Solutions to Miscellaneous Exercise 7

1.

The volume $=100 \mathrm{~m}^{3}$. So

$$
\begin{align*}
& 2 x y=100 \\
& y=\frac{100}{2 x}=\frac{50}{x} \tag{*}
\end{align*}
$$

The surface area, A, consists of the bottom part, 2 sides, the front and the back. Thus

$$
\begin{array}{r}
A=\underbrace{2 x}_{\text {botom }}+\underbrace{(2 y+2 y)}_{\text {front and back }}+\underbrace{(x y+x y)}_{\text {both sides }}=2 x+4 y+2 x y \underbrace{=}_{\substack{\text { sulsstituting } \\
\left.\text { fiom }()^{\prime}\right)}} 2 x+4\left(\frac{50}{x}\right)+2 x\left(\frac{50}{x}\right) \\
A=2 x+\frac{200}{x}+100=2 x+200 x^{-1}+100
\end{array}
$$

For stationary points:

$$
\begin{aligned}
& \frac{d A}{d x}=2-200 x^{-2}=0 \\
& 2=200 x^{-2}=\frac{200}{x^{2}} \\
& x^{2}=\frac{200}{2}=100
\end{aligned}
$$

How can we find x ?
Take the square root of both sides: $x=\sqrt{100}=+10,-10$
Since x is length it cannot be -10 . So $x=10 \mathrm{~m}$.
To check that $x=10 \mathrm{~m}$ gives minimum surface area we have to differentiate again:

$$
\begin{aligned}
& \frac{d A}{d x}=2-200 x^{-2} \\
& \frac{d^{2} A}{d x^{2}}=400 x^{-3}=\frac{400}{x^{3}}>0 \quad(\text { because } x>0)
\end{aligned}
$$

By (7.3), $x=10 \mathrm{~m}$ gives minimum surface area. What is the value of y ?
We can find y from $\left(^{*}\right.$) by substituting $x=10: y=50 / 10=5 \mathrm{~m}$.
Thus $x=10 \mathrm{~m}, y=5 \mathrm{~m}$ gives minimum surface area.
2. Let x and y represent the dimensions as shown below:

The perimeter of the cross section is $4 x$ so

$$
\begin{align*}
& 4 x+y=2 \\
& y=2-4 x \tag{*}
\end{align*}
$$

The volume, v, of the parcel is given by

$$
v=x^{2} y=x^{2}(2-4 x)=2 x^{2}-4 x^{3}
$$

$$
\begin{equation*}
A^{\prime}=0, A^{\prime \prime}>0 \text { minimum } \tag{7.3}
\end{equation*}
$$

To find stationary points

$$
\frac{d v}{d x}=4 x-12 x^{2}=0,4 x(1-3 x)=0 \text { which gives } x=0, \quad x=1 / 3
$$

$x=0 \mathrm{~m}$ is not a feasible solution, why not?
If $x=0 \mathrm{~m}$ then we will not have a parcel. For $x=1 / 3 \mathrm{~m}$, we can use the second derivative test:

$$
\frac{d^{2} v}{d x^{2}}=4-24 x
$$

Substituting $x=\frac{1}{3}$ gives $\frac{d^{2} v}{d x^{2}}=4-8=-4<0$. By (7.2), $x=\frac{1}{3} \mathrm{~m}$ gives maximum volume. To find y we substitute $x=1 / 3$ into (*):

$$
y=2-\frac{4}{3}=\frac{2}{3}
$$

Hence $x=1 / 3 \mathrm{~m}, y=2 / 3 \mathrm{~m}$ gives maximum volume.
3. Similar to solution 2 . Let L represent the sum of length and girth.

$$
\begin{align*}
4 x+y & =L \\
y & =L-4 x
\end{align*}
$$

The volume v is given by

$$
\begin{gathered}
v=x^{2} y=x^{2}(L-4 x) \\
v=L x^{2}-4 x^{3} \\
\frac{d v}{d x}=2 L x-12 x^{2}=0,2 x(L-6 x)=0 \text { gives } x=0, x=L / 6
\end{gathered}
$$

As before $x=L / 6$. Differentiating again:

$$
\frac{d^{2} v}{d x^{2}}=2 L-24 x
$$

At $x=\frac{L}{6}, \frac{d^{2} v}{d x^{2}}=2 L-24\left(\frac{L}{6}\right)=2 L-4 L=-2 L<0 \quad$ [Negative]
By (7.2), $x=L / 6$ gives maximum volume. Substituting $x=L / 6$ into (\dagger) : $y=L-\frac{4 \cdot L}{6}=\frac{2 L}{6}=2 x$. Hence the length is twice the side of the square.
4. We have

$$
\begin{aligned}
& w=-36 x^{2}+50 x \\
& \frac{d w}{d x}=-72 x+50=0,72 x=50 \text { gives } x=\frac{50}{72}=\frac{25}{36} \mathrm{~m} \\
& \frac{d^{2} w}{d x^{2}}=-72<0 \quad \text { [Negative] }
\end{aligned}
$$

By (7.2) at $x=25 / 36 \mathrm{~m}$ the loading is maximum .
5.

$$
\begin{align*}
& y=\frac{1}{12 \times 10^{3}}\left(x^{4}-14 x^{3}+36 x^{2}\right) \tag{*}\\
& \frac{d y}{d x}=\frac{1}{12 \times 10^{3}}\left(4 x^{3}-42 x^{2}+72 x\right)
\end{align*}
$$

