Complete solutions to Miscellaneous Exercise 16

1. We need to group the data. The smallest value is 0.901 and largest is 1.098, so we need to divide 0.9-1.1 into classes. Take class width $=0.03$, you could take 0.02 or 0.04 or some other suitable value. We choose 0.03 because it gives 7 groups. With too many classes in a histogram it is difficult to visualise the data.

Capacitance (μF)	Frequency
$0.900-0.930$	3
$0.930-0.960$	6
$0.960-0.990$	3
$0.990-1.020$	16
$1.020-1.050$	7
$1.050-1.080$	7
$1.080-1.110$	8

Histogram and frequency polygon showing the capacitance measurements of $1 \mu F$.
2. Substituting the mean $\mu=45.5$ and s.d. $\sigma=5$ into (16.48) gives

$$
\begin{equation*}
z=\frac{x-45.5}{5} \tag{*}
\end{equation*}
$$

(a) Putting $x=35$ into ${ }^{(*)}$ yields

$$
z=\frac{35-45.5}{5}=-2.1
$$

Using the normal distribution table with $z=2.1$ gives 0.9821 . Hence the probability of a student obtaining less than 35 marks is

$$
1-0.9821=0.0179
$$

(b) Substituting $x=50$ into $\left({ }^{*}\right)$ gives

$$
z=\frac{50-45.5}{5}=0.9
$$

Using the normal distribution table with $z=0.9$ gives 0.8159 . The probability of a student obtaining more than 50 marks is

$$
1-0.8159=0.1841
$$

(c) Substituting $x=60$ into $\left({ }^{*}\right)$ gives

$$
z=\frac{60-45.5}{5}=2.9
$$

$$
\begin{equation*}
z=\frac{x-\mu}{\sigma} \tag{16.48}
\end{equation*}
$$

The normal distribution table gives 0.99813 for $z=2.9$. The probability of a student obtaining marks between 50 and 60 is $0.99813-0.8159=0.18223$.
3. We have

$$
\begin{aligned}
& P(\text { at least one engine working to specification }) \\
& =1-P(\text { no engine working to specification }) \\
& =1-0.1^{2}=0.99
\end{aligned}
$$

4. (a) A stage is working if at least one of the circuits is activated, hence P (at least one of the circuits is activated)
$=1-P($ no circuit is activated $)$ $=1-0.15^{3}=0.997$ (3 d.p.)
(b)

$$
P(\text { both stages })=0.997 \times 0.997=0.993(3 \mathrm{~d} . \mathrm{p} .)
$$

5. (i) A student's birthday can be any of the 365 days and since we have 30 students so the total number of possibilities are 365^{30}.
The total number of permutations of choosing 30 days from 365 is ${ }^{365} P_{30}$.

$$
\begin{aligned}
& P(\text { no } 2 \text { students have their birthday on the same day }) \\
& \qquad=\frac{{ }^{365} P_{30}}{365^{30}}=0.294 \quad \text { (3 d.p.) }
\end{aligned}
$$

MAPLE gives this answer without any trouble. Normally a calculator will fail because it cannot handle the large numbers.
(ii) Similarly
P (no 2 students out of 60 have their birthday on the same day)

$$
=\frac{{ }^{365} P_{60}}{365^{60}}=0.006 \quad \text { (3 d.p.) }
$$

Yes.
There is less than $1 \%(0.6 \%)$ chance that no 2 students out of 60 will have their birthday on the same day. Your intuition tells you that the probability should be higher since there are 365 days.
6 . Let X be the random variable representing the number of correct answers. We use the binomial distribution, (16.24), with $p=\frac{1}{5}=0.2, q=0.8$ and $n=10$:
(a) For all answers correct, $X=10$

$$
\left.P(X=10)=0.2^{10}=1.024 \times 10^{-7} \text { (4 s.f. }\right)
$$

(b) For none correct, $X=0$

$$
P(X=0)=0.8^{10}=0.1074 \quad \text { (4 s.f.) }
$$

(c) For exactly 4 correct, $X=4$

$$
P(X=4)={ }^{10} C_{4}(0.8)^{6}(0.2)^{4}=0.0881 \text { (4 d.p.) }
$$

$$
\begin{equation*}
P(X=x)={ }^{n} C_{x} p^{x} q^{n-x} \tag{16.24}
\end{equation*}
$$

