Complete solutions to Exercise 3(d)

1. (i) $f(2 x+3)=(2 x+3)+1=2 x+4$
(ii) $f(x) \cdot g(x)=(x+1)(2 x+3)=\underset{F}{2 x^{2}}+\underset{0}{3 x}+\underset{I}{2 x}+\underset{L}{3}$

$$
=2 x^{2}+5 x+3
$$

(iii) $g-1=(2 x+3)-1=2 x+2$
(iv) $f+g=(x+1)+(2 x+3)=3 x+4$
(v) $f-g=(x+1)-(2 x+3)=x+1-2 x-3=-x-2$
(vi) $\frac{f}{g}=\frac{x+1}{2 x+3} \quad(2 x+3 \neq 0)$
2. (i) $f \circ f=f(f(x))=f(2 x+3)=2(2 x+3)+3$

$$
=4 x+9
$$

(ii) $f(f(f(x)))=f(4 \underset{\uparrow}{4}+9)=2(4 x+9)+3=8 x+21$
because $f(f(x))=4 x+9$ by part (i)
(iii) $f(f(f(-3))) \underset{\substack{\text { by resutt (ii) } \\ \text { with } x=-3}}{\equiv}[8 \times(-3)]+21=-3$
3. (i)

$$
f(0)=\left(a \times 0^{2}\right)+(b \times 0)+c=c
$$

(ii) Replace x with $x+1$ into $f(x)$:

$$
\begin{aligned}
f(x+1) & =a(x+1)^{2}+b(x+1)+c \\
& =a \underbrace{\left(x^{2}+2 x+1\right)}_{\text {by }(1.13)}+b x+b+c \\
& =a x^{2}+2 a x+a+b x+b+c \\
& =a x^{2}+(2 a+b) x+a+b+c
\end{aligned}
$$

(iii) $f(x+1)-f(x)=\underbrace{a x^{2}+2 a x+b x+a+b+c}_{=f(x+1)}-\left(a x^{2}+b x+c\right)$

$$
\begin{aligned}
& =a x^{2}+2 a x+b x+a+b+c-a x^{2}-b x-c \\
& =2 a x+a+b
\end{aligned}
$$

4. (i)

$$
g(g(x))=g(x+1)=(x+1)+1=x+2
$$

(ii)

$$
f(g(x))=f(x+1)=(x+1)^{2} \underset{\text { By }}{\underset{(1.13)}{=}} x^{2}+2 x+1
$$

(iii) $g(f(x))=g\left(x^{2}\right)=x^{2}+1$
5. (i) $f(g(x))=f(x)=x^{2}-1$
(ii) $g(f(x))=g\left(x^{2}-1\right)=x^{2}-1=f(x)$
(iii) Since g is the identity function $f \circ g=g \circ f=f$.

Note: It is always the case if f or g are identity functions then $f \circ g=g \circ f$.
(iv) $g \circ g=g(x)=x$

$$
\begin{equation*}
(a+b)^{2}=a^{2}+2 a b+b^{2} \tag{1.13}
\end{equation*}
$$

(v) We have

$$
\begin{aligned}
f \circ f=f\left(x^{2}-1\right)= & \left(x^{2}-1\right)^{2}-1 \\
& =\underbrace{x^{4}-2 x^{2}+1}_{\text {by }(1.14)}-1 \\
& =x^{4}-2 x^{2} \\
& =x^{2}\left(x^{2}-2\right)
\end{aligned}
$$

6. (i) Let $y=f(x)$ and then transpose to make x the subject:

$$
\begin{aligned}
y & =\frac{6}{3-x} \\
3 y-x y & =6 \\
3 y-6 & =x y \\
x & =\frac{3 y-6}{y} \\
f^{-1}(x) & =\frac{3 x-6}{x} \quad(x \neq 0)
\end{aligned}
$$

(ii)

$$
f \circ f^{-1}=f\left(\frac{3 x-6}{x}\right)=\frac{6}{3-\left(\frac{3 x-6}{x}\right)} \sum_{\substack{\text { multiply numerator and } \\ \text { denominiator by } x}}^{=} \frac{6 x}{3 x-3 x+6}=\frac{6 x}{6}=x
$$

(iii)

$$
f^{-1} \circ f=f^{-1}\left(\frac{6}{3-x}\right)=\frac{3 \cdot\left(\frac{6}{3-x}\right)-6}{6 /(3-x)}
$$

$$
=\frac{18-6(3-x)}{6} \text { (multiply numerator and denominator by } 3-x \text {) }
$$

$$
=\frac{18-18+6 x}{6}=\frac{6 x}{6}=x
$$

7. (i) $f\left(f^{-1}(x)\right)=f\left(\left(\frac{2 x-3}{1+x}\right)^{\frac{1}{3}}\right)=\frac{\left(\frac{2 x-3}{1+x}\right)^{\frac{1}{3} \times 3}+3}{2-\left(\frac{2 x-3}{1+x}\right)^{\frac{1}{3} \times 3}}$
$=\frac{\frac{2 x-3}{1+x}+3}{2-\frac{2 x-3}{1+x}}=\frac{2 x-3+3(1+x)}{2(1+x)-(2 x-3)}$ (multiplying top and bottom by $\left.\quad(1+x)\right)$
$=\frac{2 x-3+3+3 x}{2+2 x-2 x+3}$
$=\frac{5 x}{5}=x$
(ii)