(7.2)

$$
y^{\prime}=0, y^{\prime \prime}<0 \text { maximum }
$$

For stationary points we have

$$
\begin{aligned}
& \frac{2 x}{12 \times 10^{3}}\left(2 x^{2}-21 x+36\right)=0 \\
& x=0 \text { or } 2 x^{2}-21 x+36=0
\end{aligned}
$$

We solve the quadratic by putting $a=2, b=-21$ and $c=36$ into (1.16), which gives:

$$
x=\frac{21 \pm \sqrt{(-21)^{2}-(4 \times 2 \times 36)}}{4}=2.16 \mathrm{~m} \text { or } 8.34 \mathrm{~m}
$$

x cannot be 8.34 m because the beam is only 3 m long so $x=2.16 \mathrm{~m}$. To check the nature of the stationary point we need to differentiate again:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{12 \times 10^{3}}\left(4 x^{3}-42 x^{2}+72 x\right) \\
& \frac{d^{2} y}{d x^{2}}=\frac{1}{12 \times 10^{3}}\left(12 x^{2}-84 x+72\right) \underset{\substack{\text { takiny outat } \\
\text { factor of 12 }}}{=} \frac{12}{12 \times 10^{3}}\left(x^{2}-7 x+6\right)=\left(x^{2}-7 x+6\right) \times 10^{-3}
\end{aligned}
$$

At $x=2.16, \frac{d^{2} y}{d x^{2}}=\left(2.16^{2}-(7 \times 2.16)+6\right) \times 10^{-3}=-4.45 \times 10^{-3}<0 \quad$ [Negative]
By (7.2), $x=2.16 \mathrm{~m}$ gives maximum deflection. To find the maximum deflection we substitute $x=2.16$ into (*):

$$
y=\frac{1}{12 \times 10^{3}}\left[2.16^{4}-\left(14 \times 2.16^{3}\right)+\left(36 \times 2.16^{2}\right)\right]=4.05 \times 10^{-3} \mathrm{~m}
$$

6 . We have $x=2.5 \sin (2 \theta)$. For stationary points:

$$
\begin{aligned}
& \frac{d x}{d \theta}=5 \cos (2 \theta)=0 \\
& \quad \cos (2 \theta)=0,2 \theta=\cos ^{-1}(0)=\frac{\pi}{2} \text { gives } \theta=\frac{\pi}{4}
\end{aligned}
$$

Using the second derivative test:

$$
\frac{d^{2} x}{d \theta^{2}}=-10 \sin (2 \theta) \quad\left[\operatorname{By} \frac{d}{d \theta}[\cos (k \theta)]=-k \sin (k \theta)\right]
$$

At $\theta=\frac{\pi}{4}, \frac{d^{2} x}{d \theta^{2}}=-10 \sin \left(2 \times \frac{\pi}{4}\right)=-10<0$.
By (7.2), when $\theta=\pi / 4$ the horizontal distance x is a maximum.
7. Similar to solution 6. We can rewrite x as:

$$
x=\frac{u^{2}}{2 \times 25}[2 \sin (\theta) \cos (\theta)]=\frac{u^{2}}{50} \underbrace{\sin (2 \theta)}_{\text {by (4.53) }}
$$

Differentiating with respect to θ gives:

$$
\frac{d x}{d \theta}=\frac{u^{2}}{50} 2 \cos (2 \theta)=\frac{u^{2}}{25} \cos (2 \theta)
$$

By solution 6 we have a stationary point at $\theta=\pi / 4$.

$$
\begin{align*}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}\\
& 2 \sin (x) \cos (x)=\sin (2 x) \tag{4.53}\\
& y^{\prime}=0, y^{\prime \prime}<0 \text { maximum } \tag{7.2}
\end{align*}
$$

To show that $\theta=\pi / 4$ gives maximum:

$$
\begin{aligned}
& \frac{d x}{d \theta}=\frac{u^{2}}{25} \cos (2 \theta) \\
& \frac{d^{2} x}{d \theta^{2}}=\frac{u^{2}}{25}[-2 \sin (2 \theta)] \quad\left(\text { By } \frac{d}{d \theta}(\cos (k \theta))=-k \sin (k \theta)\right)
\end{aligned}
$$

At $\theta=\frac{\pi}{4}, \frac{d^{2} x}{d \theta^{2}}=-\frac{2 u^{2}}{25} \underbrace{\sin \left(2 \times \frac{\pi}{4}\right)}_{=1}=-\frac{2 u^{2}}{25}<0 \quad$ [Negative]
By (7.2), $\theta=\pi / 4$ gives maximum x.
8 . We have $s=2-t e^{-t}$. The velocity, v, is found by differentiating:

$$
\begin{aligned}
& v=\frac{d s}{d t}=0-\underbrace{\left[e^{-t}+t\left(-e^{-t}\right)\right]}_{\text {by (6.31) }}=-e^{-t}(1-t) \\
& v=(t-1) e^{-t}
\end{aligned}
$$

We need to differentiate v with respect to t to find the acceleration, a.

$$
\begin{aligned}
a=\frac{d v}{d t} & \underset{\text { by }}{\text { (6.31) }} \\
& =e^{-t}(t-1)+e^{-t}(1) \\
& =e^{-t}(2-t+1+1]
\end{aligned}
$$