7. (i) Similar to question 6 of EXERCISE 16(f). Substituting the given x values into $P(X=x)=\frac{x^{2}}{k}$ gives

$$
\begin{aligned}
& P(X=0)=0 \\
& P(X=1)=\frac{1}{k} \\
& P(X=2)=\frac{2^{2}}{k}=\frac{4}{k} \\
& P(X=3)=\frac{3^{2}}{k}=\frac{9}{k} \\
& P(X=4)=\frac{4^{2}}{k}=\frac{16}{k}
\end{aligned}
$$

Total these upto 1

$$
\begin{gathered}
\frac{1}{k}+\frac{4}{k}+\frac{9}{k}+\frac{16}{k}=1 \\
\frac{30}{k}=1 \text { gives } k=30
\end{gathered}
$$

Our probability distribution is

x	0	1	2	3	4
$P(X=x)$	0	$1 / 30$	$4 / 30$	$9 / 30$	$16 / 30$

Using a calculator we find
(ii) mean $=3.33$ (2 d.p.)
(iii) s.d. $=0.83$ (2 d.p.)
(iv) variance $=0.69(2$ d.p.)
8. Since we are looking at an area of $0.95(95 \%)$ and so by symmetry the area in each half is $\frac{0.95}{2}=0.475$.

The area less than the x_{2} value is $0.5+0.475=0.975$.
The z value for 0.975 from the tables is 1.96 . Using $z=\frac{x-\mu}{\sigma}$ with $z=1.96$, $\mu=1100, \sigma=50$ gives

$$
\begin{aligned}
& \frac{x_{2}-1100}{50}=1.96 \\
& x_{2}=1198 \text { hours }
\end{aligned}
$$

Similarly

$$
\begin{gathered}
\frac{x_{1}-1100}{50}=-1.96 \\
x_{1}=1002 \text { hours }
\end{gathered}
$$

1002 to 1198 hours contains 95% of the wearout times.
9. Since $F(t)=1-R(t)$ we have

$$
F(t)=1-\frac{k^{2}}{(k+t)^{2}}
$$

Using $f(t)=\frac{d F}{d t}$ we have

$$
\begin{aligned}
f(t)=\frac{d F}{d t} & =\frac{d}{d t}\left[1-\frac{k^{2}}{(k+t)^{2}}\right] \\
& =\frac{d}{d t}\left[1-k^{2}(k+t)^{-2}\right] \\
& =\frac{2 k^{2}}{(k+t)^{3}}
\end{aligned}
$$

We know $h(t)=\frac{f(t)}{R(t)}$, hence for $t \geq 0$

$$
h(t)=\frac{2 k^{2} /(k+t)^{3}}{k^{2} /(k+t)^{2}}=\frac{2}{k+t} \text { (cancelling) }
$$

10. From (16.45) we have

$$
h(t)=\frac{f(t)}{R(t)}
$$

Also

$$
\begin{gathered}
f(t)=\frac{d F(t)}{d t} \text { and } F(t)=1-R(t) \\
\frac{d F(t)}{d t}=-\frac{d R(t)}{d t}
\end{gathered}
$$

Hence $f(t)=-\frac{d R(t)}{d t}$. Let $R=R(t)$.
Substituting $h(t)=\lambda$ and $f(t)=-\frac{d R}{d t}$ into (\dagger) gives

$$
\begin{gathered}
-\frac{d R}{R d t}=\lambda \\
\frac{d R}{R}=-\lambda d t
\end{gathered}
$$

