Complete Solutions to Examination Questions 11

1. (i) How do we find $(\mathbf{A}-\mathbf{B})(\mathbf{A}+\mathbf{B})$ given $\mathbf{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)$?

Evaluate $\mathbf{A}-\mathbf{B}, \mathbf{A}+\mathbf{B}$ and then multiply them together.

$$
\begin{aligned}
& \mathbf{A}-\mathbf{B}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)=\left(\begin{array}{ll}
-4 & -4 \\
-4 & -4
\end{array}\right)=-4\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
& \mathbf{A}+\mathbf{B}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)=\left(\begin{array}{cc}
6 & 8 \\
10 & 12
\end{array}\right)=2\left(\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right)
\end{aligned}
$$

Multiplying these together gives

$$
\begin{aligned}
(\mathbf{A}-\mathbf{B})(\mathbf{A}+\mathbf{B}) & =-4\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) 2\left(\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right) \\
& =-8\left(\begin{array}{ll}
8 & 10 \\
8 & 10
\end{array}\right)=-16\left(\begin{array}{ll}
4 & 5 \\
4 & 5
\end{array}\right)
\end{aligned}
$$

(ii) How do we determine $\mathbf{A}^{2}-\mathbf{B}^{2}$?

$$
\begin{aligned}
\mathbf{A}^{2}-\mathbf{B}^{2} & =\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{2}-\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)^{2} \\
& =\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right) \\
& =\left(\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right)-\left(\begin{array}{cc}
67 & 78 \\
91 & 106
\end{array}\right) \\
& =\left(\begin{array}{ll}
-60 & -68 \\
-76 & -84
\end{array}\right)=-4\left(\begin{array}{ll}
15 & 17 \\
19 & 21
\end{array}\right)
\end{aligned}
$$

2. We are given the matrix $\mathbf{A}=\frac{1}{7}\left(\begin{array}{rrr}3 & -2 & -6 \\ -2 & 6 & -3 \\ -6 & -3 & -2\end{array}\right)$.
(a) The matrix \mathbf{A}^{2} is evaluated by

$$
\begin{aligned}
\mathbf{A}^{2} & =\frac{1}{7}\left(\begin{array}{rrr}
3 & -2 & -6 \\
-2 & 6 & -3 \\
-6 & -3 & -2
\end{array}\right) \frac{1}{7}\left(\begin{array}{rrr}
3 & -2 & -6 \\
-2 & 6 & -3 \\
-6 & -3 & -2
\end{array}\right) \\
& =\frac{1}{7} \times \frac{1}{7}\left(\begin{array}{rrr}
3 & -2 & -6 \\
-2 & 6 & -3 \\
-6 & -3 & -2
\end{array}\right)\left(\begin{array}{rrr}
3 & -2 & -6 \\
-2 & 6 & -3 \\
-6 & -3 & -2
\end{array}\right) \\
& =\frac{1}{49}\left(\begin{array}{ccc}
49 & 0 & 0 \\
0 & 49 & 0 \\
0 & 0 & 49
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\mathbf{I}
\end{aligned}
$$

Hence $\mathbf{A}^{2}=\mathbf{I}$. What is \mathbf{A}^{3} equal to?

$$
\mathbf{A}^{3}=\mathbf{A}^{2} \mathbf{A}=\mathbf{I} \mathbf{A}=\mathbf{A}=\frac{1}{7}\left(\begin{array}{rrr}
3 & -2 & -6 \\
-2 & 6 & -3 \\
-6 & -3 & -2
\end{array}\right)
$$

(b) Since we have $\mathbf{A}^{2}=\mathbf{I}$ therefore $\mathbf{A}^{-1}=\mathbf{A}$ and

$$
\mathbf{A}^{2004}=\left(\mathbf{A}^{2}\right)^{1002}=\mathbf{I}^{1002}=\mathbf{I}
$$

where \mathbf{I} is the identity 3 by 3 matrix.
3. We have the following:

$$
\mathbf{A}^{T}=\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)^{T}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & 2 \\
-1 & 1 & 3
\end{array}\right)
$$

