Complete solutions to Exercise 3(a)

1. We have

$$
\begin{aligned}
& f(1)=1^{2}=1 \\
& f(2)=2^{2}=4 \\
& f(3)=3^{2}=9 \\
& f(-1)=(-1)^{2}=1 \\
& f(-2)=(-2)^{2}=4 \\
& f(-3)=(-3)^{2}=9
\end{aligned}
$$

It is a many \rightarrow one function.
2. Given $f(t)=\frac{9}{5} t+32$, we have:

$$
\begin{aligned}
& \mathrm{f}(0)=\left(\frac{9}{5} \times 0\right)+32=32 \\
& \mathrm{f}(100)=\left(\frac{9}{5} \times 100\right)+32=212 \\
& \mathrm{f}(24)=\left(\frac{9}{5} \times 24\right)+32=75.2
\end{aligned}
$$

3. Similar to question 1 but we find x^{3} in each case. We have $g(1)=1, g(-1)=-1, g(2)=8, g(-2)=-8, g(3)=27$ and $g(-3)=-27$. We notice that $g(-a)=-g(a)$
A function with this property for all numbers a is called an odd function.
4. Given $\mathrm{g}(\mathrm{t})=-4.9 \mathrm{t}^{2}$,

$$
\begin{aligned}
& g(1)=-4.9 \times 1^{2}=-4.9 \\
& g(\pi)=-4.9 \times \pi^{2}=-48.36 \\
& g\left(\frac{1}{\sqrt{4.9}}\right)=-4.9 \times\left(\frac{1}{\sqrt{4.9}}\right)^{2}=-4.9 \times \frac{1}{4.9}=-1
\end{aligned}
$$

5. $f(h)= \pm \sqrt{20 h}$ is not a function because you have 2 outputs for any given input.
6. (a) $v(0)=9.8 \times 0=0$
$v(1)=9.8 \times 1=9.8$
$v(2)=9.8 \times 2=19.6$
$v(5)=9.8 \times 5=49$
(b) $\quad v\left(t^{2}\right)=9.8 t^{2}$

$$
v(t+1)=9.8 \times(t+1)=9.8 t+9.8
$$

7. (a) We are given $s(t)=t^{3}-t^{2}+5$:

$$
\begin{aligned}
& s(0)=0^{3}-0^{2}+5=5 \\
& s(1.5)=1.5^{3}-1.5^{2}+5=6.125 \\
& s(2.5)=2.5^{3}-2.5^{2}+5=14.375
\end{aligned}
$$

(b) We are given

$$
s(t+1)=(t+1)^{3}-(t+1)^{2}+5
$$

From EXAMPLE 3 of chapter 3 we have:

$$
(t+1)^{3}=t^{3}+3 t^{2}+3 t+1
$$

$$
(t+1)^{2}=t^{2}+2 t+1
$$

Putting these into $s(t+1)$ gives:

$$
\begin{aligned}
s(t+1) & =t^{3}+3 t^{2}+3 t+1-\left(t^{2}+2 t+1\right)+5 \\
& =t^{3}+3 t^{2}+3 t+1-t^{2}-2 t-1+5 \\
& =t^{3}+\underbrace{3 t^{2}-t^{2}}_{=2 t^{2}}+\underbrace{3 t-2 t}_{=t}+1-1+5 \\
& =t^{3}+2 t^{2}+t+5
\end{aligned}
$$

8. We replace the V with IR,

$$
P(I R)=\frac{(I R)^{2}}{R}=\frac{I^{2} R^{2}}{R}=I^{2} R
$$

9. We substitute r and $2 r$ in place of R :

$$
\begin{aligned}
& V(r)=\frac{E r}{r+r}=\frac{E r}{2 r}=\frac{E}{2} \\
& V(2 r)=\frac{E 2 r}{2 r+r}=\frac{2 E r}{3 r}=\frac{2 E}{3}
\end{aligned}
$$

10. (a) For $h(t)=0$ we have:

$$
\begin{aligned}
& 200 t-4.9 t^{2}=0 \\
& t(200-4.9 t)=0 \\
& t=0 \text { or } 200-4.9 t=0
\end{aligned}
$$

How do we solve $200-4.9 t=0$?

$$
\begin{aligned}
& 200=4.9 t \\
& \frac{200}{4.9}=t \\
& t=40.82 \text { (correct to } 2 \text { d.p.) }
\end{aligned}
$$

(b) $\mathrm{h}(\mathrm{t}+2)=200(\mathrm{t}+2)-4.9(\mathrm{t}+2)^{2}$

$$
\begin{aligned}
& =200 t+400-4.9 \underbrace{\left(t^{2}+4 t+4\right)}_{\text {by } 1.13)} \\
& =200 t+400-4.9 t^{2}-19.6 t-19.6 \\
& =(400-19.6)+\underbrace{200 t-19.6 t}_{=180.4 t}-4.9 t^{2} \\
h(t+2) & =380.4+180.4 t-4.9 t^{2}
\end{aligned}
$$