Integrating both sides

$$
\begin{aligned}
& \int \frac{d R}{R}=-\int \lambda d t \\
& \ln [R]=-\lambda t
\end{aligned}
$$

Taking exponential of both sides gives

$$
R(t)=e^{-\lambda t}
$$

11. We have

$$
\begin{aligned}
H(t) & =-\int_{0}^{t} \frac{d}{d x}[\ln [R(x)]] d x \\
& =-[\ln [R(x)]]_{0}^{t} \\
& =-[\ln [R(t)]]+\ln \underbrace{[R(0)]}_{=1} \\
& =-\ln [R(t)] \quad(\text { remember } \ln (1)=0)
\end{aligned}
$$

12. Since 2% of transformers are defective, so we have

$$
P(\text { no defective })=0.98
$$

$$
P(\text { no defective in a sample of size } n)=0.98^{n}
$$

We need to find n which gives

$$
0.98^{n}=0.8
$$

Taking natural logs, $1 n$, gives

$$
\begin{aligned}
& \ln \left(0.98^{n}\right)=\ln (0.8) \\
& n \ln (0.98)=\ln (0.8) \\
& n=\frac{\ln (0.8)}{\ln (0.98)}=11.045
\end{aligned}
$$

Hence $n=11$, cannot be 12 because $0.98^{12}<0.8$.
13. At $t=0, f(t)=\frac{1}{2.5}=0.4$ because the area under the density function $=1$. Using the equation of a straight line with gradient $=-0.4 / 5$ and intercept $=0.4$ we have

$$
f(t)=0.4-\frac{0.4}{5} t=0.4-0.08 t \quad 0 \leq t \leq 5
$$

Using $F(t)=\int_{0}^{t} f(x) d x$ gives

$$
\begin{aligned}
F(t) & =\int_{0}^{t}(0.4-0.08 x) d x \\
& =\left[0.4 x-\frac{0.08 x^{2}}{2}\right]_{0}^{t}=0.4 t-0.04 t^{2}
\end{aligned}
$$

Using the definitions from reliability engineering we have

$$
\begin{array}{ll}
F(t)=0.4 t-0.04 t^{2} & 0 \leq t \leq 5 \\
R(t)=1-0.4 t+0.04 t^{2} & 0 \leq t \leq 5
\end{array}
$$

Using MTTF $=\int_{0}^{\infty} R(t) d t$ with $R(t)=1-0.4 t+0.04 t^{2}$ gives

$$
\begin{aligned}
\text { MTTF } & =\int_{0}^{5}\left(1-0.4 t+0.04 t^{2}\right) d t \\
& =\left[t-\frac{0.4 t^{2}}{2}+\frac{0.04 t^{3}}{3}\right]_{0}^{5} \\
& =5-\left(\frac{0.4 \times 5^{2}}{2}\right)+\left(\frac{0.04 \times 5^{3}}{3}\right)=\frac{5}{3} \text { years }
\end{aligned}
$$

The graphs $F(t)=0.4 t-0.04 t^{2}$ and $R(t)=1-0.4 t+0.04 t^{2}$ are:

Note that at $t=5, F(t)=1$ and $R(t)=0$.
$R(t)$ represents the probability of a component lasting upto t years. For $t>5, R(t)=0$ because the component does not last more than 5 years. $F(t)$ represents the probability of the component failing within t years. For $t>5, F(t)=1$, component will definitely fail within 5 years. We could rewrite these functions as

$$
R(t)=\left\{\begin{array}{lr}
1-0.4 t+0.04 t^{2} & 0 \leq t \leq 5 \\
0 & t>5
\end{array} \quad \text { and } \quad F(t)=\left\{\begin{array}{lc}
0.4 t-0.04 t^{2} & 0 \leq t \leq 5 \\
1 & t>5
\end{array}\right.\right.
$$

14.