The matrix multiplication $\mathbf{A B}$ is not valid because the number of columns (3) of matrix \mathbf{A} does not equal the number of rows (4) of matrix \mathbf{B}.
The matrix addition $\mathbf{B}+\mathbf{C}$ is not valid because matrices \mathbf{B} and \mathbf{C} are different sizes.
The matrix subtraction $\mathbf{A}-\mathbf{B}$ is not valid because matrices \mathbf{A} and \mathbf{B} are different sizes. The matrix multiplication CB is given by

$$
\mathbf{C B}=\left(\begin{array}{rrrr}
1 & -1 & 1 & 0 \\
-2 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
1 & 2 \\
0 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
0 & -2 \\
-1 & 1
\end{array}\right)
$$

The matrix multiplication $\mathbf{B C}^{t}$ is not valid because

$$
\mathbf{B C}^{t}=\left(\begin{array}{rr}
1 & 1 \\
1 & 2 \\
0 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{rrrr}
1 & -1 & 1 & 0 \\
-2 & 1 & 2 & 3
\end{array}\right)^{t}=\left(\begin{array}{rr}
1 & 1 \\
1 & 2 \\
0 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -2 \\
-1 & 1 \\
1 & 2 \\
0 & 3
\end{array}\right)
$$

This matrix multiplication is impossible because the number of columns (2) of the matrix B does not equal the number of rows (4) of the matrix \mathbf{C}^{T}.
The matrix multiplication \mathbf{A}^{2} is given by

$$
\mathbf{A}^{2}=\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{rrr}
0 & -2 & -4 \\
3 & 3 & 3 \\
6 & 8 & 10
\end{array}\right)
$$

4. We are given the matrices $\mathbf{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$:

$$
\begin{aligned}
& \mathbf{A}^{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
7 & 10 \\
15 & 22
\end{array}\right) \\
& \mathbf{B}^{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) \\
& \mathbf{A B}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 3
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{B} \mathbf{A}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{rr}
3 & 4 \\
-1 & -2
\end{array}\right)
$$

(b) We are given $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$:

$$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right) \\
& \mathbf{B A}=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c e+b g & a f+b h \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a e+c f & b e+d f \\
a g+c h & b g+d h
\end{array}\right)
\end{aligned}
$$

Subtracting each corresponding entry gives

$$
\begin{aligned}
\mathbf{A B}-\mathbf{B A} & =\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right)-\left(\begin{array}{cc}
a e+c f & b e+d f \\
a g+c h & b g+d h
\end{array}\right) \\
& =\left(\begin{array}{cc}
b g-c f & a f+b h-b e-d f \\
c e+d g-a g-c h & c f-b g
\end{array}\right)
\end{aligned}
$$

5. We are given $\mathbf{A}=\left(\begin{array}{ll}\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3}\end{array}\right)$ which we can rewrite as $\mathbf{A}=\frac{1}{3}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.
(i) We have

$$
\begin{aligned}
& \mathbf{A}^{2}=\frac{1}{3}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \frac{1}{3}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
&=\frac{1}{3^{2}}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\frac{1}{3^{2}}\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \\
&=\frac{2}{3^{2}}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

(ii) Similarly we have

$$
\begin{aligned}
\mathbf{A}^{3}=\mathbf{A}^{2} \mathbf{A} & =\frac{1}{3^{2}}\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \frac{1}{3}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
& =\frac{1}{3^{3}}\left(\begin{array}{ll}
4 & 4 \\
4 & 4
\end{array}\right)=\frac{2^{2}}{3^{3}}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

6. Let $\mathbf{A}=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$ then we have

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right], \quad\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1 \\
2
\end{array}\right], \quad\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Expanding each of these out

$$
\begin{aligned}
& \left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right] \text { gives } \begin{array}{l}
b+c=-1 \\
e+f=0 \\
h+i=2
\end{array} \\
& \left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1 \\
2
\end{array}\right] \text { gives } \begin{array}{c}
a+c=0 \\
d+f=-1 \\
g+i=2
\end{array} \\
& \left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \begin{array}{ll}
a+b=1 \\
\text { gives } & d+e=1 \\
g+h=2
\end{array}
\end{aligned}
$$