The graph $v=e^{-t}(t-1)$ cuts the v axis at $t=0$, therefore substituting $t=0$

$$
v=e^{0}(0-1)=-e^{0}=-1
$$

Also $v=e^{-t}(t-1)$ cuts the t axis at $v=0$,

$$
e^{-t}(t-1)=0, t-1=0 \text { gives } t=1
$$

The graph v goes through $(0,-1)$ and $(1,0)$. What happens to $v=e^{-t}(t-1)$ as $t \rightarrow \infty$?
As $t \rightarrow \infty, v \rightarrow 0$ because e^{-t} is decaying as t increases.
What else can we discover about the graph?
Any stationary points and their nature.

$$
\begin{gathered}
v=e^{-t}(t-1) \\
\frac{d v}{d t}=a=(2-t) e^{-t}=0 \text { gives } t=2
\end{gathered}
$$

There is a stationary point at $t=2$. To identify the nature of stationary point we differentiate again

$$
\frac{d^{2} v}{d t^{2}} \underset{\text { by }(6.31)}{=}(-1) e^{-t}+(2-t)\left(-e^{-t}\right)=(t-3) e^{-t}
$$

At $t=2, \frac{d^{2} v}{d t^{2}}=(2-3) e^{-2}=-e^{-2}<0$. By (7.2), at $t=2, v$ has a maximum. The maximum value $=e^{-2}(2-1)=e^{-2}$. Also $\frac{d^{2} v}{d t^{2}}=0$ when $t=3$. Hence there is a general point of inflexion at $t=3$ when $v=2 e^{-3}$. We have

$$
\begin{equation*}
(u v)^{\prime}=u^{\prime} v+u v^{\prime} \tag{6.31}
\end{equation*}
$$

9. From chapter 5 we know the exponential function is never zero, so $v=4 e^{-50 t^{2}} \neq 0$ for any values of t. However as $t \rightarrow \pm \infty, v \rightarrow 0$ because the exponential function, $e^{-50 t^{2}}$, decays as $t \rightarrow \pm \infty$. We can find the stationary points: $v=4 e^{-50 t^{2}}$

$$
\frac{d v}{d t}=4 e^{-50 t^{2}}(-100 t)=-400 t e^{-50 t^{2}}=0 \text { gives } t=0
$$

Substituting $t=0, v=4 e^{0}=4$. Hence $(0,4)$ is the stationary point of $v=4 e^{-50 t^{2}}$. What about the nature of the stationary point?
We can use first derivative test: $\frac{d v}{d t}=-400 t e^{-50 t^{2}}$ If $t<0$ then $\frac{d v}{d t}>0$ because the exponential part $e^{-50 t^{2}}$ is positive and we have -400 multiplied by another negative, t, which gives a positive answer.
If $t>0$ then $\frac{d v}{d t}<0$. By (7.7) the stationary point $(0,4)$ is a maximum of v.
To find general points of inflexion, we must differentiate again:

$$
\begin{aligned}
\frac{d^{2} v}{d t^{2}} & =-400\left(\frac{d}{d t}\left[t e^{-50 t^{2}}\right]\right) \\
& =-400\left[e^{-50 t^{2}}-100 t^{2} e^{-50 t^{2}}\right]
\end{aligned}
$$

For inflexion, $\frac{d^{2} v}{d t^{2}}=-400 e^{-50 t^{2}}\left[1-100 t^{2}\right]=0$ gives $t^{2}=\frac{1}{100}, t= \pm \frac{1}{10}$. Hence

10. We have

$$
R=\frac{\ln \left(t / t_{1}\right)}{2 \pi k}+\frac{1}{2 \pi t h}=\frac{1}{2 \pi}\left[\frac{1}{k} \ln \left(\frac{t}{t_{1}}\right)+\frac{t^{-1}}{h}\right] \quad \text { (Factorizing) }
$$

For stationary points we need to differentiate R with respect to t :

$$
\begin{aligned}
\frac{d R}{d t} & =\frac{1}{2 \pi}\left[\frac{1}{k} \cdot \frac{1}{t / t_{1}} \cdot\left(\frac{1}{t_{1}}\right)-\frac{t^{-2}}{h}\right] \\
& =\frac{1}{2 \pi}\left[\frac{1}{k} \cdot \frac{1}{t}-\frac{1}{t^{2} h}\right] \quad \text { (Cancelling } t^{\prime} \mathrm{s} \text {) }
\end{aligned}
$$

For stationary points we need $\frac{d R}{d t}=0$, thus

$$
\begin{aligned}
& \frac{1}{k t}-\frac{1}{t^{2} h}=0 \quad\left(\text { because } \frac{1}{2 \pi} \text { cannot be zero }\right) \\
& \frac{1}{k t}=\frac{1}{t^{2} h} \text { gives } t=\frac{k}{h} \text { [Transposing] }
\end{aligned}
$$

So thickness $t=k / h$ gives a stationary point. How do we show this value gives minimum R ? Use the second derivative test:

$$
\begin{aligned}
\frac{d R}{d t}=\frac{1}{2 \pi}\left[\frac{1}{k t}-\frac{1}{t^{2} h}\right] & =\frac{1}{2 \pi}\left[\frac{t^{-1}}{k}-\frac{t^{-2}}{h}\right] \\
\frac{d^{2} R}{d t^{2}} & =\frac{1}{2 \pi}\left[\frac{-t^{-2}}{k}+\frac{2 t^{-3}}{h}\right]=\frac{1}{2 \pi}\left[-\frac{1}{k t^{2}}+\frac{2}{t^{3} h}\right]
\end{aligned}
$$

