

$$gradient = -\frac{10}{360 - 240} = -\frac{1}{12}$$

We do not know the v-intercept, c , because it is not labelled on the graph. By (2.1) we have

$$v = -\frac{1}{12}t + c \qquad (*)$$

where c is the v-intercept. From the graph we see that at t = 360, v = 0. We can find c by substituting this into (*):

$$0 = -\left(\frac{1}{12} \times 360\right) + c$$

0 = -30 + cHence c = 30. So substituting c = 30 into (*): $v = -\frac{1}{12}t + 30$

Complete solutions to Exercise 2(b)

Combining all three equations for v gives:

$$v = \begin{cases} \frac{1}{6}t & 0 \le t \le 60\\ 10 & 60 < t \le 240\\ -\frac{1}{12}t + 30 & 240 < t \le 360 \end{cases}$$

(2.1)(2.2) 3. For t between 0 and 10 we have a slope of $\frac{5-2}{10} = \frac{3}{10} = 0.3$. Hence m = 0.3and from the graph the v-intercept, c, is equal to 2. Thus: v = 0.3t + 2For $10 < t \le 20$, slope=0, and v-intercept is 5, so v = 5. For $20 < t \le 23$, slope $= -\frac{5}{23-20} = -\frac{5}{3}$. By (2.1) $v = -\frac{5}{3}t + c$ (†) where c is the v-intercept. From the graph in question we have when

t=23, v=0. Substituting these into ^(†): $0 = \left(-\frac{5}{3} \times 23\right) + c \text{ gives } c = \frac{5 \times 23}{3}$ Substituting $c = \frac{5 \times 23}{3}$ into (†) gives: $v = \frac{5 \times 23}{3} - \frac{5t}{3}$ $= \frac{5}{3}(23 - t) \left[\text{taking out the common factor} \qquad \frac{5}{3} \right]$

Combining these three equations :

$$v = \begin{cases} 0.3t + 2 & 0 \le t \le 10 \\ 5 & 10 < t \le 20 \\ \frac{5}{3}(23 - t) & 20 < t \le 23 \end{cases}$$

4. (a) We have

(b) For t between 0 and 2, the gradient is 2.

For $2 < t \le 5$, the gradient is 0.

For $5 < t \le 9$, the gradient is -1. So we have the acceleration-time graph given by:

5. (i) Initial velocity of 20m/s at t=0 means the graph starts at 20 on the v axis. No acceleration means that the velocity-time graph has a gradient of zero for these times, $0 \le t \le 10$. Then after t > 10 the graph has a gradient of -5 so it slopes downwards to the right of t=10.

(ii) The gradient of the velocity-time graph is -5 after 10s. This means the value of v is decreasing by 5 for every second. So after 4 seconds the value of v is decreased by 20. Since at t = 10, v = 20 so at t = 14, v = 0. Hence the velocity is zero at t = 14 s.

6.(a) The acceleration a=0 when the gradient is 0. By observing the graph in question this occurs during $0 \le t \le 6$ and $14 \le t \le 20$.

(b) The acceleration between 6 and 14 is determined by the gradient gradient = $-\frac{10+15}{11+15} = -\frac{25}{2} = -3.125$

$$14-6$$
 8

Thus acceleration = -3.125.

- 7. For $t \le 3$, gradient = $\frac{9}{3} = 3$.
- For $3 < t \le 8$, gradient=0.

For $8 < t \le 10$, gradient = $-\frac{9}{10-8} = -\frac{9}{2}$. Thus the *a*-*t* graph is:

