Complete solutions to Exercise 2(a)

1. (a) With $y=m x+c$ we have $m=1, c=1$ for $y=x+1$. The graph crosses the y axis at 1 :

(b) Similarly $m=1, c=-1$. Since $c=-1$ the graph crosses the y axis at -1 .

(c) The graph $y=3 x+5$ crosses the y axis at 5 and has a gradient of 3 which means that for every unit horizontal there are 3 units vertical.

(d) The graph $y=\frac{1}{2} x-7$ crosses the y axis at -7 and has a gradient of $\frac{1}{2}$.

(e) Transposing gives $y=\pi$ the gradient, m, is zero and the y-intercept is p. Since the gradient is zero there is no slope, just a horizontal line.

(f) Transposing gives $y=x-\pi$, the gradient of 1 and y-intercept of $-p$.

2.(a) The gradient of $y=3$ is zero, the line $y=3$ has no slope, and the y-intercept is 3. (a)

(b) $\mathrm{x}=3$ is a line parallel to the y-axis:

(c) From $2 \mathrm{x}+2 \mathrm{y}=6$ we have $2 \mathrm{y}=6-2 \mathrm{x}$. Dividing by 2 gives $\mathrm{y}=3-\mathrm{x}$. The $\mathrm{y}-$ intercept is 3 and the gradient is -1 . Since the gradient is a negative number the line slopes downwards to the right.

(d) $x+2 y=-3$ can be rewritten as

$$
\begin{aligned}
2 y & =-3-x \\
y & =\frac{-3-x}{2}=-\frac{3}{2}-\frac{x}{2}
\end{aligned}
$$

We have gradient $=-\frac{1}{2}$ and y-intercept $=-\frac{3}{2}$, thus:

(e) $\mathrm{x}-\mathrm{y}-3=0$ can be rewritten as $\mathrm{y}=\mathrm{x}-3$. Gradient, $\mathrm{m}=1$ and y -intercept, $c=-3$.

(f) $2 \mathrm{x}+7 \mathrm{y}-5=0$ can be rewritten as:

$$
\begin{aligned}
7 y & =5-2 x \\
y & =\frac{5-2 x}{7}=\frac{5}{7}-\frac{2}{7} x
\end{aligned}
$$

The gradient is $-\frac{2}{7}$ and y-intercept is $\frac{5}{7}$:

3. Putting $k=10,50$ and 100 gives us the equations $F=10 x, F=50 x$ and $F=100 x$ respectively. The graphs of these equations are straight lines going through the origin, $(0,0)$, with gradients 10,50 and 100 respectively.

For larger k you need more force for the same extension. For example for $\mathrm{x}=0.5 \mathrm{~m}$ you need a force of $5 N, 25 N$ and $50 N$ for $\mathrm{k}=10,50$ and $\mathrm{k}=100$ respectively.
4. Substituting the given c values into $y=3 x+c$ gives us the equations $y=3 x, y=3 x+1, y=3 x+5, y=3 x+10, y=3 x-1, y=3 x-5$ and $y=3 x-10$.

5. For $0 \leq t<1$, the graph, $v=2 t$, is a straight line going through the origin with gradient 2 . For $t \geq 1$, the graph, $v=4-2 t$, is again a straight line with gradient -2 , so slopes downwards to the right, and v-intercept at 4 . Note that at $t=2, v=4-(2 \times 2)=0$, hence v cuts the t axis at 2 .

