Complete Solutions to Miscellaneous Exercise 3

1. (i) How do we find $\left(f\left(\frac{1}{2}\right)\right)^{2}$?

We replace x with $1 / 2$ in $f(x)=\frac{2 x-1}{1-x}$ and then we square our result:

$$
\left(f\left(\frac{1}{2}\right)\right)^{2}=\left\{\frac{\left(\left(2 \times \frac{1}{2}\right)-1\right.}{1-\frac{1}{2}}\right)^{2}=0^{2}=0
$$

(ii) We first find $f(2)$ and $f(5)$ and then substitute these values into $\frac{6 f(2)-3 f(5)}{f(5)}$.

We have $f(2)=\frac{(2 \times 2)-1}{1-2}=-3$, similarly $f(5)=\frac{10-1}{1-5}=-\frac{9}{4}$. Substituting $f(2)=-3$ and $f(5)=-\frac{9}{4}$ gives:

$$
\frac{6 f(2)-3 f(5)}{f(5)}=\frac{[6 \times(-3)]-[3 \times(-9 / 4)]}{-9 / 4}=5
$$

(iii) $f(f(x))=f\left(\frac{2 x-1}{1-x}\right)=\frac{2\left(\frac{2 x-1}{1-x}\right)-1}{1-\left(\frac{2 x-1}{1-x}\right)}$. How do we simplify this horrendous expression?
Multiply numerator and denominator by $1-x$:

$$
\begin{aligned}
f(f(x))=\frac{2(2 x-1)-(1-x)}{(1-x)-(2 x-1)} & =\frac{4 x-2-1+x}{1-x-2 x+1} \\
& =\frac{5 x-3}{2-3 x}(2-3 x \neq 0)
\end{aligned}
$$

2. (i) Replace t with $t+h: f(t+h)=4.9(t+h)^{2}$

$$
\begin{aligned}
& =4.9 \underbrace{\left(t^{2}+2 h t+h^{2}\right)}_{\text {by }(1.13)} \\
& =4.9 t^{2}+9.8 h t+4.9 h^{2}
\end{aligned}
$$

(ii) $\frac{f(t+h)-f(t)}{h}=\frac{\left(4.9 t^{2}+9.8 h t+4.9 h^{2}\right)-4.9 t^{2}}{h}$

$$
\begin{aligned}
& =\frac{9.8 h t+4.9 h^{2}}{h} \\
& =\frac{h(9.8 t+4.9 h)}{h}\left(\text { cancelling the } h^{\prime} \mathrm{s}\right) \\
& =9.8 t+4.9 h
\end{aligned}
$$

(iii) Substituting $t=1$ into the result of part (ii), $9.8 t+4.9 h$, gives $9.8+4.9 h$.
(iv) $9.8+\left(4.9 \times 10^{-20}\right) \approx 9.8$ (substitute $t=1, h=10^{-20}$ into result of part (ii)).
(v) $\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}=\lim _{h \rightarrow 0}(9.8 t+4.9 h)=9.8 t$, (since h is very close to zero).

$$
\begin{equation*}
(a+b)^{2}=a^{2}+2 a b+b^{2} \tag{1.13}
\end{equation*}
$$

3. (i) Using the hint with $a=t$ and $b=h$ gives:

$$
\begin{aligned}
\frac{\phi(t+h)-\phi(t)}{h}=\frac{(t+h)^{3}-t^{3}}{h} & =\frac{\left(t^{3}+3 t^{2} h+3 t h^{2}+h^{3}\right)-t^{3}}{h} \\
& =\frac{3 t^{2} h+3 t h^{2}+h^{3}}{h} \\
& =\frac{h\left(3 t^{2}+3 t h+h^{2}\right)}{h} \\
& =3 t^{2}+3 t h+h^{2}
\end{aligned}
$$

(ii) Since h is very close to zero we have

$$
\lim _{h \rightarrow 0} \frac{\phi(t+h)-\phi(t)}{h} \underset{\text { by patt (i) }}{=} \lim _{h \rightarrow 0}\left(3 t^{2}+3 t h+h^{2}\right)=3 t^{2}
$$

4. The graphs of $|x+1|$ and $|x-3|$ are similar in shape to the graph of $|x|$ but shifted left and right respectively.

5. $f(-a)=2(-a)^{4}-(-a)^{2}+1001$

$$
\begin{aligned}
& =2 a^{4}-a^{2}+1001 \\
& =f(a)
\end{aligned}
$$

6. $g(-a)=(-a)^{5}-(-a)^{3}-(-a)$

$$
\begin{aligned}
& =-a^{5}+a^{3}+a \\
& =-\left(a^{5}-a^{3}-a\right) \\
& =-g(a)
\end{aligned}
$$

7. Equating $f(x)$ and $g(x)$ gives $x^{2}+5=6 x$. Subtracting $6 x$ from both sides:

$$
\begin{aligned}
& x^{2}-6 x+5=0 \\
& (x-5)(x-1)=0 \\
& x=5, x=1
\end{aligned}
$$

