Complete solutions to Exercise 4(f)

In these solutions A =amplitude, $T=$ period and $f=$ frequency.
1 . We use (4.29) and (4.30) to find the period and frequency respectively.
(a) $A=10$. With $\omega=2$ we have $T=\frac{2 \pi}{2}=\pi, f=\frac{1}{\pi}$
(b) $A=\frac{1}{10}$. With $\omega=\frac{1}{10}$ we have $T=\frac{2 \pi}{(1 / 10)}=20 \pi, f=\frac{1}{20 \pi}$
(c) $A=H$. With $\omega=\pi$ we have $T=\frac{2 \pi}{\pi}=2, f=\frac{1}{2}=0.5$
(d) $A=\frac{1}{\pi}$. With $\omega=\pi^{2}$ we have $T=\frac{2 \pi}{\pi^{2}}=\frac{2}{\pi}, f=\frac{\pi}{2}$
(e) $A=10000$. In this case $\omega=\frac{1}{\pi^{2}}, T=\frac{2 \pi}{\left(1 / \pi^{2}\right)}=2 \pi^{3}, f=\frac{1}{2 \pi^{3}}$
(f) $A=\frac{1}{\pi e}, T=\frac{2 \pi}{(1 / \pi e)}=2 \pi^{2} e, f=\frac{1}{2 \pi^{2} e}$
(g) $A=220, T=\frac{2 \pi}{1000 \pi}=0.002, f=500$
(h) $A=1$. With $\omega=\frac{1}{(\pi / 6)}$ we have:

$$
T=\frac{2 \pi}{1 /(\pi / 6)}=2 \pi \div \frac{1}{(\pi / 6)}=2 \pi \times \frac{\pi}{6}=\frac{\pi^{2}}{3}, f=\frac{3}{\pi^{2}}
$$

2. To find the period we use (4.29) and for the phase we use (4.34).
(a) $A=4, \quad T=\frac{2 \pi}{1}=2 \pi, \quad$ phase $=\frac{\pi}{3} \mathrm{rad}$ lead
(b) $A=1, \quad T=\frac{2 \pi}{314.159}=0.02, \quad$ phase $=0.25 \mathrm{rad} \mathrm{lag}$
(c) We have $20 \sin \left[\left(100 t+\frac{1}{5}\right) \pi\right]=20 \sin \left[(100 \pi) t+\frac{\pi}{5}\right]$. Thus $\omega=100 \pi$:

$$
A=20, \quad T=\frac{2 \pi}{100 \pi}=0.02, \quad \text { phase }=\frac{\pi}{5} \mathrm{rad} \text { lead }
$$

(d) $A=315, \quad T=\frac{2 \pi}{7}, \quad$ phase $=30^{\circ}$ lead
(e) Amplitude is the maximum displacement $A=7-5=2$ and $\omega=2 \pi$:

$$
T=\frac{2 \pi}{2 \pi}=1, \text { phase }=\frac{\pi}{2} \mathrm{rad} \text { lag }
$$

3. We use (4.32) and (4.33) with $\alpha=$ phase and $\omega=$ angular velocity:
(a) 0
(b) $\frac{\pi}{7}$ lead
(c) $\frac{\pi}{4}$ lead

$$
\begin{equation*}
f=\frac{1}{T} \tag{4.30}
\end{equation*}
$$

time displacement $=\alpha / \omega$
$R \sin (\omega t \pm \alpha)$, the phase $=\alpha$
(d) We can rewrite $\cos [(100 t-1) \pi]$ as $\cos (100 \pi t-\pi)$. So $\omega=100 \pi$ and $\alpha=\pi$ and the time displacement is $\frac{\pi}{100 \pi}=0.01 \mathrm{lag}$.
(e) $\frac{\pi}{2}$ lag
(f) For $\sin \left(\frac{t}{10}-\pi\right)$ we have $\alpha=\pi$ and $\omega=\frac{1}{10}$, thus time displacement $=\frac{\pi}{(1 / 10)}=10 \pi$ lag
(g) $\frac{(\pi / 10)}{(1 / 10)}=\pi$ lag
(h) $\frac{\left(1 / e^{2} \pi^{2}\right)}{\left(1 / e^{2} \pi^{2}\right)}=1$ lead
4. We use (4.32) and (4.33):
(a) $A \sin \left(5 t+\frac{\pi}{5}\right)$ leads $A \sin (5 t)$ by $\frac{\pi}{25}$ and $A \sin \left(5 t-\frac{\pi}{7}\right)$ lags $A \sin (5 t)$ by $\frac{\pi}{35}$. time displacement $=\frac{\pi}{25}+\frac{\pi}{35}=\frac{12 \pi}{175}$
$A \sin \left(5 t+\frac{\pi}{5}\right)$ leads $A \sin \left(5 t-\frac{\pi}{7}\right)$ by $\frac{12 \pi}{175}$.
(b) $\cos (7 t-0.26)$ lags $\cos (7 t)$ by $\frac{0.26}{7}=0.037$ and $5 \cos (7 t+\pi)$ leads $\cos (7 t)$ by $\pi / 7$:

$$
\text { time displacement }=\pi / 7+0.037=0.487
$$

$5 \cos (7 t+\pi)$ leads $\cos (7 t-0.26)$ by 0.487 . Notice that the difference in amplitude between the waves plays no part in establishing the time displacement.
(c) $\cos \left(2 t+\frac{\pi}{2}\right)$ leads $\cos (2 t)$ by $\frac{\pi}{4}$ and $\cos \left(2 t+\frac{\pi}{3}\right)$ leads $\cos (2 t)$ by $\frac{\pi}{6}$