$$
\begin{aligned}
f^{-1} \circ f & =f^{-1}\left(\frac{x^{3}+3}{2-x^{3}}\right) \\
& \left.=\left(\frac{\left.2\left(\frac{x^{3}+3}{2-x^{3}}\right)-3\right)^{\frac{1}{3}}}{1+\frac{x^{3}+3}{2-x^{3}}}\right)^{2}\right)^{\frac{1}{3}} \\
& =\left(\frac{2 x^{3}+6-3\left(2-x^{3}\right)}{2-x^{3}+x^{3}+3}\right)^{\frac{1}{3}} \\
& =\left(\frac{2 x^{3}+6-6+3 x^{3}}{5}\right. \\
& =\left(\frac{5 x^{3}}{5}\right)^{\frac{1}{3}}=x
\end{aligned}
$$

8. We have $f \circ f^{-1}(x)=f^{1} \circ f(x)=x$ (identity function). This is generally the case.
9. (i) $\sqrt{x}-1=f(\sqrt{x})=f(g(x))=f \circ g$ or $\sqrt{x}-1=g(x)-1$. Hence $f \circ g=g-1$
(ii) We have

$$
\sqrt{x-1}=g(x-1)=g(f(x))=g \circ f
$$

(iii) We have

$$
\sqrt{x-1}+7=\underbrace{g \circ}_{\text {by (ii) }} f+7
$$

(iv) $\sqrt{x^{2}-2 x+1}=\sqrt{(x-1)^{2}}=x-1=f$ or $\sqrt{(x-1)^{2}}=g\left((x-1)^{2}\right)=g\left(f^{2}\right)$
10. Very similar to EXAMPLE 16; $F(t)=\frac{t}{5}, R(t)=1-\frac{t}{5}$ and $h(\mathrm{t})=\frac{1}{5-t}$.
11. (a) Substituting $G(s)=\frac{k}{s(s+1)}$ and $\mathrm{N}(\mathrm{s})=0.01$ into

$$
T(s)=\frac{G(s)}{1+N(s) G(s)}
$$

gives

$$
T(s)=\frac{\frac{k}{s(s+1)}}{1+0.01\left(\frac{k}{s(s+1)}\right)}
$$

Simplify (\dagger) by multiplying numerator and denominator by $s(s+1)$:

$$
\begin{aligned}
T(s) & =\frac{k}{s(s+1)+0.01 k} \\
& =\frac{k}{s^{2}+s+0.01 k}
\end{aligned}
$$

(b) Similarly for (b) we multiply numerator and denominator by $s+k_{1}$:

$$
\begin{aligned}
T(s) & =\frac{\frac{1}{\left(s+k_{1}\right)}}{1+k_{2}\left(\frac{1}{s+k_{1}}\right)} \\
& =\frac{1}{\left(s+k_{1}\right)+k_{2}} \\
T(s) & =\frac{1}{s+\left(k_{1}+k_{2}\right)}
\end{aligned}
$$

(c) Note that we can factorize the denominator of G(s):

$$
\begin{aligned}
G(s) & =\frac{s+1}{s^{2}+3 s+2} \\
& =\frac{s+1}{(s+2)(s+1)} \\
G(s) & \left.=\frac{1}{s+2} \text { (cancelling } s+1\right)
\end{aligned}
$$

We have $G(s)=\frac{1}{s+2}$ and $\mathrm{N}(\mathrm{s})=0.3$, this is of the form of (b) where $G(s)=\frac{1}{s+k_{1}}$ and $\mathrm{N}(\mathrm{s})=\mathrm{k}_{2}$. Here we have $\mathrm{k}_{1}=2$ and $\mathrm{k}_{2}=0.3$. Substituting $\mathrm{k}_{1}=2$ and $\mathrm{k}_{2}=0.3$ into the result for (b), $T(s)=\frac{1}{s+\left(k_{1}+k_{2}\right)}$, gives

$$
T(s)=\frac{1}{s+(2+0.3)}=\frac{1}{s+2.3}
$$

12.

$$
\begin{aligned}
G(s)=\frac{10 s}{(s-2)\left(s^{2}+2 s-5\right)} & =\frac{10 s}{s^{3}+2 s^{2}-5 s-2 s^{2}-4 s+10} \\
& =\frac{10 s}{s^{3}-9 s+10} \\
\frac{G(s)}{1+G(s) H(s)} & =\frac{10 s /\left(s^{3}-9 s+10\right)}{1+\left(\frac{10 s}{s^{3}-9 s+10}\right) \times(s+3)} \\
= & \frac{10 s}{\left(s^{3}-9 s+10\right)+10 s(s+3)} \\
= & \frac{10 s}{s^{3}-9 s+10+10 s^{2}+30 s} \\
= & \frac{10 s}{s^{3}+10 s^{2}+21 s+10}
\end{aligned}
$$

