Complete solutions to Exercise 1(b)

1. $V=\sqrt{P R}$
2. We have $\sqrt{\frac{\gamma P}{\rho}}=c$ and need to extract P , how?

Square both sides to remove the square root:

$$
\begin{aligned}
\left(\sqrt{\frac{\gamma P}{\rho}}\right)^{2} & =c^{2} \\
\frac{\gamma P}{\rho} & =c^{2}
\end{aligned}
$$

Multiply both sides by ρ :

$$
\gamma P=\rho c^{2}
$$

Divide both sides by γ :

$$
P=\frac{\rho c^{2}}{\gamma}
$$

3. $A=\frac{2 D}{\rho C v^{2}}$. Similar to EXAMPLE 6.
4. Substituting $R_{1}=100$ and $R_{2}=270$ into $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ gives

$$
\frac{1}{R}=\frac{1}{100}+\frac{1}{270}=\frac{37}{2700}
$$

To find R we invert $\frac{37}{2700}$ to give

$$
R=\frac{2700}{37}=72.97 \Omega \text { (correct to } 2 \text { d.p.) }
$$

5. We have $T=2 \pi \sqrt{\frac{l}{g}}$. Transposing gives

$$
\begin{aligned}
& \sqrt{\frac{l}{g}}=\frac{T}{2 \pi} \\
& \frac{l}{g}=\left(\frac{T}{2 \pi}\right)^{2} \\
& l=g \frac{T^{2}}{4 \pi^{2}}
\end{aligned}
$$

Substituting $T=0.5$ and $\mathrm{g}=9.81$ into the above gives

$$
\begin{aligned}
l & =9.81 \times(0.5)^{2} / 4 \pi^{2} \\
& =0.062 \mathrm{~m}(\text { correct to } 2 \text { s.f. })
\end{aligned}
$$

6. Very similar to EXAMPLE 8, thus $C=1.4 \times 10^{-5} F=14 \mu F$.
7. Need to obtain D from $2 \pi k \rho n^{3} D^{5}=P$. Divide both sides by $2 \pi k \rho n^{3}$, to remove all of the Left Hand Side apart from D^{5} :

$$
D^{5}=\frac{P}{2 \pi k \rho n^{3}}
$$

How do we remove the 5 th power of D ? Take the fifth root

$$
\begin{aligned}
& \underbrace{\sqrt[5]{D^{5}}}_{=D}=\sqrt[5]{\frac{P}{2 \pi k \rho n^{3}}} \\
& D=\underbrace{\left(\frac{P}{2 \pi k \rho n^{3}}\right)^{\frac{1}{5}}}_{\text {by }(1.2)}
\end{aligned}
$$

8. First consider the bracket term

$$
\frac{1}{A}-\beta=\frac{1}{A}-\frac{A \beta}{A}=\frac{1-A \beta}{A}
$$

Substituting this into $\left(\frac{1}{A}-\beta\right) v_{\text {out }}=v_{\text {in }}$ gives

$$
\left(\frac{1-A \beta}{A}\right) v_{\text {out }}=v_{\text {in }}
$$

Divide both sides by $\mathrm{v}_{\text {in }}$ to give

$$
\begin{gathered}
\frac{v_{\text {out }}}{v_{\text {in }}}\left(\frac{1-A \beta}{A}\right)=1 \\
\left(\frac{v_{\text {in }}}{v_{\text {in }}}=1\right)
\end{gathered}
$$

Need to get $\frac{\mathrm{v}_{\text {out }}}{\mathrm{v}_{\mathrm{in}}}=---$ Divide both sides by $\left(\frac{1-A \beta}{A}\right)$:

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{1}{\left(\frac{1-A \beta}{A}\right)} \underset{\text { by }(1.3)}{=}\left(\frac{1-A \beta}{A}\right)^{-1} \underset{\text { by }(1.4)}{\bar{\tau}} \frac{A}{1-A \beta}
$$

9. We have $\tau=\frac{T}{\frac{1}{2} \pi r^{3}}=\frac{2 T}{\pi r^{3}}$ because $1 \div\left(\frac{1}{2}\right)=2$. How do we dig out r from

$$
\tau=\frac{2 T}{\pi r^{3}} ?
$$

First find r^{3} then we take the cube root, $\sqrt[3]{ }$, of both sides.
Multiply both sides by πr^{3} :

$$
\pi r^{3} \tau=2 T
$$

Divide both sides by $\pi \tau$:

$$
r^{3}=\frac{2 T}{\pi \tau}
$$

$$
\begin{align*}
& \sqrt[n]{a}=a^{\frac{1}{n}} \tag{1.2}\\
& \frac{1}{x}=x^{-1} \tag{1.3}\\
& \left(\frac{a}{b}\right)^{-1}=\frac{b}{a} \tag{1.4}
\end{align*}
$$