Substituting $t=k / h$:

$$
\begin{aligned}
\frac{d^{2} R}{d t^{2}} & =\frac{1}{2 \pi}\left[-\frac{1}{k(k / h)^{2}}+\frac{2}{(k / h)^{3} h}\right] \\
& =\frac{1}{2 \pi}\left[-\frac{h^{2}}{k^{3}}+\frac{2 h^{2}}{k^{3}}\right] \\
& =\frac{1}{2 \pi}\left[\frac{h^{2}}{k^{3}}\right]>0 \quad(\text { since } k>0)
\end{aligned}
$$

Hence by (7.3), thickness $t=k / h$ gives minimum resistance R.
11. We have $\alpha=\frac{n^{2}+12}{3-n}$. How do we differentiate this?

You can apply long division to rewrite α or use the quotient rule (6.32):

$$
\begin{align*}
& u=n^{2}+12 \\
& \begin{aligned}
u^{\prime} & =2 n \\
\frac{d \alpha}{d n} & =\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \\
& =\frac{2 n(3-n)+\left(n^{2}+12\right)}{(3-n)^{2}} \\
& =\frac{6 n-2 n^{2}+n^{2}+12}{(3-n)^{2}} \\
& =\frac{12+6 n-n^{2}}{(3-n)^{2}}
\end{aligned}
\end{align*}
$$

$(u / v)^{\prime}=\left(u^{\prime} v-u v^{\prime}\right) / v^{2}$
$R^{\prime}=0, R^{\prime \prime}>0$ minimum

For $\frac{d \alpha}{d n}=0, \quad 12+6 n-n^{2}=0 \quad$ [Numerator=0]
Multiplying by -1 gives the quadratic $n^{2}-6 n-12=0$ How do we solve this?
Substituting $a=1, b=-6$ and $c=-12$ into the quadratic formula:

$$
\begin{aligned}
n & =\frac{6 \pm \sqrt{36+(4 \times 12)}}{2} \\
& =7.58 \text { or }-1.58
\end{aligned}
$$

Hence $n=7.58$ (cannot have a negative gear ratio).
How can we show $n=7.58$ gives maximum acceleration, α ?
Use the first derivative test:

$$
\frac{d \alpha}{d n}=\frac{12+6 n-n^{2}}{(3-n)^{2}}
$$

We only need to examine the sign of the numerator because the denominator is positive.
If $n>7.58$, try $n=8$, then $12+(6 \times 8)-8^{2}=-4<0$
If $n<7.58$, try $n=7$, then $12+(6 \times 7)-7^{2}=5>0$
By (7.7), $n=7.58$ gives maximum acceleration.
12. Replacing e^{x} with the Maclaurin series expansion of (7.15) we have:

$$
\begin{aligned}
\frac{e^{x}-1}{x} & =\frac{\left(1+x+x^{2} / 2!+x^{3} / 3!+\ldots\right)-1}{x} \\
& =\frac{x+x^{2} / 2!+x^{3} / 3!+\ldots}{x} \\
& =\frac{x\left(1+x / 2!+x^{2} / 3!+\ldots\right)}{x} \\
& =1+\frac{x}{2!}+\frac{x^{2}}{3!}+\ldots
\end{aligned}
$$

So $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=\lim _{x \rightarrow 0}\left(1+\frac{x}{2!}+\frac{x^{2}}{3!}+\ldots\right)=1$
13. The gradient, m, of the tangent is evaluated by differentiating $y=\sin ^{2}(x)$:

$$
\frac{d y}{d x}=2 \sin (x) \cos (x)
$$

At $x=\frac{\pi}{4}, \frac{d y}{d x}=2 \sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)=1$. Hence $m=1$. Equation of tangent is of the form $y=x+c$. How can we find c ?
At $x=\frac{\pi}{4}, y=\left[\sin \left(\frac{\pi}{4}\right)\right]^{2}=\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{1}{2}$, so the tangent goes through $x=\frac{\pi}{4}, y=\frac{1}{2}$.
Substituting these gives:

$$
\begin{equation*}
e^{x}=1+x+x^{2} / 2!+x^{3} / 3!+\ldots \tag{7.15}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{1}{2}=\frac{\pi}{4}+c \\
& c=\frac{1}{2}-\frac{\pi}{4}=\frac{2}{4}-\frac{\pi}{4}=\frac{1}{4}(2-\pi)
\end{aligned}
$$

Therefore the equation of the tangent is $y=x+\frac{1}{4}(2-\pi)$. How do we find the equation of the normal?
The gradient of the normal $=-1$ so the equation of the normal is of the form:

$$
y=-x+c_{1} \quad(* *)
$$

The normal also goes through the point $x=\frac{\pi}{4}, y=\frac{1}{2}$. So

$$
\frac{1}{2}=-\frac{\pi}{4}+c_{1} \text { gives } c_{1}=\frac{1}{2}+\frac{\pi}{4}=\frac{2}{4}+\frac{\pi}{4}=\frac{1}{4}(2+\pi)
$$