Solving these gives

$$
a=1, b=0, c=-1, d=0, e=1, f=-1, g=1, h=1 \text { and } i=1
$$

Putting these values into the matrix \mathbf{A} and checking:

$$
\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right], \quad\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right], \quad\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Thus $\mathbf{A}=\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & 1 & 1\end{array}\right)$.
7. We have

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =\operatorname{det}\left[\begin{array}{rrr}
0 & 1 & 5 \\
3 & -6 & 9 \\
2 & 6 & 1
\end{array}\right] \\
& =0-1 \operatorname{det}\left[\begin{array}{ll}
3 & 9 \\
2 & 1
\end{array}\right]+5 \operatorname{det}\left[\begin{array}{rr}
3 & -6 \\
2 & 6
\end{array}\right] \\
& =0-(3-18)+5(18+12)=15+150=165
\end{aligned}
$$

Thus $\operatorname{det}(\mathbf{A})=165$.
8. First we find the determinant of the given matrix:

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =\operatorname{det}\left[\begin{array}{rrr}
2 & -1 & -4 \\
-1 & 1 & 2 \\
-1 & 1 & 3
\end{array}\right] \\
& =2 \operatorname{det}\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]+1 \operatorname{det}\left[\begin{array}{ll}
-1 & 2 \\
-1 & 3
\end{array}\right]-4 \operatorname{det}\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right] \\
& =2(3-2)+(-3+2)-4(-1+1)=1
\end{aligned}
$$

Since $\operatorname{det}(\mathbf{A})=1 \neq 0$ therefore the inverse of the matrix \mathbf{A} exists.
Find the cofactors of each entry and adjoint which is the matrix of cofactors transposed. You can do this in your own time and establish that

$$
\mathbf{A}^{-1}=\left(\begin{array}{rrr}
1 & -1 & 2 \\
1 & 2 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

9. The adjoint of the matrix is the matrix of cofactors transposed. Thus for the 2 by 2 matrix we have

$$
\begin{gathered}
\operatorname{adj} \mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
\operatorname{det} \mathbf{A}=\operatorname{det}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]=1-1=0
\end{gathered}
$$

Since $\operatorname{det} \mathbf{A}$ is zero therefore the inverse matrix does not exist.
For the 3 by 3 matrix we need to find the cofactors of each entry in order to determine $\operatorname{adj} \mathbf{A}$.
Considering each entry starting from the top row of $\mathbf{A}=\left[\begin{array}{lll}3 & -4 & 1 \\ 1 & -1 & 3 \\ 2 & -2 & 5\end{array}\right]$ we have:
Cofactor of 3 is $\operatorname{det}\left[\begin{array}{ll}-1 & 3 \\ -2 & 5\end{array}\right]=-5+6=1$.
Cofactor of -4 is $-\operatorname{det}\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]=-(5-6)=1$.
Cofactor of 1 (in the top row) is $\operatorname{det}\left[\begin{array}{ll}1 & -1 \\ 2 & -2\end{array}\right]=(-2+2)=0$.
Cofactor of 1 (in the middle row) is $-\operatorname{det}\left[\begin{array}{ll}-4 & 1 \\ -2 & 5\end{array}\right]=-(-20+2)=18$.
Cofactor of -1 is $\operatorname{det}\left[\begin{array}{ll}3 & 1 \\ 2 & 5\end{array}\right]=(15-2)=13$.
Cofactor of 3 is $-\operatorname{det}\left[\begin{array}{ll}3 & -4 \\ 2 & -2\end{array}\right]=-(-6+8)=-2$.
Cofactor of 2 is $\operatorname{det}\left[\begin{array}{ll}-4 & 1 \\ -1 & 3\end{array}\right]=(-12+1)=-11$.
Cofactor of -2 is $-\operatorname{det}\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]=-(9-1)=-8$.
Cofactor of 5 is $\operatorname{det}\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]=(-3+4)=1$.
Thus the cofactor matrix \mathbf{C} is given by

$$
\mathbf{C}=\left(\begin{array}{rrr}
1 & 1 & 0 \\
18 & 13 & -2 \\
-11 & -8 & 1
\end{array}\right)
$$

The determinant of the matrix can be found by expanding along the top row, that is

$$
\begin{aligned}
\operatorname{det} \mathbf{A} & =3(\text { cofactor of } 3)-4(\text { Cofactor of }-4)+1(\text { Cofactor of } 1) \\
& =3(1)-4(1)+1(0)=-1
\end{aligned}
$$

What is the adjoint matrix equal to?
It is the cofactor matrix transposed, that is

$$
\operatorname{adj} \mathbf{A}=\mathbf{C}^{T}=\left(\begin{array}{rrr}
1 & 1 & 0 \\
18 & 13 & -2 \\
-11 & -8 & 1
\end{array}\right)^{T}=\left(\begin{array}{rcr}
1 & 18 & -11 \\
1 & 13 & -8 \\
0 & -2 & 1
\end{array}\right)
$$

Thus $\operatorname{det} \mathbf{A}=-1$. The inverse of the given matrix is

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}} \operatorname{adj} \mathbf{A}=-1\left(\begin{array}{ccc}
1 & 18 & -11 \\
1 & 13 & -8 \\
0 & -2 & 1
\end{array}\right)=\left(\begin{array}{rcc}
-1 & -18 & 11 \\
-1 & -13 & 8 \\
0 & 2 & -1
\end{array}\right)
$$

10. (a) What are the eigenvalues of $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right)$ equal to?

The eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=3$.
(b) Let \mathbf{u} and \mathbf{v} be the corresponding eigenvectors of $\lambda_{1}=1$ and $\lambda_{2}=3$ respectively. We can find these by

$$
(\mathbf{A}-\mathbf{I}) \mathbf{u}=\left(\begin{array}{cc}
1-1 & 1 \\
0 & 3-1
\end{array}\right)\binom{x}{y}=\left(\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

This gives $x=1$ and $y=0$. Thus $\mathbf{u}=\binom{1}{0}$ is the eigenvector for $\lambda_{1}=1$. Similarly for $\lambda_{2}=3$ we have

$$
(\mathbf{A}-3 \mathbf{I}) \mathbf{v}=\left(\begin{array}{cc}
1-3 & 1 \\
0 & 3-3
\end{array}\right)\binom{x}{y}=\left(\begin{array}{rr}
-2 & 1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

This gives $x=1$ and $y=2$. Thus $\mathbf{v}=\binom{1}{2}$. What is the matrix \boldsymbol{Q} equal to?
$\mathbf{Q}=\left(\begin{array}{ll}\mathbf{u} & \mathbf{v}\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)$. What is the diagonal matrix \boldsymbol{D} equal to?
\mathbf{D} is the diagonal matrix with entries along the leading diagonal given by the eigenvalues.
We have $\mathbf{D}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$.
(c) How do we find \mathbf{A}^{5} ?
$\mathbf{A}^{m}=\mathbf{Q D}^{m} \mathbf{Q}^{-1}$. We need to find the inverse of $\mathbf{Q}=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)$:

$$
\mathbf{Q}^{-1}=\frac{1}{2}\left(\begin{array}{rr}
2 & -1 \\
0 & 1
\end{array}\right)
$$

Substituting $\mathbf{Q}=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right), \mathbf{D}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$ and $\mathbf{Q}^{-1}=\frac{1}{2}\left(\begin{array}{rr}2 & -1 \\ 0 & 1\end{array}\right)$ into $\mathbf{A}^{m}=\mathbf{Q} \mathbf{D}^{m} \mathbf{Q}^{-1}$ with $m=5$ gives

$$
\begin{aligned}
\mathbf{A}^{5} & =\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)^{5} \frac{1}{2}\left(\begin{array}{rr}
2 & -1 \\
0 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1^{5} & 0 \\
0 & 3^{5}
\end{array}\right)\left(\begin{array}{rr}
2 & -1 \\
0 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & 243
\end{array}\right)\left(\begin{array}{rr}
2 & -1 \\
0 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 243 \\
0 & 486
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
2 & 242 \\
0 & 486
\end{array}\right)=\left(\begin{array}{ll}
1 & 121 \\
0 & 243
\end{array}\right)
\end{aligned}
$$

Hence $\mathbf{A}^{5}=\left(\begin{array}{ll}1 & 121 \\ 0 & 243\end{array}\right)$.
11. We have

$$
\begin{aligned}
& \mathbf{A u}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=0\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right) \\
& \mathbf{A v}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=0\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right) \\
& \mathbf{A w}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)=3\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

Hence the following are the eigenvalues and corresponding eigenvectors of \mathbf{A} :

$$
\lambda_{1}=0, \mathbf{u}=\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right), \lambda_{2}=0, \mathbf{v}=\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right) \text { and } \lambda_{3}=3, \mathbf{w}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

12. (a) The eigenvalues λ of $\mathbf{A}=\left[\begin{array}{ll}6 & 2 \\ 2 & 3\end{array}\right]$ are given by

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) & =\operatorname{det}\left[\begin{array}{cc}
6-\lambda & 2 \\
2 & 3-\lambda
\end{array}\right] \\
& =(6-\lambda)(3-\lambda)-4 \\
& =(\lambda-6)(\lambda-3)-4 \\
& =\lambda^{2}-9 \lambda+14=(\lambda-2)(\lambda-7)=0
\end{aligned}
$$

The eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=7$. Let \mathbf{u} be the eigenvector belonging to $\lambda_{1}=2$.

$$
\begin{aligned}
(\mathbf{A}-2 \mathbf{I}) \mathbf{u}= & {\left[\begin{array}{cc}
6-2 & 2 \\
2 & 3-2
\end{array}\right]\binom{x}{y} }
\end{aligned}=\binom{0}{0} .\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]\binom{x}{y}=\binom{0}{0} \text { gives } x=1 \text { and } y=-2
$$

Let \mathbf{v} be the eigenvector belonging to $\lambda_{2}=7$:

$$
\begin{aligned}
& (\mathbf{A}-7 \mathbf{I}) \mathbf{v}=\left[\begin{array}{cc}
6-7 & 2 \\
2 & 3-7
\end{array}\right]\binom{x}{y}=\binom{0}{0} \\
& \\
& \left.\qquad \begin{array}{rr}
-1 & 2 \\
2 & -4
\end{array}\right]\binom{x}{y}=\binom{0}{0} \text { gives } x=2 \text { and } y=1
\end{aligned}
$$

We have the eigenvalues and eigenvectors given by

$$
\lambda_{1}=2, \mathbf{u}=\binom{1}{-2} \text { and } \lambda_{2}=7, \mathbf{v}=\binom{2}{1}
$$

Note that since the given matrix \mathbf{A} is symmetric therefore the eigenvectors \mathbf{u} and \mathbf{v} are orthogonal.
(b) Let $\mathbf{A}=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$ then

$$
\mathbf{A} \vec{v}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
2 \\
2 \\
2 \\
-2
\end{array}\right]=2\left[\begin{array}{r}
1 \\
1 \\
1 \\
-1
\end{array}\right]=2 \vec{v}
$$

$$
\mathbf{A} \vec{w}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
5
\end{array}\right] \neq \lambda\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
2
\end{array}\right]
$$

Hence \vec{v} is an eigenvector belonging to an eigenvalue of 2 but \vec{w} is not an eigenvector of \mathbf{A}.
13. The eigenvalues and eigenvectors for the matrix $\mathbf{A}=\left[\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ can be evaluated by the usual procedure outlined above. We obtain the following:

$$
\lambda_{1}=1, \mathbf{u}=\left(\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right), \quad \lambda_{2}=2, \mathbf{v}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \text { and } \lambda_{3}=0, \mathbf{w}=\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)
$$

(b) The given matrix \mathbf{A} is diagonalizable because

$$
\mathbf{P}=\left(\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{w}
\end{array}\right)=\left(\begin{array}{rrr}
-1 & 0 & 1 \\
1 & 1 & -1 \\
1 & 1 & 0
\end{array}\right)
$$

Therefore $\operatorname{det}(\mathbf{P})=\operatorname{det}\left(\begin{array}{rrr}-1 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 0\end{array}\right)=-1$. Since $\operatorname{det}(\mathbf{P}) \neq 0$ therefore we can diagonalise matrix \mathbf{A}.