>R[1]: =t->exp(-t);

$$
R_{1}:=t \rightarrow \mathbf{e}^{(-t)}
$$

>R[2]:=t->exp(-0.1*t);

$$
R_{2}:=t \rightarrow \mathrm{e}^{(-0.1 t)}
$$

>R[3]:=t->exp(-0.01*t);

$$
R_{3}:=t \rightarrow \mathrm{e}^{(-0.01 t)}
$$

$>$
plot(\{R[1](t),R[2](t),R[3](t)\},t=0..infinity, color=[black , red,gold]);

t
The smaller the λ, the longer the component lasts. Yes because $R(0)=1$ means that the component is initially working. $\lim _{t \rightarrow \infty} R(t)=0$ means that the component will eventually fail.
15. The failure distribution function is determined by $F(t)=\int_{0}^{t} f(x) d x$ with $f(x)=\frac{4}{(1+x)^{5}}$.

$$
\begin{aligned}
& F(t)=\int_{0}^{t}\left[\frac{4}{(1+x)^{5}}\right] d x \\
&=4 \int_{0}^{t}(1+x)^{-5} d x \\
&=4\left[\frac{(1+x)^{-4}}{-4}\right]_{0}^{t} \\
&=\frac{-1}{(1+t)^{4}}+1 \\
& F(t)=1-\frac{1}{(1+t)^{4}} \\
& R(t)=1-F(t)=1-\left(1-\frac{1}{(1+t)^{4}}\right)=\frac{1}{(1+t)^{4}} \\
& h(t)=\frac{f(t)}{R(t)}=\frac{4 /(1+t)^{5}}{1 /(1+t)^{4}}=\frac{4}{1+t}
\end{aligned}
$$

(Since t is in years the above functions are defined for $t \geq 0$).

$$
P(\text { a component lasts more than } 10 \text { years })=R(10)=\frac{1}{(1+10)^{4}}=\frac{1}{14641}
$$

Using MAPLE to plot $R(t)$ and $F(t)$ on the same axes:

$$
\begin{aligned}
& >\mathrm{R}:=\mathrm{t}->1 /(1+\mathrm{t})^{\wedge} 4 ; \\
& >\mathrm{F}:=\mathrm{t}->1-\mathrm{R}(\mathrm{t}) ; \quad \mathrm{F} \rightarrow \frac{1}{(t+1)^{4}} \\
& >\operatorname{plot}(\{\mathrm{R}(\mathrm{t}), \mathrm{F}(\mathrm{t})\}, \mathrm{t}=0 . . \text { infinity, color=[black,red]);}
\end{aligned}
$$

16. (a) We have
$>F:=t->4-20 /(5+t / 3)$;

$$
F:=t \rightarrow 4-\frac{20}{5+\frac{1}{3} t}
$$

>R:=simplify(1-F(t));

$$
R:=-\frac{3(-5+t)}{15+t}
$$

>f:=diff(F(t),t);

$$
f:=\frac{20}{3\left(5+\frac{t}{3}\right)^{2}}
$$

>h:=simplify(f/R);

$$
h:=-\frac{20}{(-5+t)(15+t)}
$$

$>\operatorname{plot}(F(t), t=0.5)$;

(c) All the probabilities can be evaluated by using the reliability function, $R(t)=-3\left(\frac{-5+t}{15+t}\right)$. Substitute the corresponding t value into $R(t)$.
(i) $P($ component lasts more than 1 year $)=R(1)=-3\left(\frac{-5+1}{15+1}\right)=\frac{3}{4}$
(ii) $P($ component lasts more than 2 years $)=R(2)=-3\left(\frac{-5+2}{15+2}\right)=\frac{9}{17}$
(iii) $P($ component lasts more than 3 years $)=R(3)=-3\left(\frac{-5+3}{15+3}\right)=\frac{1}{3}$
(iv) $P($ component lasts more than 4 years $)=R(4)=-3\left(\frac{-5+4}{15+4}\right)=\frac{3}{19}$
(v) $P($ component lasts more than 5 years $)=R(5)=-3\left(\frac{-5+5}{15+5}\right)=0$
(d) The zero means that a component cannot last more than 5 years.

