Complete Solutions to Exercise 4(d)

1.

Angle $C=180^{\circ}-40^{\circ}-110^{\circ}=30^{\circ}$
Substituting $A=110^{\circ}, C=30^{\circ}$ and $c=105$ into (4.19) gives:

$$
\frac{a}{\sin \left(110^{\circ}\right)}=\frac{105}{\sin \left(30^{\circ}\right)}=210
$$

$$
a=210 \times \sin \left(110^{\circ}\right)=197 \mathrm{~mm} \quad(3 \text { s.f. })
$$

Similarly $b=210 \times \sin \left(40^{\circ}\right)=135 \mathrm{~mm}$ (3 s.f.)
2.

We need to apply the cosine rule (4.20) because we are given two sides and the angle between them. We can rewrite O as C and call the side opposite this angle, c.
Substituting $b=90, c=60$ and $A=22^{\circ}$ into (4.20):

$$
\begin{aligned}
a^{2} & =90^{2}+60^{2}-\left[2 \times 90 \times 60 \times \cos \left(22^{\circ}\right)\right] \\
& =1686 \\
a & =\sqrt{1686}=41 \mathrm{~mm} \quad(2 \text { s.f. })
\end{aligned}
$$

3. We have

How can we find angle A?
We apply the cosine rule (4.20) or (4.23) because we have 3 sides and no angle.
Substituting $a=6, \quad b=5$ and $c=2$ into (4.20) gives:

$$
\begin{aligned}
& 6^{2}=5^{2}+2^{2}-[2 \times 5 \times 2 \times \cos (\mathrm{A})] \\
& 36=29-20 \cos (\mathrm{~A})
\end{aligned}
$$

Rearranging to make $\cos (\mathrm{A})$ the subject : $\cos (\mathrm{A})=\frac{29-36}{20}=-\frac{7}{20}$
How do we find angle A?
Take the inverse cos of both sides: $\mathrm{A}=\cos ^{-1}\left(-\frac{7}{20}\right)=110^{\circ}$

$$
\begin{align*}
& \frac{a}{\sin (\mathrm{~A})}=\frac{c}{\sin (\mathrm{C})} \tag{4.19}\\
& a^{2}=b^{2}+c^{2}-2 b c \cos (\mathrm{~A})
\end{align*}
$$

4. We need to find length AB in the following:

By (4.19) we have

$$
\begin{align*}
\frac{c}{\sin (\mathrm{C})} & =\frac{1.9}{\sin \left(50^{\circ}\right)}=2.48 \\
c & =2.48 \times \sin (\mathrm{C}) \tag{*}
\end{align*}
$$

We don't know the size of angle C , so how do we find length c ?
We can find angle B first by using the sine rule, (4.19), again:

$$
\begin{aligned}
& \frac{1.4}{\sin (B)}=2.48 \\
& B=\sin ^{-1}\left(\frac{1.4}{2.48}\right)=34.37^{\circ}
\end{aligned}
$$

To find angle $\mathrm{C}: ~ C=180^{\circ}-50^{\circ}-34.37^{\circ}=95.63^{\circ}$
Substituting $C=95.63^{\circ}$ into $\left(^{*}\right)$ gives $c=2.48 \times \sin \left(95.63^{\circ}\right)=2.47 \mathrm{~m}$ (2 d.p.)
(Alternatively we could use the cosine formula $c^{2}=2 b c \cos (A)+a^{2}-b^{2}$ and then solve for c)
5. Need to find length a and b in the following:

We need to find angle C : angle $C=180^{\circ}-40^{\circ}-45^{\circ}=95^{\circ}$
Substituting $B=45^{\circ}, C=95^{\circ}$ and $c=10$ into the sine rule, (4.19):

$$
\begin{aligned}
& \frac{b}{\sin \left(45^{\circ}\right)}=\frac{10}{\sin \left(95^{\circ}\right)}=10.038 \\
& b=10.038 \times \sin \left(45^{\circ}\right)=7.10 \mathrm{~m} \quad \text { (3 s.f.) }
\end{aligned}
$$

Similarly $a=10.038 \times \sin \left(40^{\circ}\right)=6.45 \mathrm{~m}$ (3 s.f.)
6 . Since we are given 3 sides we use the cosine rule. Applying (4.23) :

$$
\cos (\mathrm{A})=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Substituting $a=200, b=60$ and $c=180$ into this formula gives

$$
\cos (\mathrm{A})=\frac{60^{2}+180^{2}-200^{2}}{2 \times 60 \times 180}=-0.185
$$

So angle $A=\cos ^{-1}(-0.185)=101^{\circ}$.
7.

By (4.19) we have

So $a=2 \sqrt{2} \sin (\mathrm{~A})$
(\dagger)
The problem is we do not know the size of angle A. Using (4.19) with $b=1$ gives:

$$
\frac{1}{\sin (\mathrm{~B})}=\frac{a}{\sin (\mathrm{~A})}=2 \sqrt{2} \text { transposing gives } \quad \sin (\mathrm{B})=\frac{1}{2 \sqrt{2}}
$$

To find angle B we take inverse sin of both sides:

$$
B=\sin ^{-1}\left(\frac{1}{2 \sqrt{2}}\right)=20.70^{\circ}
$$

Hence angle $\mathrm{A}=180^{\circ}-20.7^{\circ}-45^{\circ}=114.3^{\circ}$
Substituting this into ${ }^{(\dagger)}$ gives $a=2 \sqrt{2} \sin \left(114.3^{\circ}\right)=2.6 \mathrm{~m}$ (2 s.f.)
8. $\frac{1}{8}$ of a revolution is $\frac{1}{8} \times 360^{\circ}=45^{\circ}$.