Take the cube root of both sides:

$$
\begin{aligned}
& \underbrace{\sqrt[3]{r^{3}}}_{=r}=\sqrt[3]{\frac{2 T}{\pi \tau}} \\
& r=\underbrace{\left(\frac{2 T}{\pi \tau}\right)^{\frac{1}{3}}}_{\text {by (1.2) }}
\end{aligned}
$$

Question 10 (a), (b) and (c) are straightforward transposition.
10. (a) $r=\frac{E R}{V}-R$
(b) $u=\sqrt{v^{2}-2 a s}$
(c) $K=\rho \nu^{2}-\frac{4 a}{3}$
(d) Multiply both sides by $8 v L$ to give

$$
\pi \operatorname{Pr}^{4} t=8 v L \eta
$$

Divide both sides by $\pi P t$ to obtain only r^{4} on the Left Hand Side:

$$
r^{4}=\frac{8 v L \eta}{\pi P t}
$$

How can we extract r from r^{4} ?
Take the 4 th root, $\sqrt[4]{ }$, of both sides:

$$
\begin{aligned}
\sqrt[4]{r^{4}} & =\sqrt[4]{\frac{8 v L \eta}{\pi P t}} \\
r & =\underbrace{\left(\frac{8 v L \eta}{\pi P t}\right)^{\frac{1}{4}}}_{\text {by }(1.2)}
\end{aligned}
$$

(e) Dividing both sides by 2π, so we have

$$
\sqrt{\frac{l}{g}}=\frac{T}{2 \pi}
$$

Need to find 1. Square both sides and then multiply by g

$$
\begin{gathered}
\frac{l}{g}=\left(\frac{T}{2 \pi}\right)^{2}=\frac{T^{2}}{4 \pi^{2}} \\
l=\frac{T^{2} g}{4 \pi^{2}}
\end{gathered}
$$

(f) We have

$$
\left(P+\frac{a}{V^{2}}\right)(V-b)=R T
$$

How do we find P?
Divide both sides by $(V-b)$ and then take away $\frac{a}{V^{2}}$:

$$
\begin{aligned}
P+\frac{a}{V^{2}} & =\frac{R T}{V-b} \\
P & =\frac{R T}{V-b}-\frac{a}{V^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\sqrt[n]{a}=a^{\frac{1}{n}} \tag{1.2}
\end{equation*}
$$

10. (g) To remove the denominator ($n-1$) we multiply both sides by $(n-1)$:

$$
P_{1} V_{1}-P_{2} V_{2}=W(n-1)
$$

Add $P_{2} V_{2}$ and divide through by P_{1} :

$$
\begin{aligned}
& P_{1} V_{1}=W(n-1)+P_{2} V_{2} \\
& V_{1}=\frac{W(n-1)+P_{2} V_{2}}{P_{1}}
\end{aligned}
$$

(h) Divide by P and take the nth root to give $V=\left(\frac{C}{P}\right)^{\frac{1}{n}}$.
(i) We are given $\frac{C W}{D} \sqrt{\frac{h}{u}}=f$.

We need to remove C, W, D and h from the Left Hand Side to get u on its own, how?
First multiply by D and then divide through by $C W$:

$$
\sqrt{\frac{h}{u}}=\frac{f D}{C W}
$$

How do we remove the square root? Square both sides

$$
\begin{aligned}
\left(\sqrt{\frac{h}{u}}\right)^{2} & =\left(\frac{f D}{C W}\right)^{2} \\
\frac{h}{u} & =\frac{f^{2} D^{2}}{C^{2} W^{2}}
\end{aligned}
$$

Next we dismiss h on the Left Hand Side by dividing both sides by h :

$$
\frac{1}{u}=\frac{f^{2} D^{2}}{C^{2} W^{2} h}
$$

Taking ($)^{-1}$ of both sides we have

$$
u=\frac{C^{2} W^{2} h}{f^{2} D^{2}}
$$

