Complete Solutions to Exercise 4(c)

1. To find θ we take inverse trigonometric function and then use CAST to find the other angle.
(a) $\theta=\sin ^{-1}(0.707)$ which gives $\theta=45^{\circ}, 180^{\circ}-45^{\circ}=135^{\circ}$
(b) $\theta=\cos ^{-1}(0.5)$ which gives $\theta=60^{\circ}, 360^{\circ}-60^{\circ}=300^{\circ}$
(c) $\theta=\tan ^{-1}(\sqrt{3})$ which gives $\theta=60^{\circ}, 180^{\circ}+60^{\circ}=240^{\circ}$
(d) We have $\tan ^{2}(\theta)=3$, taking the square root of both sides gives $\tan \theta= \pm \sqrt{3}$. If $\tan (\theta)=+\sqrt{3}$ then $\theta=60^{\circ}, 240^{\circ}$ (from (c)).
If $\tan (\theta)=-\sqrt{3}$ then by using a calculator $\theta=-60^{\circ}$. However θ needs to be between 0° and 360°, so $\theta=360^{\circ}-60^{\circ}=300^{\circ}$. The other angle can be found by applying CAST: $\theta=180^{\circ}-60^{\circ}=120^{\circ}$. Thus the angles satisfying the equation are:

$$
\theta=60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}
$$

(e) Let $x=\cos (\theta)$ then we have $x^{2}-x+\frac{1}{4}=0$. How do we solve this equation?

Factorizes into $\left(x-\frac{1}{2}\right)^{2}=0$ which means $x=\frac{1}{2}$ so $\cos (\theta)=\frac{1}{2}$. From (b) we have $\theta=60^{\circ}$ and 300°.
(f) Note that $\sin ^{2}(\theta)=[\sin (\theta)]^{2}$. Factorizing

$$
2 \sin ^{2}(\theta)-3 \sin (\theta)=2[\sin (\theta)]^{2}-3 \sin (\theta)=0
$$

gives:

$$
\begin{aligned}
& (2 \sin (\theta)-3) \sin (\theta)=0 \\
& \sin (\theta)=\frac{3}{2} \quad \text { or } \sin (\theta)=0
\end{aligned}
$$

No angle θ satisfies $\sin (\theta)=\frac{3}{2}$ because the sine function lies between -1 and +1 .
So $\sin (\theta)=0$ which gives $\theta=0^{\circ}, 180^{\circ}$ and 360° (by graph of Fig 20).
(g) By transposing we have $\sin (\theta)=\frac{3}{7}$; taking inverse \sin of both sides gives $\theta=25.38^{\circ}$ and the other angle is $180^{\circ}-25.38^{\circ}=154.62^{\circ}$.
2. (For all solutions to this question, n is any whole number and α is the angle found by using a calculator).
(a) The angle $\alpha=\tan ^{-1}(0.8)=38.66^{\circ}$

By (4.18), the general solution is $\theta=(180 \times n)^{\circ}+38.66^{\circ}$
(b) The angle $\alpha=97.18^{\circ}$. By (4.17) the general solution is

$$
\theta=(360 \times n)^{\circ} \pm 97.18^{\circ}
$$

(c) The angle $\alpha=12.71^{\circ}$. By (4.16) the general solution is

$$
\theta=(180 \times n)^{\circ}+\left[(-1)^{n} \times 12.71\right]
$$

(d) The angle $\alpha=\sin ^{-1}(0.72)=46.05^{\circ}$. By (4.16)

$$
3 \theta=(180 \times n)^{\circ}+\left[(-1)^{n} \times 46.05\right]^{\circ}
$$

$$
\theta=(60 \times n)^{\circ}+\left[(-1)^{n} \times 15.35\right] \quad \text { (dividing by } 3 \text {) }
$$

$$
\begin{align*}
& \theta=(180 \times n)^{\rho}+(-1)^{n} \alpha \tag{4.16}\\
& \theta=(360 \times n)^{\rho} \pm \alpha \tag{4.17}\\
& \theta=(180 \times n)^{o}+\alpha \tag{4.18}
\end{align*}
$$

(e) There is no solution to $\cos \left(2 \theta+60^{\circ}\right)=2$ because the cosine function lies between -1 and +1 .
(f) $\cos \left(2 \theta+60^{\circ}\right)=\frac{1}{2}$. We have $\alpha=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}$, by (4.17),

$$
\begin{aligned}
& 2 \theta+60^{\circ}=(360 \times n)^{\circ} \pm 60^{\circ} \\
& 2 \theta=(360 \times n)^{\circ} \pm 60^{\circ}-60^{\circ} \quad \text { (Subtracting } \\
& =(360 \times n)^{\circ} \text { or }(360 \times n)^{\circ}-120^{\circ} \\
& \\
& \left.\quad \theta=(180 \times n)^{\circ} \text { or }(180 \times n)^{\circ}-60^{\circ} \quad \text { (Dividing by } 2\right)
\end{aligned}
$$

