a^{3}}[a-r]=0 \Rightarrow \quad r=0 \text { or } r=a
$$

Testing what type of stationary point we have at $r=a$ we use the first derivative test:
If $r<a$ then $P^{\prime}(r)=\frac{8 r e^{-2 r / a}}{a^{3}}[a-r]>0$.
If $r>a$ then $P^{\prime}(r)=\frac{8 r e^{-2 r / a}}{a^{3}}[a-r]<0$.
This means we have

We have a maximum at $r=a$ and the maximum value is found by substituting $r=a$ into $P(r)=\left(\frac{4 r^{2}}{a^{2}}\right) e^{-2 r / a}$. Hence maximum is $P(a)=\left(\frac{4 a^{2}}{a^{2}}\right) e^{-2 a / a}=4 e^{-2}$.
At $r=0$ we have $P(0)=\left(\frac{4(0)^{2}}{a^{2}}\right) e^{-2(0) / a}=0$. This means that the graph goes through the origin.
We are given that $r \geq 0$. What happens to $P(r)$ as $r \rightarrow \infty$?
As $r \rightarrow \infty$ we have $e^{-2 r / a} \rightarrow 0$ and therefore $P(r) \rightarrow 0$ as $r \rightarrow \infty$.
Collecting all the above we have the graph:

16. (a) and (b). Let x be the length of one side of a square and r be the radius of a circle, so that we have:

The total length of the wire is given as 100 cm so the perimeter of the square is $4 x$ which means that x is between 0 and 25 cm . The remaining wire for the circle is $100-4 x$. The perimeter (circumference) of the circle is $2 \pi r$ where r is the radius of the circle. From the question we know that the wire is cut to make a square and circle therefore

$$
\begin{aligned}
2 \pi r & =100-4 x \\
r & =\frac{100-4 x}{2 \pi}=\frac{50-2 x}{\pi} \quad\left[\begin{array}{l}
\text { Dividing numerator and } \\
\text { denominator by } 2
\end{array}\right]
\end{aligned}
$$

Let A be the combined area of the circle and square therefore we have

$$
\begin{array}{rlrl}
A & =x^{2}+\pi r^{2} \\
& =x^{2}+\pi\left(\frac{50-2 x}{\pi}\right)^{2} & & {\left[\text { Substituting } r=\frac{50-2 x}{\pi} \text { from above }\right]} \\
& =x^{2}+(2 x-50)^{2} & {\left[\begin{array}{l}
\text { Cancelling out } \pi \text { 's and writing } \\
(50-2 x)^{2}=(-1[-50+2 x])^{2}=(2 x-50)^{2}
\end{array}\right]} \\
& =x^{2}+\left(4 x^{2}-200 x+50^{2}\right) & {\left[\text { Using }(a-b)^{2}=a^{2}-2 a b+b^{2}\right]} \\
& =5 x^{2}-200 x+2500 &
\end{array}
$$

For maximum and minimum we need to differentiate A with respect to x and equate to zero:

$$
\begin{aligned}
& A=5 x^{2}-200 x+2500 \\
& \frac{\mathrm{~d} A}{\mathrm{~d} x}=10 x-200=0
\end{aligned}
$$

Solving the linear equation

$$
10 x-200=10(x-20)=0 \Rightarrow x=20
$$

We need to check that this gives maximum or minimum. How?
Differentiating again:

$$
\begin{aligned}
& \frac{\mathrm{d} A}{\mathrm{~d} x}=10 x-200 \\
& \frac{\mathrm{~d}^{2} A}{\mathrm{~d} x^{2}}=10>0 \quad[\text { Positive }]
\end{aligned}
$$

The area is a minimum when we cut a square of length 20 cm which means that the wire should be cut at $4 \times 20=80 \mathrm{~cm}$ in order to make a square.
At what values do we get maximum combined area $A=5 x^{2}-200 x+2500$?
When $x=0$ which means that we do not have a square and the piece is not cut but the circle is made of circumference 100 cm . How do we know this?
We can sketch the graph of the quadratic $A=5 x^{2}-200 x+2500$:

17. How do we find the radius of convergence of $\sum_{n=1}^{\infty} \frac{n-1}{(n+2)(2 n+5)}\left(\frac{x}{2}\right)^{n}$?

Use the ratio test. Let $a_{n}=\frac{n-1}{(n+2)(2 n+5)}\left(\frac{x}{2}\right)^{n}=\frac{(n-1) x^{n}}{2^{n}(n+2)(2 n+5)}$ then

$$
a_{n+1}=\frac{[(n+1)-1] x^{n+1}}{2^{n+1}((n+1)+2)(2(n+1)+5)}=\frac{n x^{n+1}}{2^{n+1}(n+3)(2 n+7)}
$$

Substituting these into the ratio test formula $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ we have

$$
\begin{array}{rlr}
L & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n x^{n+1}}{2^{n+1}(n+3)(2 n+7)} \times \frac{2^{n}(n+2)(2 n+5)}{(n-1) x^{n}}\right| & \\
& =\lim _{n \rightarrow \infty}\left|\frac{n x^{n} x}{2^{n} 2\left(2 n^{2}+13 n+21\right)} \times \frac{2^{n}\left(2 n^{2}+9 n+10\right)}{(n-1) x^{n}}\right| & \text { [Expanding brackets] } \\
& =\lim _{n \rightarrow \infty}\left|\frac{x}{2} \frac{n}{\left(2 n^{2}+13 n+21\right)} \times \frac{\left(2 n^{2}+9 n+10\right)}{(n-1)}\right| & \\
& =\lim _{n \rightarrow \infty}\left|\frac{x}{2} \frac{\left(2 n^{2}+9 n+10\right)}{\left(2 n^{2}+13 n+21\right)} \times \frac{n}{(n-1)}\right| & \left.\quad \begin{array}{l}
\text { Cancelling common factors } \\
2^{n} \text { and } x^{n}
\end{array}\right]
\end{array}
$$

We can split our rational function as follows and evaluate the limit of each function:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{2 n^{2}+9 n+10}{2 n^{2}+13 n+21}\right) & =\lim _{n \rightarrow \infty}\left(\frac{2+9 / n+10 / n^{2}}{2+13 / n+21 / n^{2}}\right) \quad\left[\begin{array}{l}
\text { Dividing numerator } \\
\text { and denominator by } n^{2}
\end{array}\right] \\
& =\left(\frac{2+0+0}{2+0+0}\right)=1
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{n}{n-1}\right) & =\lim _{n \rightarrow \infty}\left(\frac{1}{1-1 / n}\right) \quad\left[\begin{array}{l}
\text { Dividing numerator } \\
\text { and denominator by } n
\end{array}\right] \\
& =\left(\frac{1}{1-0}\right)=1
\end{aligned}
$$

Substituting these into (\dagger) gives

$$
L=\lim _{n \rightarrow \infty}\left|\frac{x}{2}(1)(1)\right|=\left|\frac{x}{2}\right|
$$

The power series converges for $L=\left|\frac{x}{2}\right|<1$ which implies that $|x|<2$. Hence the radius of convergence R is equal to 2 .