Substituting $c_{1}=\frac{1}{4}(2+\pi)$ into ($\left.{ }^{* *}\right)$ gives:

$$
y=-x+\frac{1}{4}(2+\pi)=\frac{1}{4}(2+\pi)-x
$$

14. We need to differentiate $v=k x \ln \left(\frac{1}{x}\right)$, how?

First we can rewrite v as follows:

$$
\begin{aligned}
v & =k x \ln \left(\frac{1}{x}\right) \\
& =k x \ln \left(x^{-1}\right)=-k x \ln (x)
\end{aligned}
$$

We can differentiate v by using the product rule, (6.31):

$$
\begin{array}{cc}
u=x & w=\ln (x) \\
u^{\prime}=1 & w^{\prime}=1 / x
\end{array}
$$

Applying (6.31)

$$
\frac{d v}{d x}=-k\left[1 \cdot \ln (x)+x\left(\frac{1}{x}\right)\right]=-k[\ln (x)+1]
$$

For stationary points this is zero, therefore

$$
\begin{aligned}
& -k[\ln (x)+1]=0 \\
& \ln (x)+1=0 \quad(\text { because } k>0) \\
& \ln (x)=-1
\end{aligned}
$$

How can we find x from $\ln (x)=-1$?
Taking exponential of both sides gives $x=e^{-1}$.
Differentiate again to find whether this value, $x=e^{-1}$, gives maximum velocity.

$$
\begin{aligned}
& \frac{d v}{d x}=-k[\ln (x)+1] \\
& \frac{d^{2} v}{d x^{2}}=-k\left(\frac{1}{x}\right)=-\frac{k}{x}
\end{aligned}
$$

$$
\begin{equation*}
(u w)^{\prime}=u^{\prime} w+u w^{\prime} \tag{6.31}
\end{equation*}
$$

Substituting $x=e^{-1}$ gives $\frac{d^{2} v}{d x^{2}}=-\frac{k}{e^{-1}}<0$ because k and e^{-1} are both positive. By (7.2) the maximum velocity occurs at $x=e^{-1}$.
15. Substituting $i=5 e^{-500 t}$ and $L=2 \times 10^{-3}$ into v gives

$$
\begin{aligned}
v & =\left(2 \times 10^{-3}\right) \frac{d}{d t}\left(5 e^{-500 t}\right) \\
& =\left(2 \times 10^{-3}\right)\left(-500 \times 5 e^{-500 t}\right) \\
& =\left(2 \times 10^{-3}\right)(-2500) e^{-500 t} \\
& =-5 e^{-500 t}
\end{aligned}
$$

As $t \rightarrow \infty, i \rightarrow 0$ because exponential function, $e^{-500 t}$, goes to zero. We also know it is a decaying graph because of the negative sign in front of the $500 t$. What about stationary points:

$$
i=5 e^{-500 t}, \frac{d i}{d t}=-2500 e^{-500 t}
$$

Putting this to zero gives $-2500 e^{-500 t}=0$. Where is this function zero?
This function cannot be zero for any real values of t because it is the exponential function so there are no stationary points.
At $t=0, i=5 e^{0}=5$. Thus we have:

16. Rewriting F we have:

$$
\begin{gathered}
F=\frac{I r^{2}}{2}\left(x^{2}+r^{2}\right)^{-3 / 2} \\
\frac{d F}{d x}=\frac{I r^{2}}{2}\left(-\frac{3}{2}\right)\left(x^{2}+r^{2}\right)^{-5 / 2}(2 x)=-\frac{3 I r^{2}}{2} x\left(x^{2}+r^{2}\right)^{-5 / 2} \\
\frac{d F}{d x}=-\frac{3 I r^{2}}{2} \frac{x}{\left(x^{2}+r^{2}\right)^{5 / 2}}
\end{gathered}
$$

Points of inflexion occurs at $\frac{d^{2} F}{d x^{2}}=0$, so we need to differentiate again, how?
Use the quotient rule (6.32) with:

$$
\begin{array}{ll}
u=x & v=\left(x^{2}+r^{2}\right)^{5 / 2} \\
u^{\prime}=1 & v^{\prime}=\frac{5}{2}\left(x^{2}+r^{2}\right)^{3 / 2} 2 x=5 x\left(x^{2}+r^{2}\right)^{3 / 2}
\end{array}
$$

$$
\begin{align*}
& \left(\frac{u}{v}\right)^{\prime}=\frac{\left(u^{\prime} v-u v^{\prime}\right)}{v^{2}} \tag{6.32}\\
& v^{\prime}=0, v^{\prime \prime}<0 \text { maximum } \tag{7.2}
\end{align*}
$$

$$
\begin{gather*}
\frac{d^{2} F}{d x^{2}}=-\frac{3 I r^{2}}{2}\left[\frac{\left(x^{2}+r^{2}\right)^{5 / 2}-5 x\left(x^{2}+r^{2}\right)^{3 / 2} x}{\left[\left(x^{2}+r^{2}\right)^{5 / 2}\right]^{2}}\right] \\
\frac{d^{2} F}{d x^{2}}=-\frac{3 I r^{2}}{2}\left[\frac{\left(x^{2}+r^{2}\right)^{5 / 2}-5 x^{2}\left(x^{2}+r^{2}\right)^{3 / 2}}{\left(x^{2}+r^{2}\right)^{5}}\right]
\end{gather*}
$$