3.(a) Let $x=\tan (\theta)$, then we have by rearranging

$$
\begin{aligned}
& x^{2}-2 x+1=0 \\
& (x-1)^{2}=0 \quad \text { gives } \quad x=1
\end{aligned}
$$

So $\tan (\theta)=1$. [Replacing x with $\tan (\theta)$]. With $\tan (\theta)=1, \alpha=\tan ^{-1}(1)=45^{\circ}$.
By (4.18) the general solution is $\theta=(180 \times n)^{\rho}+45^{\circ}$. Substituting $n=0,1,2$ and 3 gives:

$$
\begin{gathered}
\theta=45^{\circ}, \theta=180^{\circ}+45^{\circ}, \theta=(180 \times 2)^{\circ}+45^{\circ} \text { and } \theta=(180 \times 3)^{\circ}+45^{\circ} \\
\theta=45^{\circ}, 225^{\circ}, 405^{\circ} \text { and } 585^{\circ}
\end{gathered}
$$

(b) $\cos (\theta) \sin (\theta)+\cos (\theta)=0$. Since $\cos (\theta)$ is common we factorize the equation:

$$
\begin{gathered}
(\sin (\theta)+1) \cos (\theta)=0 \\
\cos (\theta)=0 \text { or } \sin (\theta)=-1
\end{gathered}
$$

For $\cos (\theta)=0$, we have $\theta=90^{\circ}, 270^{\circ}$ (by graph of Fig 21(a)).
For $\sin (\theta)=-1, \theta=\sin ^{-1}(-1)=270^{\circ}$. Combining all the angles: $\theta=90^{\circ}, 270^{\circ}$.
(c) Let $x=\cos (\theta)$, then we have

$$
2 x^{2}-4 x-5=0
$$

How do we solve this quadratic equation?
By using (1.16) with $a=2, b=-4$ and $c=-5$:

$$
x=\frac{4 \pm \sqrt{16+40}}{4}=1 \pm \frac{\sqrt{56}}{4}=-0.87 \text { or } 2.87
$$

Replacing x with $\cos (\theta)$ gives

$$
\cos (\theta)=-0.87 \text { or } \cos (\theta)=2.87
$$

$\cos (\theta)=2.87$ is not a valid result because $\cos (\theta)$ lies between -1 and +1 . Hence $\cos (\theta)=-0.87$ and taking inverse cos, $\theta=\cos ^{-1}(-0.87)=150.5^{\circ}$.
(d) Substituting $x=\tan (\theta)$ gives:

$$
x^{2}-x-1=0
$$

We solve this quadratic equation by using (1.16) with $a=1, b=-1$ and $c=-1$:

$$
\begin{aligned}
& x=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2}=-0.62 \text { or } 1.62 \\
& \tan (\theta)=-0.62 \text { or } \tan (\theta)=1.62
\end{aligned}
$$

$$
\begin{align*}
& x=\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a \tag{1.16}\\
& \theta=(180 \times n)^{\circ}+(-1)^{n} \alpha \tag{4.16}\\
& \theta=(360 \times n)^{\rho} \pm \alpha \tag{4.17}\\
& \theta=(180 \times n)^{\circ}+\alpha \tag{4.18}
\end{align*}
$$

With $\tan (\theta)=-0.62, \quad \alpha=\tan ^{-1}(-0.62)=-31.80^{\circ} . \mathrm{By}$ (4.18) the general solution is $\theta=(180 \times n)^{\circ}+\left(-31.80^{\circ}\right)=(180 \times n)^{\circ}-31.80^{\circ}$. Substituting $n=1$ and 2 gives:
$\theta=180^{\circ}-31.80^{\circ}=148.2^{\circ}$ and $\theta=(180 \times 2)^{\circ}-31.80^{\circ}=328.2^{\circ}$ respectively.
With $\tan (\theta)=1.62, \alpha=58.31^{\circ}$. By (4.18) the general solution is
$\theta=(180 \times n)^{\circ}+58.31^{\circ}$. Substituting $n=0$ and 1 gives $\theta=58.31^{\circ}, 238.31^{\circ}$. The result is $\theta=58.31^{\circ}, 148.20^{\circ}, 238.31^{\circ}, 328.20^{\circ}$.
(e) Let $x=\sin (\theta)$ then solving the rearranged equation $x^{2}-6 x+4=0$ gives $x=5.24,0.76$. There is no value of θ such that $\sin (\theta)=5.24$ so $\sin (\theta)=0.76$ Hence applying (4.16) with

