Complete solutions to Exercise 3(b)

1. (a) $f^{-1}(x)=\frac{x+2}{7} \quad$ (b) $f^{-1}(x)=\frac{1}{x} \quad($ provided $x \neq 0) \quad$ (c) $f^{-1}(x)=1-x$
(d) $f^{-1}(x)=5-\frac{3}{x}(x \neq 0)$
2. (a) Let $y=\frac{t}{t+2}(t \neq-2)$. Then we need to obtain $t=\ldots$ Multiplying both sides by $(t+2)$:

$$
(t+2) y=t
$$

Expanding the Left Hand Side gives:

$$
t y+2 y=t
$$

Collecting the t ' s on one side:

$$
2 y=t-t y
$$

Factorizing the Right Hand Side:

$$
2 y=t(1-y)
$$

How do we remove $1-y$ on the Right Hand Side to obtain t on its own? Divide both sides by $1-y$:

$$
t=\frac{2 y}{1-y}(\text { provided } 1-y \neq 0)
$$

So the inverse function is

$$
g^{-1}(t)=\frac{2 t}{1-t}(\text { provided } \quad 1-t \neq 0)
$$

(b) and (c) can be obtained in a similar way. We have:
(b) $h^{-1}(x)=\frac{2 x+1}{x+1}(x \neq-1)$ and (c) $f^{-1}(x)=\frac{x+1}{2-x}(x \neq 2)$.
3. (i) Similar to above.
(ii) Note that $g(t)=f^{-1}(t)$ where f^{-1} is same as part (i).

Remember you are taking the inverse of the inverse so it must go back to the start, $g^{-1}(t)=\frac{t+1}{3 t+1}=f(t)$.
4. (i) Let $y=\frac{x^{3}+3}{2-x^{3}}$ (provided $2-x^{3} \neq 0$) We need to make x the subject of the formula, $x=\ldots$ Multiply both sides by $2-x^{3}$:

$$
y\left(2-x^{3}\right)=x^{3}+3
$$

Expanding the Left Hand Side gives:

$$
2 y-x^{3} y=x^{3}+3
$$

Collecting the x^{3} 's on one side:

$$
\begin{aligned}
2 y-3 & =x^{3}+x^{3} y \\
& =x^{3}(1+y)
\end{aligned}
$$

How do you find x on its own?
Divide both sides by $(1+y)$ where $y \neq-1$:

$$
x^{3}=\frac{2 y-3}{1+y}
$$

Take the cube root of both sides:

$$
x=\sqrt[3]{\frac{2 y-3}{1+y}}=\left(\frac{2 y-3}{1+y}\right)^{\frac{1}{3}}
$$

Replacing y with x gives the inverse function $f^{-1}(x)=\left(\frac{2 x-3}{1+x}\right)^{\frac{1}{3}}$ (provided $x \neq-1$).
(ii) Note that $g(t)=f^{-1}(t)$ where f^{-1} is same as part (i):

$$
f^{-1}(t)=\left(\frac{2 t-3}{1+t}\right)^{\frac{1}{3}} \quad(\text { provided } \quad 1+t \neq 0)
$$

Hence $g^{-1}(t)$ must reverse the whole process so we end up at the start with

$$
g^{-1}(t)=\frac{t^{3}+3}{2-t^{3}}=f(t) \quad\left(\text { provided } \quad 2-t^{3} \neq 0\right)
$$

5. In both cases we have:

f^{-1} takes a to b but g takes b back to a, so our g^{-1} is the inverse of the inverse, $g^{-1}=\left(f^{-1}\right)^{-1}$.