Putting this to zero gives that the numerator is zero:

$$
-\frac{3 I r^{2}}{2}\left[\left(x^{2}+r^{2}\right)^{5 / 2}-5 x^{2}\left(x^{2}+r^{2}\right)^{3 / 2}\right]=0
$$

This can only occur if the terms inside the square brackets are zero because the current $I \neq 0$ and radius $r \neq 0$.

$$
\left(x^{2}+r^{2}\right)^{5 / 2}-5 x^{2}\left(x^{2}+r^{2}\right)^{3 / 2}=0
$$

Factorizing:

$$
\left(x^{2}+r^{2}\right)^{3 / 2}\left[\left(x^{2}+r^{2}\right)-5 x^{2}\right]=0
$$

Again only the square brackets term can be zero because $\left(x^{2}+r^{2}\right)^{3 / 2} \neq 0$ (all terms are squared and no negative sign).

$$
\left(x^{2}+r^{2}\right)-5 x^{2}=0 \text { implies } r^{2}-4 x^{2}=0 \text { which gives } x= \pm \frac{r}{2}
$$

Since x is distance, $x=\frac{r}{2}$. We need to check for change of sign of $\frac{d^{2} F}{d x^{2}}$. If $x<\frac{r}{2}$ then $r^{2}-4 x^{2}>0$, hence $\frac{d^{2} F}{d x^{2}}<0$ because there is a negative sign outside the square brackets in (\dagger).
If $x>\frac{r}{2}$ then $r^{2}-4 x^{2}<0$, hence $\frac{d^{2} F}{d x^{2}}>0$. At $x=\frac{r}{2}$ we have a uniform field.
17. How can we differentiate η with respect to x ?

Use the quotient rule (6.32) with

$$
\begin{array}{ll}
u=x s \cos (\phi) & v=L_{i}+x s \cos (\phi)+x^{2} L_{c} \\
u^{\prime}=s \cos (\phi) & v^{\prime}=s \cos (\phi)+2 x L_{c}
\end{array}
$$

Substituting these into (6.32) gives:

$$
\begin{align*}
& \frac{d \eta}{d x}=\frac{s \cos (\phi)\left(L_{i}+x s \cos (\phi)+x^{2} L_{c}\right)-x s \cos (\phi)\left(s \cos (\phi)+2 x L_{c}\right)}{\left(L_{i}+x s \cos (\phi)+x^{2} L_{c}\right)^{2}} \\
&=\frac{L_{i} s \cos (\phi)+x s^{2} \cos ^{2}(\phi)+x^{2} L_{c} s \cos (\phi)-x s^{2} \cos ^{2}(\phi)-2 x^{2} s L_{c} \cos (\phi)}{\left(L_{i}+x s \cos (\phi)+x^{2} L_{c}\right)^{2}} \\
&=\frac{L_{i} s \cos (\phi)-x^{2} s L_{c} \cos (\phi)}{\left(L_{i}+x s \cos (\phi)+x^{2} L_{c}\right)^{2}} \\
& \frac{d \eta}{d x}=\frac{s \cos (\phi)\left(L_{i}-x^{2} L_{c}\right)}{\left(L_{i}+x s \cos (\phi)+x^{2} L_{c}\right)^{2}} \\
& \quad(u / v)^{\prime}=\left(u^{\prime} v-u v^{\prime}\right) / v^{2} \tag{6.32}
\end{align*}
$$

For stationary point $\frac{d \eta}{d x}=0$, hence the numerator $=0$. Since $s \cos (\phi)>0$ we have

$$
\begin{gathered}
L_{i}-x^{2} L_{c}=0 \\
L_{i}=x^{2} L_{c}, x^{2}=\frac{L_{i}}{L_{c}} \text { gives } x=\sqrt{\frac{L_{i}}{L_{c}}}
\end{gathered}
$$

How can we show that this value of x gives maximum efficiency?
Use the first derivative test (7.7):

$$
\frac{d \eta}{d x}=\frac{s \cos (\phi)\left(L_{i}-x^{2} L_{c}\right)}{\left(L_{i}+x s \cos (\phi)+x^{2} L_{c}\right)^{2}}
$$

We only need to examine the term $L_{i}-x^{2} L_{c}$ because the other terms are positive.
If $x<\sqrt{\frac{L_{i}}{L_{c}}}$ then $x^{2}<\frac{L_{i}}{L_{c}}$ so $L_{i}-x^{2} L_{c}>0$ and $\frac{d \eta}{d x}>0$
If $x>\sqrt{\frac{L_{i}}{L_{c}}}$ then $x^{2}>\frac{L_{i}}{L_{c}}$ so $L_{i}-x^{2} L_{c}<0$ and $\frac{d \eta}{d x}<0$
By (7.7), $x=\sqrt{\frac{L_{i}}{L_{c}}}$ gives maximum efficiency.
18.(i) Let $f(x)=\sinh (x)$ then

$$
\begin{array}{ll}
f(x)=\sinh (x) & f(0)=\sinh (0)=0 \\
f^{\prime}(x)=\cosh (x) & f^{\prime}(0)=\cosh (0)=1 \\
f^{\prime \prime}(x)=\sinh (x) & f^{\prime \prime}(0)=0 \\
f^{\prime \prime \prime}(x)=\cosh (x) & f^{\prime \prime \prime}(0)=1 \\
f^{(4)}(x)=\sinh (x) & f^{(4)}(0)=0 \\
f^{(5)}(x)=\cosh (x) & f^{(5)}(0)=1
\end{array}
$$