$$
\alpha=\sin ^{-1}(0.76)=49.81^{\circ}
$$

gives the general solution:

$$
\theta=(180 \times n)^{\circ}+\left[(-1)^{n} \times 49.81\right]
$$

Substituting $n=0,1,2$ and 3 respectively gives:

$$
\begin{aligned}
& \theta=(180 \times 0)^{\circ}+\left[(-1)^{0} \times 49.81\right], \quad(180 \times 1)^{\circ}+\left[(-1)^{1} \times 49.81\right] \\
& (180 \times 2)^{\circ}+\left[(-1)^{2} \times 49.81\right] \text { and }(180 \times 3)^{\circ}+\left[(-1)^{3} \times 49.81\right]
\end{aligned}
$$

$\theta=49.81^{\circ}, 130.19^{\circ}, 409.81^{\circ}$ and 490.19°.
(f) Let $x=\cos (\theta)$ then we have $x^{2}-10 x+23=0$ which gives

$$
x=3.58, x=6.41
$$

There is no solution to this equation because $x=\cos (\theta)$ can only lie between -1 and +1 .
4. (a) Remember $\cos ^{3}(\theta)=[\cos (\theta)]^{3}$. Taking out a common factor of $\cos (\theta)$ gives $\left(2 \cos ^{2}(\theta)-1\right) \cos (\theta)=0$. Solving for $\cos (\theta)$:

$$
\cos (\theta)=0 \text { or } \cos (\theta)= \pm \frac{1}{\sqrt{2}}
$$

We have $\cos (\theta)=0$ which gives $\theta=90^{\circ}, 270^{\circ}$ and $\cos (\theta)=+\frac{1}{\sqrt{2}}$ gives $\mathrm{q}=45^{\circ}, 315^{\circ}$. For $\cos (\theta)=-\frac{1}{\sqrt{2}}$ gives $\theta=135^{\circ}, 225^{\circ}$.
Combining all the angles: $\theta=45^{\circ}, 90^{\circ}, 135^{\circ}, 225^{\circ}, 270^{\circ}$ and 315°.
(b) Putting $x=\sin (\theta)$ into the rearranged equation

$$
4 \sin ^{2}(\theta)-\sqrt{6} \sin (\theta)+\sqrt{2} \sin (\theta)=0
$$

gives:

$$
\begin{aligned}
& 4 x^{2}-\sqrt{6} x+\sqrt{2} x=0 \\
& x(4 x-\sqrt{6}+\sqrt{2})=0 \\
& x=0 \quad \text { or } x=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

For $\sin (\theta)=0$ gives $\theta=0^{\circ}, 180^{\circ}, 360^{\circ}$. For $\sin (\theta)=\frac{\sqrt{6}-\sqrt{2}}{4}$, we have by using a calculator:

$$
\begin{align*}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{1.16}\\
& \theta=(180 \times n)^{o}+(-1)^{n} \alpha \tag{4.16}\\
& \theta=(180 \times n)^{\circ}+\alpha \tag{4.18}
\end{align*}
$$

$$
\alpha=\sin ^{-1}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=15^{\circ}
$$

Applying CAST gives $\theta=165^{\circ}$. The angles satisfying the given equation are

$$
\theta=0^{\circ}, 15^{\circ}, 165^{\circ}, 180^{\circ}, 360^{\circ} .
$$

(c) Let $x=\cos (\theta), y=\sin (\theta)$ Then we have

$$
\begin{aligned}
& 16 x^{2} y^{2}-12 x^{2}-12 y^{2}+9=0 \\
& \quad\left(4 x^{2}-3\right)\left(4 y^{2}-3\right)=0 \quad(\text { Factorizing) } \\
& x= \pm \frac{\sqrt{3}}{2} \quad y= \pm \frac{\sqrt{3}}{2} \quad \text { (Solving) }
\end{aligned}
$$

Replacing x with $\cos (\theta)$ and ${ }^{y}$ with $\sin (\theta)$:

$$
\begin{array}{lll}
\cos (\theta)=+\frac{\sqrt{3}}{2} & \text { gives } & \theta=30^{\circ}, 330^{\circ} \\
\cos (\theta)=-\frac{\sqrt{3}}{2} & \text { gives } & \theta=150^{\circ}, 210^{\circ} \\
\sin (\theta)=+\frac{\sqrt{3}}{2} & \text { gives } & \theta=60^{\circ}, 120^{\circ} \\
\sin (\theta)=-\frac{\sqrt{3}}{2} & \text { gives } & \theta=240^{\circ}, 300^{\circ} \\
\theta=30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}, 210^{\circ}, 240^{\circ}, 300^{\circ}, 330^{\circ}
\end{array}
$$