Same as the previous solution with $b=30 \mathrm{~mm}$ and $c=60 \mathrm{~mm}$. Length
$\mathrm{OB}=77 \mathrm{~mm}$. (Side c is opposite O).
9.

Since we are given 2 sides and the angle between them we use the cosine rule (4.22).

$$
\begin{aligned}
c^{2} & =405^{2}+291^{2}-\left[2 \times 291 \times 405 \times \cos \left(79^{\circ}\right)\right] \\
& =203730 \\
c & =\sqrt{203730}=451 \mathrm{~m}(3 \text { s.f. })
\end{aligned}
$$

10. Consider triangle ODE to find length DE. Angle $\mathrm{D}=180^{\circ}-70^{\circ}-30^{\circ}=80^{\circ}$.

Applying (4.19) gives:

$$
\begin{aligned}
& \frac{D E}{\sin \left(30^{\circ}\right)}=\frac{2.5}{\sin \left(80^{\circ}\right)}=2.539 \\
& D E=2.539 \times \sin \left(30^{\circ}\right)=1.27 \mathrm{~m} \quad(3 \text { s.f. })
\end{aligned}
$$

Similarly OD $=2.39 \mathrm{~m}$.
Now consider triangle ODC to find length CD. How can we find length CD?
Angle DOC $=90^{\circ}-30^{\circ}=60^{\circ}$. We use the cosine rule (4.22) because we are given 2 sides and the angle (DOC) between them:

$$
\begin{aligned}
& \mathrm{CD}^{2}=2.39^{2}+3^{2}-\left[2 \times 3 \times 2.39 \times \cos \left(60^{\circ}\right)\right]=7.542 \\
& \mathrm{CD}=\sqrt{7.542}=2.75 \mathrm{~m} \quad(3 \mathrm{s.f.})
\end{aligned}
$$

$$
\begin{equation*}
a / \sin (\mathrm{A})=b / \sin (\mathrm{B})=c / \sin (\mathrm{C}) \tag{4.19}
\end{equation*}
$$

$$
\begin{equation*}
c^{2}=a^{2}+b^{2}-2 a b \cos (\mathrm{C}) \tag{4.22}
\end{equation*}
$$

11. (a) We have

Labelling according to the sine rule: $a=6, \mathrm{~A}=30^{\circ}$ and $b=10$. To find angle B we apply (4.19)

$$
\begin{aligned}
\frac{10}{\sin (B)}= & \frac{6}{\sin \left(30^{\circ}\right)}=12 \\
& \sin (B)=\frac{10}{12} \text { implies that } B \quad=\sin ^{-1}\left(\frac{10}{12}\right)=56.44^{\circ}
\end{aligned}
$$

Also $B=180^{\circ}-56.44^{\circ}=123.56^{\circ}$. We consider the 2 cases.
CASE I. With $B=56.44^{\circ}$ we have

$$
\text { angle } \mathrm{C}=180^{\circ}-\left(30^{\circ}+56.44^{\circ}\right)=93.56^{\circ}
$$

To find length c we apply the sine rule again:

$$
\begin{aligned}
\frac{c}{\sin \left(93.56^{\circ}\right)} & =12 \\
c & =12 \times \sin \left(93.56^{\circ}\right)=11.98
\end{aligned}
$$

We have angle $\mathrm{B}=56.44^{\circ}$, angle $\mathrm{C}=93.56^{\circ}$ and length $\mathrm{AB}=11.98$. This triangle is shown above.
CASE II. With $\mathrm{B}=123.56^{\circ}$. Similar to case I.

$$
\text { angle } \mathrm{C}=180^{\circ}-\left(123.56^{\circ}+30^{\circ}\right)=26.44^{\circ}
$$

As before

$$
c=12 \times \sin \left(26.44^{\circ}\right)=5.34
$$

Thus angle $B=123.56^{\circ}$, angle $C=26.44^{\circ}$ and length $A B=5.34$.
(b) We have

Angle A can be found by using the sine rule:

$$
\begin{aligned}
\frac{9}{\sin (\mathrm{~A})}= & \frac{7}{\sin \left(35^{\circ}\right)}=12.204 \\
& \sin (\mathrm{~A})=\frac{9}{12.204} \text { gives } \mathrm{A}=\sin ^{-1}\left(\frac{9}{12.204}\right)=47.52^{\circ}
\end{aligned}
$$

Also angle $\mathrm{A}=180^{\circ}-47.52^{\circ}=132.48^{\circ}$. We have 2 cases $\mathrm{A}=47.52^{\circ}$ or $\mathrm{A}=132.48^{\circ}$ The remaining procedure is similar to (a).
CASE I. Angle $\mathrm{A}=47.52^{\circ}$, angle $\mathrm{B}=97.48^{\circ}$ and $\mathrm{AC}=12.1$. (See diagram).
CASE II. Angle $\mathrm{A}=132.48^{\circ}$, angle $\mathrm{B}=12.52^{\circ}$ and $\mathrm{AC}=2.65$.

$$
\begin{equation*}
\frac{a}{\sin (\mathrm{~A})}=\frac{b}{\sin (\mathrm{~B})}=\frac{c}{\sin (\mathrm{C})} \tag{4.19}
\end{equation*}
$$