Substituting these into (7.14) gives:

$$
\begin{aligned}
\sinh (x) & =0+(1) x+0+(1) \frac{x^{3}}{3!}+0+(1) \frac{x^{5}}{5!}+\ldots \\
& =x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots
\end{aligned}
$$

(ii) The MAPLE output is on the web site.

$$
\begin{equation*}
f(x)=f(0)+f^{\prime}(0) x+x^{2} f^{\prime \prime}(0) / 2!+x^{3} f^{\prime \prime \prime}(0) / 3!+\ldots \tag{7.14}
\end{equation*}
$$

19. (i) We let $f(x)=\tan ^{-1}(x)$:

$$
\begin{array}{ll}
f(x)=\tan ^{-1}(x) & f(0)=0 \\
f^{\prime}(x)=\frac{1}{1+x^{2}} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}} & f^{\prime \prime}(0)=0 \\
f^{\prime \prime \prime}(x)=\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}} & f^{\prime \prime \prime}(0)=-2 \\
f^{(4)}(x)=\frac{24\left(x-x^{3}\right)}{\left(1+x^{2}\right)^{4}} & f^{(4)}(0)=0 \\
f^{(5)}(x)=\frac{24\left(1-10 x^{2}+5 x^{4}\right)}{\left(1+x^{2}\right)^{5}} & f^{(5)}(0)=24
\end{array}
$$

We have 3 non-zero terms; $f^{\prime}(0)=1, f^{\prime \prime \prime}(0)=-2$ and $f^{(5)}(0)=24$.
Substituting these into (7.14) gives

$$
\begin{align*}
\tan ^{-1}(x) & =0+(1 \times x)+0+\left(-\frac{2}{3!}\right) x^{3}+0+\left(\frac{24}{5!}\right) x^{5}+\ldots \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5} \ldots \quad(*) \tag{*}
\end{align*}
$$

(ii) To obtain the required result we need to substitute $x=1$ into $\left(^{*}\right)$:

$$
\tan ^{-1}(1)=1-\frac{1}{3}+\frac{1}{5} \ldots
$$

Remember $\tan ^{-1}(1)=\frac{\pi}{4}$. Thus

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5} \ldots
$$

(iii) All evaluations equal $\pi / 4$.
20. (i)

$$
\begin{aligned}
& y=\frac{1}{3} x^{3}-3 x^{2}+8 x-3 \\
& \frac{d y}{d x}=x^{2}-6 x+8 \\
& \text { For turning point } \frac{d y}{d x}=0 \\
& x^{2}-6 x+8=0,(x-4)(x-2)=0 \text { gives } \quad x=4 \text { or } x=2 \\
& \frac{d^{2} y}{d x^{2}}=2 x-6 \\
& \text { At } x=2, \frac{d^{2} y}{d x^{2}}=-2<0 \text { maximum, } y=\frac{11}{3}
\end{aligned}
$$

$$
\begin{equation*}
f(x)=f(0)+f^{\prime}(0) x+x^{2} f^{\prime \prime}(0) / 2!+x^{3} f^{\prime \prime \prime}(0) / 3!+\ldots \tag{7.14}
\end{equation*}
$$

At $x=4, \frac{d^{2} y}{d x^{2}}=2>0$ minimum, $y=\frac{7}{3}$
The curve $y=\frac{1}{3} x^{3}-3 x^{2}+8 x-3$ cuts the y axis at -3 (the value of y at $x=0$).

(ii) Let

$$
\begin{aligned}
& f(x)=\frac{1}{3} x^{3}-3 x^{2}+8 x-3 \\
& f^{\prime}(x)=x^{2}-6 x+8
\end{aligned}
$$

By looking at the graph, take $r_{1}=0$ (you could just as well take $r_{1}=1$)

$$
\begin{aligned}
& r_{2} \underset{\text { by } 7.25)}{=} 0-\frac{f(0)}{f^{\prime}(0)}=0.3750 \\
& r_{3}=0.375-\frac{f(0.375)}{f^{\prime}(0.375)}=0.4437 \\
& r_{4}=0.4437-\frac{f(0.4437)}{f^{\prime}(0.4437)}=0.4458 \\
& r_{5}=0.4458-\frac{f(0.4458)}{f^{\prime}(0.4458)}=0.4458
\end{aligned}
$$

Since $r_{4}=r_{5}$, the root of $\frac{1}{3} x^{3}-3 x^{2}+8 x-3=0$ is 0.446 ($3 \mathrm{~d} . p$.).
21. (i) We use the trapezium rule to determine the area A in the given diagram

$$
\begin{equation*}
A=\frac{1}{2} x(4+y) \tag{*}
\end{equation*}
$$

We are given that

$$
y+Y Z=6 \text { implies that } Y Z=6-y
$$

YZ can be found by Pythagoras:

$$
\begin{aligned}
Y Z^{2}=(6-y)^{2} & =(4-y)^{2}+x^{2} \\
36-12 y+y^{2} & =16-8 y+y^{2}+x^{2}
\end{aligned}
$$

