Complete Solutions to Exercise 4(c)

1. To find θ we take inverse trigonometric function and then use CAST to find the other angle.

(a) $\theta = \sin^{-1}(0.707)$ which gives $\theta = 45^{\circ}$, $180^{\circ} - 45^{\circ} = 135^{\circ}$ (b) $\theta = \cos^{-1}(0.5)$ which gives $\theta = 60^{\circ}$, $360^{\circ} - 60^{\circ} = 300^{\circ}$ (c) $\theta = \tan^{-1}(\sqrt{3})$ which gives $\theta = 60^\circ$, $180^\circ + 60^\circ = 240^\circ$ (d) We have $\tan^2(\theta) = 3$, taking the square root of both sides gives $\tan \theta = \pm \sqrt{3}$. If $\tan(\theta) = +\sqrt{3}$ then $\theta = 60^{\circ}$, 240° (from (c)). If $tan(\theta) = -\sqrt{3}$ then by using a calculator $\theta = -60^{\circ}$. However θ needs to be between 0° and 360°, so $\theta = 360^\circ - 60^\circ = 300^\circ$. The other angle can be found by applying CAST: $\theta = 180^{\circ} - 60^{\circ} = 120^{\circ}$. Thus the angles satisfying the equation are: $\theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ (e) Let $x = \cos(\theta)$ then we have $x^2 - x + \frac{1}{4} = 0$. How do we solve this equation? Factorizes into $\left(x - \frac{1}{2}\right)^2 = 0$ which means $x = \frac{1}{2}$ so $\cos(\theta) = \frac{1}{2}$. From (b) we have $\theta = 60^{\circ}$ and 300° . (f) Note that $\sin^2(\theta) = [\sin(\theta)]^2$. Factorizing $2\sin^{2}(\theta) - 3\sin(\theta) = 2\left[\sin(\theta)\right]^{2} - 3\sin(\theta) = 0$ gives: $(2\sin(\theta) - 3)\sin(\theta) = 0$ $\sin(\theta) = \frac{3}{2}$ or $\sin(\theta) = 0$ No angle θ satisfies $\sin(\theta) = \frac{3}{2}$ because the sine function lies between -1 and +1. So $\sin(\theta) = 0$ which gives $\theta = 0^{\circ}$, 180° and 360° (by graph of Fig 20). (g) By transposing we have $\sin(\theta) = \frac{3}{7}$; taking inverse sin of both sides gives $\theta = 25.38^{\circ}$ and the other angle is $180^{\circ} - 25.38^{\circ} = 154.62^{\circ}$. 2. (For all solutions to this question, n is any whole number and α is the angle found by using a calculator). (a) The angle $\alpha = \tan^{-1}(0.8) = 38.66^{\circ}$ By (4.18), the general solution is $\theta = (180 \times n)^{\circ} + 38.66^{\circ}$ (b) The angle $\alpha = 97.18^{\circ}$. By (4.17) the general solution is $\theta = (360 \times n)^{\circ} \pm 97.18^{\circ}$ (c) The angle $\alpha = 12.71^{\circ}$. By (4.16) the general solution is $\theta = (180 \times n)^{\circ} + [(-1)^n \times 12.71]^{\circ}$ (d) The angle $\alpha = \sin^{-1}(0.72) = 46.05^{\circ}$. By (4.16) $3\theta = (180 \times n)^{\circ} + [(-1)^n \times 46.05]^{\circ}$ $\theta = (60 \times n)^{\circ} + \left(-1\right)^{n} \times 15.35^{\circ}$ (dividing by 3)

- (4.16) $\theta = (180 \times n)^{\circ} + (-1)^{n} \alpha$
- (4.17) $\theta = (360 \times n)^{\circ} \pm \alpha$
- (4.18) $\theta = (180 \times n)^{\circ} + \alpha$

(e) There is **no** solution to $cos(2\theta + 60^\circ) = 2$ because the cosine function lies between -1 and +1.

(f)
$$\cos(2\theta + 60^\circ) = \frac{1}{2}$$
. We have $\alpha = \cos^{-1}(\frac{1}{2}) = 60^\circ$, by (4.17),
 $2\theta + 60^\circ = (360 \times n)^\circ \pm 60^\circ$
 $2\theta = (360 \times n)^\circ \pm 60^\circ - 60^\circ$ (Subtracting 60°)
 $= (360 \times n)^\circ$ or $(360 \times n)^\circ - 120^\circ$
 $\theta = (180 \times n)^\circ$ or $(180 \times n)^\circ - 60^\circ$ (Dividing by 2)
3.(a) Let $x = \tan(\theta)$, then we have by rearranging
 $x^2 - 2x + 1 = 0$
 $(x - 1)^2 = 0$ gives $x = 1$
So $\tan(\theta) = 1$. [Replacing x with $\tan(\theta)$]. With $\tan(\theta) = 1$, $\alpha = \tan^{-1}(1) = 45^\circ$.
By (4.18) the general solution is $\theta = (180 \times n)^\circ + 45^\circ$. Substituting
 $n = 0, 1, 2$ and 3 gives:
 $\theta = 45^\circ, \ \theta = 180^\circ + 45^\circ, \ \theta = (180 \times 2)^\circ + 45^\circ \text{ and } \theta = (180 \times 3)^\circ + 45^\circ$
 $\theta = 45^\circ, \ 225^\circ, \ 405^\circ \text{ and } 585^\circ$
(b) $\cos(\theta)\sin(\theta) + \cos(\theta) = 0$. Since $\cos(\theta)$ is common we factorize the equation:
 $(\sin(\theta) + 1)\cos(\theta) = 0$
 $\cos(\theta) = 0$ or $\sin(\theta) = -1$
For $\cos(\theta) = 0$, we have $\theta = 90^\circ, \ 270^\circ$ (by graph of Fig 21(a)).
For $\sin(\theta) = -1, \ \theta = \sin^{-1}(-1) = 270^\circ$. Combining all the angles: $\theta = 90^\circ, \ 270^\circ$.
(c) Let $x = \cos(\theta)$, then we have
 $2x^2 - 4x - 5 = 0$

How do we solve this quadratic equation? By using (1.16) with a = 2, b = -4 and c = -5:

$$x = \frac{4 \pm \sqrt{16 + 40}}{4} = 1 \pm \frac{\sqrt{56}}{4} = -0.87 \text{ or } 2.87$$

Replacing x with $\cos(\theta)$ gives

$$\cos(\theta) = -0.87$$
 or $\cos(\theta) = 2.87$

 $\cos(\theta) = 2.87$ is **not** a valid result because $\cos(\theta)$ lies between -1 and +1. Hence $\cos(\theta) = -0.87$ and taking inverse \cos , $\theta = \cos^{-1}(-0.87) = 150.5^{\circ}$. (d) Substituting $x = \tan(\theta)$ gives:

$$x^2 - x - 1 = 0$$

We solve this quadratic equation by using (1.16) with a = 1, b = -1 and c = -1:

$$x = \frac{1 \pm \sqrt{1+4}}{2} = \frac{1 \pm \sqrt{5}}{2} = -0.62 \text{ or } 1.62$$

 $\tan(\theta) = -0.62$ or $\tan(\theta) = 1.62$

- (1.16) $x = \left(-b \pm \sqrt{b^2 4ac}\right)/2a$
- (4.16) $\theta = (180 \times n)^{\circ} + (-1)^{n} \alpha$
- (4.17) $\theta = (360 \times n)^{\circ} \pm \alpha$
- (4.18) $\theta = (180 \times n)^{\circ} + \alpha$

Solutions 4(c)

3

With $\tan(\theta) = -0.62$, $\alpha = \tan^{-1}(-0.62) = -31.80^{\circ}$. By (4.18) the general solution is $\theta = (180 \times n)^{\circ} + (-31.80^{\circ}) = (180 \times n)^{\circ} - 31.80^{\circ}$. Substituting n = 1 and 2 gives:

 $\theta = 180^{\circ} - 31.80^{\circ} = 148.2^{\circ}$ and $\theta = (180 \times 2)^{\circ} - 31.80^{\circ} = 328.2^{\circ}$ respectively. With $\tan(\theta) = 1.62$, $\alpha = 58.31^{\circ}$. By (4.18) the general solution is

 $\theta = (180 \times n)^{\circ} + 58.31^{\circ}$. Substituting n = 0 and 1 gives $\theta = 58.31^{\circ}$, 238.31°. The result is $\theta = 58.31^{\circ}$, 148.20°, 238.31°, 328.20°.