8. (i) $f(2)=2^{3}-\left(2 \times 2^{2}\right)-2-0.625=-2.625$
(ii) $f(3)=3^{3}-\left(2 \times 3^{2}\right)-3-0.625=5.375$

Graph of f crosses the x-axis between $x=2$ and $x=3$ because f goes from being negative at $x=2$ to positive at $x=3$, therefore there is a root between 2 and 3 . On MAPLE we plot f and then tune into the root.
$>f(x):=x \wedge 3-2^{*}\left(x^{\wedge} 2\right)-x-0.625 ;$
$>\operatorname{plot}(\mathrm{f}(\mathrm{x}), \mathrm{x}=2 . .3)$;

You can close in further by plotting the graph closer and closer to the point where the graph cuts the x -axis. Try plotting between 2.4 and 2.6. The actual root is 2.5
9. $f(x)=\frac{1}{x}, f^{-1}(x)=\frac{1}{x}$ (Self- Inverse). The graph of $\frac{1}{x}$ is shown in Fig 27 of

Chapter 2.
10. How do we find the inverse function?

Let $y=\frac{a x-b}{c x-a}$ then extract x. Multiplying both sides by $c x-a$ gives:

$$
\begin{aligned}
& \quad(c x-a) y=a x-b \\
& c x y-a y=a x-b \\
& c x y-a x=a y-b \\
& x(c y-a)=a y-b \text { (factorizing the L .H.S.) } \\
& \quad x=\frac{a y-b}{c y-a}
\end{aligned}
$$

Replacing the y with x gives the inverse function, thus

$$
\phi^{-1}(x)=\frac{a x-b}{c x-a}
$$

What do you notice about $\phi^{-1}(x)$?

$$
\phi^{-1}(x)=\phi(x)
$$

The function f has the same format as ϕ with $a=2, b=3$ and $c=5$. So what is $f^{-1}(x)$ equal to?

$$
f^{-1}(x)=f(x)=\frac{2 x-3}{5 x-2}(5 x-2 \neq 0)
$$

11. The roots of $f(x)-g(x)=0$ are the points where the graphs $f(x)$ and $g(x)$ intersect because $f(x)=g(x)$. On MAPLE we use the commands :
$>\mathrm{f}(\mathrm{x}):=\mathrm{x} \wedge 3 ; \mathrm{g}(\mathrm{x}):=4+4^{*} \mathrm{x}-\mathrm{x}^{\wedge} 2 ;$
$>\operatorname{plot}(\{\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})\}, \mathrm{x}=-3 . .3)$;

As in solution to question 8 you can plot the graphs closer to the points of intersection. The roots are $-2,-1$ and 2 .
12. (i) $>f:=x->2.718281828 \wedge x$;
$>\operatorname{plot}(f(x), x=-2 . .2)$;

(ii)
$>\operatorname{limit}((\mathrm{f}(\mathrm{h})-1) / \mathrm{h}, \mathrm{h}=0)$; shows 0.9999999998 which is equal to 1 correct to two decimal places.
(iii)
$>\operatorname{expand}((\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})) / \mathrm{h})$;
$>$ limit(\%,h=0); shows 2.718281828^{x}. This can also be justified by:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{2.718281828^{x+h}-2.718281828^{x}}{h} \\
& =2.718281828^{x} \underbrace{\lim _{h \rightarrow 0} \frac{2.718281828^{h}-1}{h}}_{=1 \text { by part (ii) }} \\
& =2.718281828^{x}
\end{aligned}
$$

13. Where does the graph cross the t and x axes?

Crosses the $x(t)$ axis at $t=0$. So we have

$$
x(0)=0^{2}-0-2=-2
$$

Crosses the t axis at $x(t)=0$. Thus

$$
\begin{aligned}
& t^{2}-t-2=0 \\
& (t-2)(t+1)=0 \\
& t=2, t=-1
\end{aligned}
$$

The shape of the graph $t^{2}-t-2$ is similar to the graph of t^{2}. What adjustments do we need to make to the graph of t^{2} to sketch $t^{2}-t-2$?
To find the adjustment we need to complete the square on $t^{2}-t-2$.

$$
\begin{aligned}
t^{2}-t-2 & =\left(t-\frac{1}{2}\right)^{2}-\frac{1}{4}-2 \\
& =\left(t-\frac{1}{2}\right)^{2}-\frac{9}{4}
\end{aligned}
$$

What are the modifications required on t^{2} to obtain the graph of $\left(t-\frac{1}{2}\right)^{2}-\frac{9}{4}$? The $\left(t-\frac{1}{2}\right)^{2}$ shifts the graph of t^{2} by a $\frac{1}{2}$ to the right. The $-\frac{9}{4}$ shifts it down by $\frac{9}{4}$, thus we have:

