## Complete solutions to Exercise 2(b)

1. Similar to EXAMPLE 5 of chapter 2.

(a) The gradient $=0$ between $t=2 \mathrm{~s}$ and $t=100 \mathrm{~s}$. Hence by (2.2)

$$
\text { acceleration }=0
$$

(b) The total displacement $=$ Area under the graph

$$
\text { Area of trapezium }=\frac{1}{2}(103+98) \times 3=301.5
$$

2. For t between 0 and 60 we have gradient $=\frac{10}{60}=\frac{1}{6}$. Since the straight line goes through the origin, so the $v$-intercept $=0$. Substituting $m=\frac{1}{6}, c=0$ into $v=m t+c$ gives: $\mathrm{v}=\frac{1}{6} \mathrm{t}$.
For $60<\mathrm{t} \leq 240$ we have a horizontal line with a value of 10 . So v=10.
For $240<t \leq 360$ the straight line slopes downwards to the right so we have a negative gradient:

$$
\text { gradient }=-\frac{10}{360-240}=-\frac{1}{12}
$$

We do not know the v-intercept, c, because it is not labelled on the graph. By (2.1) we have

$$
\begin{equation*}
v=-\frac{1}{12} t+c \tag{*}
\end{equation*}
$$

where c is the v-intercept. From the graph we see that at $t=360, v=0$. We can find c by substituting this into (*):

$$
\begin{aligned}
& 0=-\left(\frac{1}{12} \times 360\right)+c \\
& 0=-30+c
\end{aligned}
$$

Hence c $=30$. So substituting c $=30$ into ${ }^{*}$ *):

$$
v=-\frac{1}{12} t+30
$$

Combining all three equations for v gives:

$$
v=\left\{\begin{array}{lc}
\frac{1}{6} t & 0 \leq t \leq 60 \\
10 & 60<t \leq 240 \\
-\frac{1}{12} t+30 & 240<t \leq 360
\end{array}\right.
$$

$y=m x+c$ where $m=$ gradient, $c=y$-intercept acceleration $=$ gradient of the $v-t$ graph
3. For $t$ between 0 and 10 we have a slope of $\frac{5-2}{10}=\frac{3}{10}=0.3$. Hence $m=0.3$ and from the graph the $v$-intercept, $c$, is equal to 2 . Thus:

$$
v=0.3 t+2
$$

For $10<\mathrm{t} \leq 20$, slope $=0$, and $v$-intercept is 5 , so $v=5$.
For $20<t \leq 23$, slope $=-\frac{5}{23-20}=-\frac{5}{3}$. By (2.1)

$$
v=-\frac{5}{3} t+c
$$

where $c$ is the $v$-intercept. From the graph in question we have when $t=23, v=0$. Substituting these into $\left.{ }^{( } \dagger\right)$ :

$$
0=\left(-\frac{5}{3} \times 23\right)+c \text { gives } c=\frac{5 \times 23}{3}
$$

Substituting $c=\frac{5 \times 23}{3}$ into ( $\dagger$ ) gives:

$$
\begin{aligned}
v & =\frac{5 \times 23}{3}-\frac{5 t}{3} \\
& =\frac{5}{3}(23-t)\left[\text { taking out the common factor } \frac{5}{3}\right]
\end{aligned}
$$

Combining these three equations:

$$
v= \begin{cases}0.3 t+2 & 0 \leq t \leq 10 \\ 5 & 10<t \leq 20 \\ \frac{5}{3}(23-t) & 20<t \leq 23\end{cases}
$$

4. (a) We have

(b) For $t$ between 0 and 2, the gradient is 2 .

For $2<t \leq 5$, the gradient is 0 .
For $5<t \leq 9$, the gradient is -1 . So we have the acceleration-time graph given by:

5. (i) Initial velocity of $20 \mathrm{~m} / \mathrm{s}$ at $t=0$ means the graph starts at 20 on the $v$ axis. No acceleration means that the velocity-time graph has a gradient of zero for these times, $0 \leq t \leq 10$. Then after $t>10$ the graph has a gradient of -5 so it slopes downwards to the right of $t=10$.

[^0]
(ii) The gradient of the velocity-time graph is -5 after 10 s . This means the value of $v$ is decreasing by 5 for every second. So after 4 seconds the value of $v$ is decreased by 20 . Since at $t=10, v=20$ so at $t=14, v=0$. Hence the velocity is zero at $t=14 \mathrm{~s}$.
6.(a) The acceleration $a=0$ when the gradient is 0 . By observing the graph in question this occurs during $0 \leq t \leq 6$ and $14 \leq t \leq 20$.
(b) The acceleration between 6 and 14 is determined by the gradient
$$
\text { gradient }=-\frac{10+15}{14-6}=-\frac{25}{8}=-3.125
$$

Thus acceleration $=-3.125$.
7. For $t \leq 3$, gradient $=\frac{9}{3}=3$.

For $3<t \leq 8$, gradient $=0$.
For $8<t \leq 10$, gradient $=-\frac{9}{10-8}=-\frac{9}{2}$. Thus the $a-t$ graph is:



[^0]:    $y=m x+c$ where $m=$ gradient, $c=y$-intercept