Collecting like terms gives

$$
20-x^{2}=4 y \text { which gives } y=\frac{1}{4}\left(20-x^{2}\right)
$$

Substituting $y=\frac{1}{4}\left(20-x^{2}\right)$ into $\left({ }^{*}\right)$ yields

$$
\begin{aligned}
A & =\frac{1}{2} x\left(4+\frac{1}{4}\left(20-x^{2}\right)\right) \\
& =\frac{1}{8} x\left(16+20-x^{2}\right)=\frac{1}{8} x\left(36-x^{2}\right)=\frac{1}{8}\left(36 x-x^{3}\right)
\end{aligned}
$$

(ii) For maximum cross-sectional area we differentiate the above function:

$$
\begin{aligned}
& A=\frac{1}{8}\left(36 x-x^{3}\right) \\
& \frac{d A}{d x}=\frac{1}{8}\left(36-3 x^{2}\right)
\end{aligned}
$$

Stationary points occur where the derivative is zero:

$$
\frac{1}{8}\left(36-3 x^{2}\right)=0 \Rightarrow 36-3 x^{2}=0 \Rightarrow x^{2}=12 \Rightarrow x=\sqrt{12}=2 \sqrt{3}
$$

To show that we have a maximum at this value of x we differentiate again:

$$
\begin{aligned}
& \frac{d A}{d x}=\frac{1}{8}\left(36-3 x^{2}\right) \\
& \frac{d^{2} A}{d x^{2}}=\frac{1}{8}(0-6 x)
\end{aligned}
$$

Substituting $x=2 \sqrt{3}$ into $\frac{d^{2} A}{d x^{2}}=\frac{1}{8}(0-6 x)=-\frac{6}{8} x$ gives a negative value so we have maximum at $x=2 \sqrt{3}$. We can substitute this value into $y=\frac{1}{4}\left(20-x^{2}\right)$ to find y :

$$
y=\frac{1}{4}\left(20-x^{2}\right)=\frac{1}{4}\left(20-\sqrt{12}^{2}\right)=2
$$

Hence $x=2 \sqrt{3} \mathrm{~m}$ and $y=2 \mathrm{~m}$ gives maximum cross-sectional area.
22. Using the binomial series, (7.24), with $x=-\frac{v}{c^{2}}$ we have

$$
\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}=1+\frac{1}{2}\left(-\frac{v^{2}}{c^{2}}\right)+\left[\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\right]\left(-\frac{v^{2}}{c^{2}}\right)^{2}+\left[\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}\right]\left(-\frac{v^{2}}{c^{2}}\right)^{3} \cdots
$$

$$
\begin{gather*}
(1+x)^{n}=1+n x+\left[\frac{n(n-1)}{2!}\right] x^{2}+\left[\frac{n(n-1)(n-3)}{3!}\right] x^{3}+\ldots \tag{7.24}\\
r_{n+1}=r_{n}+\frac{f\left(r_{n}\right)}{f^{\prime}\left(r_{n}\right)} \tag{7.29}
\end{gather*}
$$

$$
\begin{aligned}
& =1-\frac{v^{2}}{2 c^{2}}-\frac{v^{4}}{8 c^{4}}-\frac{3 v^{6}}{48 c^{6}}-\ldots \\
& =1-\frac{v^{2}}{2 c^{2}}-\frac{v^{4}}{8 c^{4}}-\frac{v^{6}}{16 c^{6}}-\ldots
\end{aligned}
$$

23. Similar to solution of question 22 but we ignore higher powers.

By using the binomial expansion we can show that

$$
\frac{1}{\sqrt{1-x}}=(1-x)^{-1 / 2}=1+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{5}{16} x^{3}+\cdots
$$

Substituting $x=\left(\frac{v}{c}\right)^{2}$ because we are given $m=\frac{m_{0}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}$ into the above:

$$
\begin{aligned}
m=\frac{m_{0}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\frac{m_{0}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} & =m_{0}\left(1+\frac{1}{2}\left(\frac{v}{c}\right)^{2}+\frac{3}{8}\left[\left(\frac{v}{c}\right)^{2}\right]^{2}+\frac{5}{16}\left[\left(\frac{v}{c}\right)^{2}\right]^{3}+\cdots\right) \\
& =m_{0}\left(1+\frac{1}{2}\left(\frac{v}{c}\right)^{2}+\frac{3}{8}\left(\frac{v}{c}\right)^{4}+\frac{5}{16}\left(\frac{v}{c}\right)^{6}+\cdots\right)
\end{aligned}
$$

We are told that v is very small compared to c therefore $\left(\frac{v}{c}\right)$ is a small number and taking powers makes it even smaller. Hence we ignore the higher powers of $\left(\frac{v}{c}\right)$, that is powers above 2. Hence we have

$$
m=m_{0}\left(1+\frac{1}{2}\left(\frac{v}{c}\right)^{2}\right)=m_{0}\left(1+\frac{1}{2} \frac{v^{2}}{c^{2}}\right)
$$

Substituting this into the given formula for KE , $K=\left(m-m_{0}\right) c^{2}$, we have

$$
\begin{aligned}
K & =\left(m_{0}\left(1+\frac{1}{2} \frac{v^{2}}{c^{2}}\right)-m_{0}\right) c^{2} \\
& =\left(m_{0}+\frac{1}{2} \frac{v^{2}}{c^{2}} m_{0}-m_{0}\right) c^{2}=\left(\frac{1}{2} \frac{v^{2}}{c^{2}} m_{0}\right) c^{2}=\frac{1}{2} m_{0} v^{2}
\end{aligned}
$$

This is our required result.

