Complete solutions to Exercise 1(a)

1. Very similar to EXAMPLE 1, thus

$$
c=\sqrt{24^{2}+7^{2}}=\sqrt{625}=25
$$

2. Substituting $R=\begin{gathered}1000 \text { and } \\ 15=1000 I\end{gathered} V=15$ into $V=I R$ gives

$$
\begin{aligned}
& 15=1000 I \\
& I=\frac{15}{1000}=15 \times 10^{-3} \mathrm{amp}=15 \mathrm{~mA}
\end{aligned}
$$

3. Substituting the given values into $P_{1} V_{1}=P_{2} V_{2}$ yields

$$
\begin{aligned}
\left(5 \times 10^{6}\right) \times\left(2 \times 10^{-4}\right) & =\left(2 \times 10^{7}\right) \times V_{2} \\
V_{2} & =\frac{\left(5 \times 10^{6}\right) \times\left(2 \times 10^{-4}\right)}{2 \times 10^{7}}=0.5 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

4. Substituting the given values into $P V=n m R T$ yields

$$
\begin{aligned}
& \left(5.6 \times 10^{5}\right) \times 0.015=m(8.31 \times 34.6 \times 312) \\
& m=\frac{\left(5.6 \times 10^{5}\right) \times 0.015}{8.31 \times 34.6 \times 312}=0.094 \mathrm{~kg}(2 \text { s.f. })
\end{aligned}
$$

5. Substituting $\mathrm{s}=30, \mathrm{u}=2$ and $\mathrm{t}=5$ into $\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$ gives

$$
\begin{gathered}
(2 \times 5)+\left(\frac{1}{2} a \times 5^{2}\right)=30 \\
10+12.5 a=30 \\
12.5 a=20 \\
a=\frac{20}{12.5} \\
a=1.6 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

6. Substituting $R_{0}=33, R=35$ and $t=89$ into $R_{0}(1+\alpha t)=R$ gives

$$
\begin{aligned}
& 33(1+89 \alpha)=35 \\
& 1+89 \alpha=\frac{35}{33}=1.06 \\
& 89 \alpha=1.06-1=0.060000 \\
& \alpha=\frac{0.06}{89}=6.7 \times 10^{-4} /{ }^{\circ} \mathrm{C}(2 \text { s.f. })
\end{aligned}
$$

7. Substituting $R=20, E=12$ and $r=1$ into $E=\frac{V(R+r)}{R}$ gives

$$
\begin{aligned}
12 & =\frac{V(20+1)}{20} \\
V & =\frac{12 \times 20}{21}=11.4 \mathrm{volt}
\end{aligned}
$$

Questions 8-10 involve transposition of formulae similar to EXAMPLES 4 and 5.
8.(i) $u=v-a t$
(ii) $\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}$
9. $R=\frac{V}{I}$
10. $T=\frac{P V}{m R}$
11. Divide both sides by 100 to give

$$
\frac{\mathrm{S}}{100}=1-\frac{\mathrm{r} \omega}{\mathrm{v}}
$$

We have

$$
\begin{aligned}
& \frac{\mathrm{r} \omega}{\mathrm{v}}=1-\frac{\mathrm{S}}{100} \\
& \mathrm{r} \omega=\mathrm{v}\left(1-\frac{\mathrm{S}}{100}\right) \\
& \omega=\frac{\mathrm{v}}{\mathrm{r}}\left(1-\frac{\mathrm{S}}{100}\right)
\end{aligned}
$$

