Complete solutions to Exercise 3(f)

1. Using (3.7):

x	$\|1-x\|$	$\|x-1\|$
-3	$\|1-(-3)\|=\|4\|=4$	$\|-3-1\|=\|-4\|=4$
-2	$\|1-(-2)\|=\|3\|=3$	$\|-2-1\|=\|-3\|=3$
-1	$\|1-(-1)\|=\|2\|=2$	$\|-1-1\|=\|-2\|=2$
0	$\|1-0\|=1$	$\|0-1\|=\|-1\|=1$
1	$\|1-1\|=0$	$\|1-1\|=0$
2	$\|1-2\|=\|-1\|=1$	$\|2-1\|=1$
3	$\|1-3\|=\|-2\|=2$	$\|3-1\|=2$

Thus $|1-\mathrm{x}|$ and $|\mathrm{x}-1|$ gives the same graph and it can be shown that $|x-1|=|1-x|$:

2. The graph of $|\mathrm{x}|$ is shifted up or down according to the value of c to give the graph of $|x|+c$.

3. The graph of $|x-3|+1$ has the same shape as the graph of $|x|$ but it has been translated to the right by 3 units, $|x-3|$, and shifted up by 1 unit, $|x-3|+1$. Where does the graph cross the vertical axis?
At $x=0$. Substituting $x=0$ into $|x-3|+1$ gives:

$$
|0-3|+1=|-3|+1=3+1=4
$$

The graph crosses the vertical axis at 4 .

$$
x= \begin{cases}x & \text { if } x \geq 0 \tag{3.7}\\ -x & \text { if } x<0\end{cases}
$$

