Complete solutions to Exercise 3(c)

1. (a)

(c)

(d)
(b)

(e)

2. Graphs $f(x)=x^{2}$ and $g(x)=-x^{2}$ are sketched in Fig 18 of Chapter 2. The graphs are reflections of each other in the horizontal axis.
3. Notice that $(x+1)^{2}=x^{2}+2 x+1$ (by (1.13)). Therefore (i) and (ii) are the same graphs. The $(x+1)^{2}$ graph is the same shape as the x^{2} graph but it has been shifted to the left by 1 unit, thus:

4. (a)
(b)

(c)

The f graph is a stretch of the g graph (or vice-versa).
5. (a)

(b)

(c)

6. Substituting $L=0.1$ gives $w(i)=\left(\frac{1}{2} \times 0.1\right) i^{2}=0.05 i^{2}$. Hence the graph:

7. The graph of $2 v^{2}-3$ is similar in shape to the graph of v^{2}. The v^{2} graph is stretched vertically by 2 and shifted down by 3 to give us the $2 v^{2}-3$ graph. Where does $i(v)=2 v^{2}-3$ cross the v axis?
At $i(v)=0$,

$$
\begin{aligned}
2 v^{2}-3 & =0 \\
2 v^{2} & =3 \\
v^{2} & =\frac{3}{2} \\
v & =\sqrt{\frac{3}{2}},-\sqrt{\frac{3}{2}}
\end{aligned}
$$

Hence the $2 v^{2}-3$ graph cuts the t axis at $\sqrt{\frac{3}{2}},-\sqrt{\frac{3}{2}}$ and the $i(v)$ axis at 3 , thus the graph is:

8. The graph of $i(R)=\frac{1}{R+5}$ is similar to the graph of $\frac{1}{R}$. How do we adjust the graph of $\frac{1}{R}$ to sketch $i(R)=\frac{1}{R+5}$?
Shift $\frac{1}{R}$ to the left by 5 units. Thus we have:

9. The graph of $x(t)=(t-1)^{3}$ is similar in shape to the t^{3} graph. How do we adjust the t^{3} graph to obtain a sketch of $x(t)=(t-1)^{3}$?
Shift the graph of t^{3} to the right by 1 unit.
For (b) and (c) we stretch the resulting graph, $(t-1)^{3}$, vertically by a factor of 5 for $5(t-1)^{3}$ graph and a factor of $\frac{1}{2}$ for $\frac{1}{2}(t-1)^{3}$ graph.