14. We multiply just like ordinary arithmetical fractions, that is multiply the numerators and multiply the denominators.

$$
\begin{align*}
G(s) & =\frac{3(s+1)}{(s+2)\left(s^{2}+5 s+6\right)} \\
& =\frac{3 s+3}{(s+2)\left(s^{2}+5 s+6\right)} \tag{*}
\end{align*}
$$

How do we multiply out the brackets in the denominator? Multiply the first term, s, by $s^{2}+5 s+6$ and then the second term, 2 , by $s^{2}+5 s+6$.

$$
\begin{aligned}
(s+2)\left(s^{2}+5 s+6\right) & =s\left(s^{2}+5 s+6\right)+2\left(s^{2}+5 s+6\right) \\
& =s^{3}+5 s^{2}+6 s+2 s^{2}+10 s+12 \\
& =s^{3}+\underbrace{5 s^{2}+2 s^{2}}_{=7 s^{2}}+\underbrace{6 s+10 s}_{=16 s}+12 \\
& =s^{3}+7 s^{2}+16 s+12
\end{aligned}
$$

Putting this, $s^{3}+7 s^{2}+16 s+12$, for the denominator of $\left({ }^{*}\right)$ gives

$$
G(s)=\frac{3 s+3}{s^{3}+7 s^{2}+16 s+12}
$$

15. (a) How do we find the system poles for $G(s)=\frac{s^{2}+1}{s^{2}+4 s+3}$?

They are the values of s where

$$
\begin{aligned}
& s^{2}+4 s+3=0 \\
& (s+3)(s+1)=0 \\
& s=-3, s=-1
\end{aligned}
$$

The system poles are at -3 and -1 .
(b) For $G(s)=\frac{s+1}{s^{2}+5 s-7}$, the system poles satisfy $s^{2}+5 s-7=0$.

How do we find the values of s satisfying this equation? Cannot factorize this equation into simple whole numbers, so we need to use formula (1.16). What are the values of a, b and c for this formula?

For $s^{2}+5 s-7=0 ; a=1, b=5$ and $c=-7$. We have

$$
\begin{aligned}
s & =\frac{-5 \pm \sqrt{5^{2}-(4 \times 1 \times(-7))}}{(2 \times 1)} \\
& =\frac{-5 \pm \sqrt{53}}{2} \\
s & =1.14 \text { and } s=-6.14 \text { (correct to } 2 \text { d.p.) }
\end{aligned}
$$

The poles occur at 1.14 and -6.14 .
(c) Where are the system poles for $G(s)=\frac{s}{3}$?

There are no system poles because the denominator=3 and therefore cannot be zero.
16. We have $F(t)=\frac{t}{10}, R(t)=1-\frac{t}{10}$ and $h(t)=\frac{1 / 10}{1-t / 10}=\frac{1}{10-t} \quad$ (multiplying numerator and denominator by
$F(t)$ and $R(t)$ are straight lines of the form $m t+c$:

Use MAPLE to plot $h(t)$ graph for $0<t<10$.
$\operatorname{plot}(1 /(10-\mathrm{t}), \mathrm{t}=0 . .10)$;

17. $Q(t)$ is a quadratic, so to sketch $Q(t)$ we could complete the square. Rewriting $Q(t)$ gives

$$
\begin{aligned}
-0.015 t^{2}+0.3 t & =-0.015 t^{2}+\underbrace{(0.015 \times 20)}_{=0.3} t \\
& =-0.015\left(t^{2}-20 t\right) \\
& =-0.015(t-10)^{2}+\underbrace{1.5}_{=(0.015 \times 100)}
\end{aligned}
$$

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}
\end{equation*}
$$

We need to solve the equation $Q(t)=0$ which is $0.3 t-0.015 t^{2}=0$:

$$
\begin{aligned}
t(0.3-0.015 t)= & 0 \\
t=0,0.3-0.015 t & =0 \\
0.3 & =0.015 t \\
t & =\frac{0.3}{0.015}=20
\end{aligned}
$$

Hence $Q(t)=0$ when $t=0, t=20$.
So $Q(t)$ is a quadratic with a peak at 10 and zeros at 0 and 20 :

How do we find $R(t)$?
Substitute $Q(t)=0.3 t-0.015 t^{2}$ into $R(t)=1-Q(t)$:

$$
\begin{aligned}
R(t) & =1-\left(0.3 t-0.015 t^{2}\right) \\
& =1-0.3 t+0.015 t^{2}
\end{aligned}
$$

18. Using MAPLE we have:
$>\mathrm{G}:=\mathrm{s}->(2 /(\mathrm{s}+1)) *(\mathrm{~s} /(\mathrm{s}+2) *(\mathrm{~s}+5)))$;
$>\operatorname{simplify}(\mathrm{G}(\mathrm{s}) /(1+0.001 * \mathrm{G}(\mathrm{s})))$; shows $1000 \frac{s}{500 s^{3}+4000 s+8501 s+5000}$.
