

2. Graphs $f(x) = x^2$ and $g(x) = -x^2$ are sketched in Fig 18 of Chapter 2. The graphs are reflections of each other in the horizontal axis.

3. Notice that $(x+1)^2 = x^2 + 2x + 1$ (by (1.13)). Therefore (i) and (ii) are the same graphs. The $(x+1)^2$ graph is the same shape as the x^2 graph but it has been shifted to the left by 1 unit, thus:

(1.13) $(a+b)^2 = a^2 + 2ab + b^2$

7. The graph of $2v^2 - 3$ is similar in shape to the graph of v^2 . The v^2 graph is stretched vertically by 2 and shifted down by 3 to give us the $2v^2 - 3$ graph. Where does $i(v) = 2v^2 - 3$ cross the v axis? At i(v) = 0,

$$2v^{2} - 3 = 0$$

$$2v^{2} = 3$$

$$v^{2} = \frac{3}{2}$$

$$v = \sqrt{\frac{3}{2}}, -\sqrt{\frac{3}{2}}$$
Hence the $2v^{2} - 3$ graph cuts the *t* axis at $\sqrt{\frac{3}{2}}, -\sqrt{\frac{3}{2}}$ and the *i*(*v*) axis at - 3, thus the graph is:

2

8. The graph of $i(R) = \frac{1}{R+5}$ is similar to the graph of $\frac{1}{R}$. How do we adjust the graph of $\frac{1}{R}$ to sketch $i(R) = \frac{1}{R+5}$? Shift $\frac{1}{R}$ to the left by 5 units. Thus we have:

9. The graph of $x(t) = (t-1)^3$ is similar in shape to the t^3 graph. How do we adjust the t^3 graph to obtain a sketch of $x(t) = (t-1)^3$? Shift the graph of t^3 to the right by 1 unit.

0

For (b) and (c) we stretch the resulting graph, $(t-1)^3$, vertically by a factor of 5 for $5(t-1)^3$ graph and a factor of $\frac{1}{2}$ for $\frac{1}{2}(t-1)^3$ graph.