$$
\text { time displacement }=\frac{\pi}{4}-\frac{\pi}{6}=\frac{\pi}{12}
$$

$\cos \left(2 t+\frac{\pi}{2}\right)$ leads $\cos \left(2 t+\frac{\pi}{3}\right)$ by $\frac{\pi}{12}$.
5. (a) $A=2, \quad T=\pi$ so $\frac{2 \pi}{\omega}=\pi$ s transposing gives $\omega=2 \mathrm{rad} / \mathrm{s}$. We have the cosine graph because it has a maximum at $t=0$. Thus $y=2 \cos (2 t)$.
(b) $A=7, \quad T=\frac{\pi}{4}$ s (There are 4 cycles in π seconds). By (4.29) we have
$\frac{2 \pi}{\omega}=\frac{\pi}{4}$ gives $\omega=8 \mathrm{rad} / \mathrm{s}$. The equation of the waveform is $y=7 \sin (8 t)$.
(c) $A=10$ and it is the sine graph shifted to the right by π rads. Since the graph completes one cycle in 2π seconds, $T=2 \pi \mathrm{~s}$:
$2 \pi / \omega=2 \pi$ gives $\omega=1 \mathrm{rad} / \mathrm{s}$ and the equation of the waveform is $y=10 \sin (t-\pi)$. The answers to question 5 are not unique because sine and cosine graphs have the same shape and are out of phase by $\pi / 2$ radians. Moreover they repeat the same wave after 2π radians. For example another answer to (c) is $y=10 \cos \left(t+\frac{\pi}{2}\right)$.
6. $5 \cos (\omega t)$ is the cosine graph, cutting the t - axis when $5 \cos (\omega t)=0$ which gives $\cos (\omega t)=0$. By examining the cosine graph of Fig 53 in chapter 4 we notice that it cuts the t-axis at $\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}$. Thus:

$$
\begin{aligned}
& \omega t=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2} \\
& t=\frac{\pi}{2 \omega}, \frac{3 \pi}{2 \omega}, \frac{5 \pi}{2 \omega}, \frac{7 \pi}{2 \omega} \quad \text { (Dividing by } \quad \omega \text {) }
\end{aligned}
$$

$5 \cos (\omega t)$ has a peak when $\cos (\omega t)=1$. Similarly by looking at the graph of Fig 53:

$$
\begin{array}{ll}
\omega t=0,2 \pi, 4 \pi & \text { (points of peaks) } \\
t=0, \frac{2 \pi}{\omega}, \frac{4 \pi}{\omega} & \text { (Dividing by } \omega)
\end{array}
$$

$5 \cos (\omega t)$ is minimum when $\cos (\omega t)=-1$, similarly this is where:

$$
\begin{aligned}
& \omega t=\pi, 3 \pi \\
& t=\frac{\pi}{\omega}, \frac{3 \pi}{\omega}
\end{aligned}
$$

Combining all this gives the graph:

7. (a) $\omega=3$ gives period $T=\frac{2 \pi}{3} \mathrm{~s}$. We have the sine graph with amplitude 7 and period $\frac{2 \pi}{3}$ that is the graph completes one cycle over $\frac{2 \pi}{3} s$.

(b) $\omega=\frac{1}{2}, T=\frac{2 \pi}{(1 / 2)}=4 \pi$. The graph of $2 \cos (t / 2)$ is the cosine graph but stretched so that it makes only one cycle over a period of 4π and has an amplitude of 2 :

(c) The graph $3 \sin \left(t+\frac{\pi}{3}\right)$ is the graph $3 \sin (t)$ shifted to the left by $\frac{\pi}{3} \mathrm{rad}$ and has an amplitude of 3:

8. (a) $A=5, \quad \omega=120 \pi$ gives $T=\frac{2 \pi}{120 \pi}=\frac{1}{60}=16.67 \mathrm{~ms}$, frequency $f=60 \mathrm{~Hz}$

$$
\text { phase angle }=0.52 \mathrm{rad} \underset{\text { by }}{\overline{(4.27)}}=\left(\frac{0.52 \times 180}{\pi}\right)^{\circ}=29.79^{\circ}
$$

(b) (i) Substituting $t=0$, into $i=5 \sin (120 \pi t+0.52)$ gives $i=5 \sin (0.52)=2.48 \mathrm{~mA}$
(ii) Substituting $t=\frac{1}{60}, i=5 \sin (2 \pi+0.52)=2.48 \mathrm{~mA}$
(iii) Substituting $t=\frac{1}{30}, i=5 \sin (4 \pi+0.52)=2.48 \mathrm{~mA}$
(iv) Substituting $t=\frac{1}{15}, i=5 \sin (6 \pi+0.52)=2.48 \mathrm{~mA}$

Same answer because the sine function has period 2π, that is the sine graph is repeated every 2π seconds.
(c) Maximum occurs when $\sin (120 \pi t+0.52)=1$ (because the maximum value for the sine function is 1). Taking inverse sin of both sides:

$$
\begin{aligned}
& 120 \pi t+0.52=\sin ^{-1}(1)=\frac{\pi}{2} \\
& t=\frac{(\pi / 2)-0.52}{120 \pi}=2.79 \times 10^{-3} s=2.79 \mathrm{~ms}
\end{aligned}
$$

(d) The time displacement is obtained by using (4.32) with $\alpha=0.52$ and $\omega=120 \pi$: time displacement $=\frac{0.52}{120 \pi}=1.38 \mathrm{~ms}$ lead
(e) By using the information obtained we have:

