Complete Solutions to Exercise 16(g)

1. (i) The mean $\mu=E(T)$ and the formula is given by

$$
\begin{aligned}
\mu=E(T)=\int_{0}^{10} t\left(\frac{t}{50}\right) d t & =\frac{1}{50} \int_{0}^{10}\left(t^{2}\right) d t \quad\left[\text { Taking out } \frac{1}{50}\right] \\
& =\frac{1}{50}\left[\frac{t^{3}}{3}\right]_{0}^{10} \quad[\text { Integrating }] \\
& =\frac{1}{150}\left[10^{3}-0^{3}\right]=6.67
\end{aligned}
$$

(ii) $E\left(T^{2}\right)$ can be evaluated by using the formula $E\left(T^{2}\right)=\int_{0}^{\infty} t^{2} f(t) d t$. We are given that $f(t)=\frac{t}{50}$ for t between 0 and 10 therefore

$$
\begin{aligned}
E\left(T^{2}\right)=\int_{0}^{10} t^{2}\left(\frac{t}{50}\right) d t & =\frac{1}{50} \int_{0}^{10}\left(t^{3}\right) d t \\
& =\frac{1}{50}\left[\frac{t^{4}}{4}\right]_{0}^{10}=\frac{1}{200}\left[10^{4}-0^{4}\right]=50
\end{aligned}
$$

(iii) The variance σ^{2} is given by the formula $\sigma^{2}=E\left(T^{2}\right)-\mu^{2}$. Substituting the results of parts (i) and (ii), $\mu=6.67$ and $E\left(T^{2}\right)=50$, into this formula:

$$
\sigma^{2}=E\left(T^{2}\right)-\mu^{2}=50-6.67^{2}=5.5111
$$

(iv) The probability that the waiting time is at most 5 minutes is given by

$$
\begin{aligned}
P(0 \leq T \leq 5)=\int_{0}^{5}\left(\frac{t}{50}\right) d t & =\frac{1}{50} \int_{0}^{5} t d t \\
& =\frac{1}{50}\left[\frac{t^{2}}{2}\right]_{0}^{5}=\frac{1}{100}\left[5^{2}-0^{2}\right]=\frac{25}{100}=\frac{1}{4}
\end{aligned}
$$

(v) Using the result of part (iv) we have that the probability of the waiting time is more than 5 minutes is $1-\frac{1}{4}=\frac{3}{4}$.
2. (a) The probability that the television breaks down within a year is given by

$$
\begin{aligned}
P(0 \leq T \leq 1) & =\int_{0}^{1} \frac{t^{3}}{2^{10}} d t \\
& =\frac{1}{2^{10}} \int_{0}^{1} t^{3} d t=\frac{1}{2^{10}}\left[\frac{t^{4}}{4}\right]_{0}^{1}=\frac{1}{4 \times 2^{10}}\left[1^{4}-0^{4}\right]=\frac{1}{4096}
\end{aligned}
$$

(b) Similarly the probability between the $1^{\text {st }}$ and $2^{\text {nd }}$ year is

$$
\begin{aligned}
P(1 \leq T \leq 2) & =\int_{1}^{2} \frac{t^{3}}{2^{10}} d t \\
& =\frac{1}{2^{10}} \int_{1}^{2} t^{3} d t=\frac{1}{2^{10}}\left[\frac{t^{4}}{4}\right]_{1}^{2}=\frac{1}{4 \times 2^{10}}\left[2^{4}-1^{4}\right]=\frac{15}{4096}
\end{aligned}
$$

(c) The probability of the television breaking down after 6 years is $P(6 \leq T \leq 8)$ because the television does not last more than 8 years. Thus we have

$$
\begin{aligned}
P(6 \leq T \leq 8) & =\int_{6}^{8} \frac{t^{3}}{2^{10}} d t \\
& =\frac{1}{2^{10}} \int_{6}^{8} t^{3} d t=\frac{1}{2^{10}}\left[\frac{t^{4}}{4}\right]_{6}^{8}=\frac{1}{4 \times 2^{10}}\left[8^{4}-6^{4}\right]=\frac{2800}{4096}=\frac{175}{256}
\end{aligned}
$$

(d) The probability that the television breaks down within 2 years or after 6 years is given by adding the answers to parts (a), (b) and (c). We have

$$
\begin{aligned}
P(0 \leq T \leq 2 \text { or } 6 \leq T \leq 8) & =P(0 \leq T \leq 2)+P(6 \leq T \leq 8) \\
& =P(0 \leq T \leq 1)+P(1 \leq T \leq 2)+P(6 \leq T \leq 8) \\
& =\frac{1}{4096}+\frac{15}{4096}+\frac{2800}{4096}=\frac{2816}{4096}=\frac{11}{16}
\end{aligned}
$$

3. (a) The mean time for completion $\mu=E(T)=\int_{0}^{\infty} t f(t) d t$ with $f(t)=\frac{t}{48}\left(1-\frac{t}{24}\right)$:

$$
\begin{aligned}
\mu=E(T) & =\int_{0}^{12} t \frac{t}{48}\left(1-\frac{t}{24}\right) d t \\
& =\frac{1}{48} \int_{0}^{12} t^{2}\left(\frac{24-t}{24}\right) d t \\
& =\frac{1}{48 \times 24} \int_{0}^{12}\left(24 t^{2}-t^{3}\right) d t \\
& =\frac{1}{1152}\left[8 t^{3}-\frac{t^{4}}{4}\right]_{0}^{12}=\frac{1}{1152}\left[8(12)^{3}-\frac{12^{4}}{4}\right]=\frac{8640}{1152}=7 \frac{1}{2}
\end{aligned}
$$

The means time for completion is $7 \frac{1}{2}$ hours.
(b) We evaluate $E\left(T^{2}\right)=\int_{0}^{\infty} t^{2} f(t) d t$ with $f(t)=\frac{t}{48}\left(1-\frac{t}{24}\right)$ and limits 0,12 :

$$
\begin{aligned}
E\left(T^{2}\right) & =\int_{0}^{12} t^{2} \frac{t}{48}\left(1-\frac{t}{24}\right) d t \\
& =\frac{1}{48} \int_{0}^{12} t^{3}\left(\frac{24-t}{24}\right) d t \\
& =\frac{1}{48 \times 24} \int_{0}^{12}\left(24 t^{3}-t^{4}\right) d t \\
& =\frac{1}{1152}\left[6 t^{4}-\frac{t^{5}}{5}\right]_{0}^{12}=\frac{1}{1152}\left[6(12)^{4}-\frac{12^{5}}{5}\right]=64 \frac{4}{5}
\end{aligned}
$$

(c) The variance is given by the formula $\sigma^{2}=E\left(T^{2}\right)-\mu^{2}$. By substituting our answers from parts (a) and (b), $\mu=7 \frac{1}{2}$ and $E\left(T^{2}\right)=64 \frac{4}{5}$ into this formula we have

$$
\sigma^{2}=E\left(T^{2}\right)-\mu^{2}=64 \frac{4}{5}-\left(7 \frac{1}{2}\right)^{2}=8 \frac{11}{20}
$$

13. (i) The mean $\mu=E(T)$ which means that

$$
\begin{aligned}
\mu=E(T) & =\int_{a}^{b} t\left(\frac{1}{b-a}\right) d t \\
& =\frac{1}{b-a} \int_{a}^{b} t d t \quad \quad\left[\text { Taking out } \frac{1}{b-a}\right] \\
& =\frac{1}{b-a}\left[\frac{t^{2}}{2}\right]_{a}^{b} \quad[\text { Integrating }] \\
& =\frac{1}{2(b-a)}\left[b^{2}-a^{2}\right]=\frac{1}{2(b-a)}[(b-a)(b+a)]=\frac{b+a}{2}
\end{aligned}
$$

This is our required result.
(ii) To find the standard deviation we first determine the variance σ^{2} and then take the square root:

$$
\begin{aligned}
\sigma^{2} & =E\left(T^{2}\right)-\mu^{2} \\
& =E\left(T^{2}\right)-\left(\frac{a+b}{2}\right)^{2} \quad\left[\text { Because by part (i) } \quad \mu=\frac{a+b}{2}\right]
\end{aligned}
$$

We need to determine $E\left(T^{2}\right)$.

$$
\begin{aligned}
E\left(T^{2}\right) & =\int_{a}^{b} t^{2}\left(\frac{1}{b-a}\right) d t \\
& =\frac{1}{b-a} \int_{a}^{b}\left(t^{2}\right) d t \quad\left[\text { Taking out } \frac{1}{b-a}\right] \\
& =\frac{1}{b-a}\left[\frac{t^{3}}{3}\right]_{a}^{b} \quad[\text { Integrating }] \\
& =\frac{1}{3(b-a)}\left[b^{3}-a^{3}\right] \\
& =\frac{1}{3(b-a)}\left[(b-a)\left(b^{2}+a b+a^{2}\right)\right]=\frac{b^{2}+a b+a^{2}}{3} \quad[\text { Cancelling } b-a]
\end{aligned}
$$

Substituting $E\left(T^{2}\right)=\frac{b^{2}+a b+a^{2}}{3}$ into $\sigma^{2}=E\left(T^{2}\right)-\left(\frac{a+b}{2}\right)^{2}$ gives

$$
\begin{array}{rlr}
\sigma^{2} & =\frac{b^{2}+a b+a^{2}}{3}-\left(\frac{a+b}{2}\right)^{2} & \\
& =\frac{b^{2}+a b+a^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} &
\end{array} \begin{aligned}
& {\left[\begin{array}{l}
\text { Expanding brackets } \\
(a+b)^{2}=a^{2}+2 a b+b^{2}
\end{array}\right]} \\
& \\
&
\end{aligned}{\frac{4 b^{2}+4 a b+4 a^{2}-3 a^{2}-6 a b-3 b^{2}}{12}} \quad \begin{array}{ll}
{[\text { Common denominator }]} \\
& \frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
\end{array}
$$

Taking the square root of this gives $\sigma=\sqrt{\frac{(b-a)^{2}}{12}}=\frac{b-a}{\sqrt{12}}$.