(e) Let $x = \sin(\theta)$ then solving the rearranged equation $x^2 - 6x + 4 = 0$ gives x = 5.24, 0.76. There is **no** value of θ such that $\sin(\theta) = 5.24$ so $\sin(\theta) = 0.76$ Hence applying (4.16) with

$$\alpha = \sin^{-1}(0.76) = 49.81^{\circ}$$

gives the general solution:

$$\theta = (180 \times n)^{\circ} + \left[(-1)^n \times 49.81 \right]^{\circ}$$

Substituting n = 0, 1, 2 and 3 respectively gives:

$$\theta = (180 \times 0)^{\circ} + [(-1)^{\circ} \times 49.81]^{\circ}, (180 \times 1)^{\circ} + [(-1)^{\circ} \times 49.81]^{\circ}, (180 \times 2)^{\circ} + [(-1)^{2} \times 49.81]^{\circ} \text{ and } (180 \times 3)^{\circ} + [(-1)^{3} \times 49.81]^{\circ}$$

 $\theta = 49.81^{\circ}, 130.19^{\circ}, 409.81^{\circ} \text{ and } 490.19^{\circ}.$

(f) Let $x = \cos(\theta)$ then we have $x^2 - 10x + 23 = 0$ which gives x = 3.58, x = 6.41

There is **no** solution to this equation because $x = cos(\theta)$ can only lie between -1 and +1.

4. (a) Remember $\cos^3(\theta) = [\cos(\theta)]^3$. Taking out a common factor of $\cos(\theta)$ gives $(2\cos^2(\theta)-1)\cos(\theta) = 0$. Solving for $\cos(\theta)$:

$$\cos(\theta) = 0$$
 or $\cos(\theta) = \pm \frac{1}{\sqrt{2}}$

We have $\cos(\theta) = 0$ which gives $\theta = 90^\circ$, 270° and $\cos(\theta) = +\frac{1}{\sqrt{2}}$ gives $q=45^\circ$, 315°. For $\cos(\theta) = -\frac{1}{\sqrt{2}}$ gives $\theta = 135^\circ$, 225°.

Combining all the angles: $\theta = 45^{\circ}, 90^{\circ}, 135^{\circ}, 225^{\circ}, 270^{\circ}$ and 315° . (b) Putting $x = \sin(\theta)$ into the rearranged equation

$$4\sin^2(\theta) - \sqrt{6}\sin(\theta) + \sqrt{2}\sin(\theta) = 0$$

gives:

$$4x^{2} - \sqrt{6}x + \sqrt{2}x = 0$$

$$x(4x - \sqrt{6} + \sqrt{2}) = 0$$

$$x = 0 \text{ or } x = \frac{\sqrt{6} - \sqrt{2}}{4}$$

For $\sin(\theta) = 0$ gives $\theta = 0^\circ$, 180°, 360°. For $\sin(\theta) = \frac{\sqrt{6} - \sqrt{2}}{4}$, we have by using a calculator:

- $(1.16) x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- (4.16) $\theta = (180 \times n)^{\circ} + (-1)^{n} \alpha$
- (4.18) $\theta = (180 \times n)^{\circ} + \alpha$

Solutions 4(c)

$$\alpha = \sin^{-1}\left(\frac{\sqrt{6} - \sqrt{2}}{4}\right) = 15^{\circ}$$

Applying CAST gives $\theta = 165^{\circ}$. The angles satisfying the given equation are $\theta = 0^{\circ}, 15^{\circ}, 165^{\circ}, 180^{\circ}, 360^{\circ}$. (c) Let $x = \cos(\theta)$, $y = \sin(\theta)$ Then we have $16x^{2}y^{2} - 12x^{2} - 12y^{2} + 9 = 0$ $(4x^{2} - 3)(4y^{2} - 3) = 0$ (Factorizing) $x = \pm \frac{\sqrt{3}}{2}$ $y = \pm \frac{\sqrt{3}}{2}$ (Solving) Replacing x with $\cos(\theta)$ and y with $\sin(\theta)$: $\cos(\theta) = +\frac{\sqrt{3}}{2}$ gives $\theta = 30^{\circ}, 330^{\circ}$ $\cos(\theta) = -\frac{\sqrt{3}}{2}$ gives $\theta = 150^{\circ}, 210^{\circ}$ $\sin(\theta) = +\frac{\sqrt{3}}{2}$ gives $\theta = 60^{\circ}, 120^{\circ}$ $\sin(\theta) = -\frac{\sqrt{3}}{2}$ gives $\theta = 240^{\circ}, 300^{\circ}$ $\theta = 30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}, 210^{\circ}, 240^{\circ}, 300^{\circ}, 330^{\circ}$