Complete solutions to Exercise 1(b)

1.
$$V = \sqrt{PR}$$

2. We have $\sqrt{\frac{\gamma P}{\rho}} = c$ and need to extract P, how?

Square both sides to remove the square root:

$$\left(\sqrt{\frac{\gamma P}{\rho}}\right)^2 = c^2$$
$$\frac{\gamma P}{\rho} = c^2$$

Multiply both sides by ρ :

$$\gamma P = \rho c^2$$

Divide both sides by γ :

$$P = \frac{\rho c^2}{\gamma}$$

3. $A = \frac{2D}{\rho C v^2}$. Similar to **EXAMPLE 6**.

- 4. Substituting $R_1 = 100$ and $R_2 = 270$ into $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ gives $\frac{1}{R} = \frac{1}{100} + \frac{1}{270} = \frac{37}{2700}$ To find R we invert $\frac{37}{2700}$ to give $R = \frac{2700}{37} = 72.97\Omega$ (correct to 2 d.p.) 5. We have $T = 2\pi \sqrt{\frac{l}{g}}$. Transposing gives $\sqrt{\frac{l}{g}} = \frac{T}{2\pi}$ $\frac{l}{g} = \left(\frac{T}{2\pi}\right)^2$ $l = g \frac{T^2}{4\pi^2}$ Substituting T = 0.5 and g = 9.81 into the above gives $l = 9.81 \times (0.5)^2/4\pi^2$
 - = 0.062 m (correct to 2 s.f.)

6. Very similar to **EXAMPLE 8**, thus $C = 1.4 \times 10^{-5} F = 14 \,\mu F$.

7. Need to obtain D from $2\pi k \rho n^3 D^5 = P$. Divide both sides by $2\pi k \rho n^3$, to remove all of the Left Hand Side apart from D^5 :

$$D^5 = \frac{P}{2\pi k \rho n^3}$$

How do we remove the 5th power of D? Take the fifth root

$$\int_{=D}^{5} \sqrt{\frac{P}{2\pi k \rho n^{3}}} = \sqrt{\frac{P}{2\pi k \rho n^{3}}}$$
$$D = \underbrace{\left(\frac{P}{2\pi k \rho n^{3}}\right)^{\frac{1}{5}}}_{\text{by (1.2)}}$$

8. First consider the bracket term

$$\frac{1}{A} - \beta = \frac{1}{A} - \frac{A\beta}{A} = \frac{1 - A\beta}{A}$$

Substituting this into $\left(\frac{1}{A} - \beta\right) v_{out} = v_{in}$ gives
 $\left(\frac{1 - A\beta}{A}\right) v_{out} = v_{in}$

Divide both sides by $v_{\scriptscriptstyle in}$ to give

$$\frac{v_{out}}{v_{in}} \left(\frac{1 - A\beta}{A} \right) = 1$$
$$\left(\frac{v_{in}}{v_{in}} = 1 \right)$$

Need to get $\frac{V_{out}}{V_{in}} = ---$ Divide both sides by $\left(\frac{1-A\beta}{A}\right)$: $\frac{v_{out}}{v_{in}} = \frac{1}{\left(\frac{1-A\beta}{A}\right)} \underset{\text{by (1.3)}}{=} \left(\frac{1-A\beta}{A}\right)^{-1} \underset{\text{by (1.4)}}{=} \frac{A}{1-A\beta}$

9. We have $\tau = \frac{T}{\frac{1}{2}\pi r^3} = \frac{2T}{\pi r^3}$ because $1 \div \left(\frac{1}{2}\right) = 2$. How do we dig out r from

$$\tau = \frac{2T}{\pi r^3}?$$

First find r^3 then we take the cube root, $\sqrt[3]{}$, of both sides. Multiply both sides by πr^3 :

$$\pi r^3 \tau = 2T$$

Divide both sides by $\pi\tau$:

$$r^3 = \frac{2T}{\pi\tau}$$

(1.2)	$\sqrt[n]{a} = a^{\frac{1}{n}}$
(1.3)	$\frac{1}{x} = x^{-1}$
(1.4)	$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$

3

Take the cube root of both sides:

$$\int_{=r}^{3} \sqrt{\frac{r^{3}}{\pi \tau}} = \sqrt[3]{\frac{2T}{\pi \tau}}$$
$$r = \underbrace{\left(\frac{2T}{\pi \tau}\right)^{\frac{1}{3}}}_{\text{by (1.2)}}$$

Question 10 (a), (b) and (c) are straightforward transposition. 10. (a) $r = \frac{ER}{V} - R$ (b) $u = \sqrt{v^2 - 2as}$ (c) $K = \rho v^2 - \frac{4a}{3}$ (d) Multiply both sides by 8vL to give $\pi Pr^4 t = 8vL\eta$

Divide both sides by πPt to obtain only r⁴ on the Left Hand Side:

$$r^4 = \frac{8vL\eta}{\pi Pt}$$

How can we extract r from r^4 ? Take the 4th root, $\sqrt[4]{}$, of both sides:

$$\sqrt[4]{r^4} = \sqrt[4]{\frac{8vL\eta}{\pi Pt}}$$
$$r = \underbrace{\left(\frac{8vL\eta}{\pi Pt}\right)^{\frac{1}{4}}}_{\text{by (1.2)}}$$

(e) Dividing both sides by 2π , so we have

$$\sqrt{\frac{l}{g}} = \frac{T}{2\pi}$$

Need to find 1. Square both sides and then multiply by g

$$\frac{l}{g} = \left(\frac{T}{2\pi}\right)^2 = \frac{T^2}{4\pi^2}$$
$$l = \frac{T^2 g}{4\pi^2}$$

(f) We have

$$\left(P+\frac{a}{V^2}\right)(V-b) = RT$$

How do we find P?

Divide both sides by (V-b) and then take away $\frac{a}{V^2}$:

$$P + \frac{a}{V^2} = \frac{RT}{V - b}$$
$$P = \frac{RT}{V - b} - \frac{a}{V^2}$$

 $\sqrt[n]{a} = a^{\frac{1}{n}}$

4

10. (g) To remove the denominator (n-1) we multiply both sides by (n-1) : $P_1V_1-P_2V_2=W(n-1)$

Add P_2V_2 and divide through by P_1 : $P_1V_1 = W(n-1) + P_2V_2$

$$V_1 = \frac{W(n-1) + P_2 V_2}{P_1}$$

(h) Divide by P and take the nth root to give $V = \left(\frac{C}{P}\right)^{\frac{1}{n}}$.

(i) We are given $\frac{CW}{D}\sqrt{\frac{h}{u}} = f$.

We need to remove C, W, D and h from the Left Hand Side to get u on its own, how?

First multiply by D and then divide through by CW:

$$\sqrt{\frac{h}{u}} = \frac{fD}{CW}$$

How do we remove the square root? Square both sides

$$\left(\sqrt{\frac{h}{u}}\right)^2 = \left(\frac{fD}{CW}\right)^2$$
$$\frac{h}{u} = \frac{f^2 D^2}{C^2 W^2}$$

Next we dismiss h on the Left Hand Side by dividing both sides by h:

$$\frac{1}{u} = \frac{f^2 D^2}{C^2 W^2 h}$$

Taking $()^{-1}$ of both sides we have

$$u = \frac{C^2 W^2 h}{f^2 D^2}$$