Complete solutions to Exercise 4(i)

1. Use (4.75) on question 1.
(i)

$$
\begin{aligned}
& R=\sqrt{10^{2}+10^{2}}=\sqrt{200} \text { and } \beta=\tan ^{-1}\left(\frac{10}{10}\right)=45^{\circ} \\
& 10 \cos (\omega t)+10 \sin (\omega t) \underset{\text { by }}{=} \sqrt{24.75)}
\end{aligned}
$$

(ii) Using (4.75) with $a=\sqrt{2}$ and $b=2$ we have

$$
\begin{gathered}
R=\sqrt{2^{2}+(\sqrt{2})^{2}}=\sqrt{6} \\
\beta=\tan ^{-1}\left(\frac{2}{\sqrt{2}}\right)=54.74^{\circ} \\
\sqrt{2} \cos (\omega t)+2 \sin (\omega t)=\sqrt{6} \cos \left(\omega t-54.74^{\circ}\right)
\end{gathered}
$$

(iii) We have $-2 \sin (\omega t)+5 \cos (\omega t)$. Using (4.75) with $a=5$ and $b=-2$:

$$
\begin{aligned}
& R=\sqrt{(-2)^{2}+5^{2}}=\sqrt{29} \text { and } \beta=\tan ^{-1}\left(-\frac{2}{5}\right)=-21.80^{\circ} \\
& -2 \sin (\omega t)+5 \cos (\omega t)=\sqrt{29} \cos \left(\omega t+21.80^{\circ}\right)
\end{aligned}
$$

(iv) We have $R=\sqrt{2}, \beta=\tan ^{-1}\left(-\frac{1}{1}\right)=-45^{\circ}$. Therefore

$$
\cos (\omega t)-\sin (\omega t)=\sqrt{2} \cos \left(\omega t+45^{\circ}\right)
$$

(v) We have $R=2$, the angle $=\tan ^{-1}(\sqrt{3})=60^{\circ}$, but $2 \cos \left(60^{\circ}\right)$ is positive and a is negative so angle $\beta=60^{\circ}+180^{\circ}=240^{\circ}$:

$$
-\cos (\omega t)-\sqrt{3} \sin (\omega t)=2 \cos \left(\omega t-240^{\circ}\right)
$$

(vi) $R=\sqrt{50}$, angle $=\tan ^{-1}(-1)=-45^{\circ}$, but $\cos \left(-45^{\circ}\right)$ is positive and a is negative so angle $\beta=-45^{\circ}+180^{\circ}=135^{\circ}$:

$$
-5 \cos (\omega t)+5 \sin (\omega t)=\sqrt{50} \cos \left(\omega t-135^{\circ}\right)
$$

2. We first convert each function into the form $R \cos (\theta \pm \beta)$ by using (4.75): (i) We have

$$
\begin{aligned}
& R=\sqrt{2} \text { and } \beta=\tan ^{-1}(1)=45^{\circ} \\
& \sin (\theta)+\cos (\theta)=\sqrt{2} \cos \left(\theta-45^{\circ}\right)
\end{aligned}
$$

$\sqrt{2} \cos \left(\theta-45^{\circ}\right)$ is the graph of $\sqrt{2} \cos (\theta)$ but lagging by 45° :

(ii) Applying (4.75) with $a=\sqrt{3}$ and $b=-1$ gives:

$$
\begin{aligned}
& R=2 \text { and } \beta=\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)=-30^{\circ} \\
& \sqrt{3} \cos (\theta)-\sin (\theta)=2 \cos \left(\theta+30^{\circ}\right)
\end{aligned}
$$

(4.75) $a \cos (\theta)+b \sin (\theta)=R \cos (\theta-\beta)$ with $R=\sqrt{a^{2}+b^{2}}$ and $\beta=\tan ^{-1}\left(\frac{b}{a}\right)$
$2 \cos \left(\theta+30^{\circ}\right)$ is the graph of $2 \cos (\theta)$ but leading by 30° :

(iii) Similarly $R=\sqrt{5}$ and $\beta=\tan ^{-1}\left(-\frac{1}{2}\right)=-26.57^{\circ}$.

We have $\cos (-26.57)$ is positive but $a=-2$. Hence
$\beta=-26.57^{\circ}+180^{\circ}=153.43^{\circ}$

$$
\sin (\theta)-2 \cos (\theta)=\sqrt{5} \cos \left(\theta-153.43^{\circ}\right)
$$

$\sqrt{5} \cos \left(\theta-153.43^{\circ}\right)$ is the graph of $\sqrt{5} \cos (\theta)$ but lagging by 153.43° :

3. Applying (4.75) with $a=3$ and $b=\sqrt{3}$ we have:

$$
R=\sqrt{3^{2}+(\sqrt{3})^{2}}=\sqrt{12} \text { and } \beta=\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)=-60^{\circ}=-\frac{\pi}{3} \mathrm{rad}
$$

Hence

$$
i=3 \cos (3 t)-\sqrt{3} \sin (3 t)=\sqrt{12} \cos \left(3 t+\frac{\pi}{3}\right)
$$

Amplitude $=\sqrt{12}$ and period $=\frac{2 \pi}{3}$ because $\omega=3$.
4. Using $l=1, g=10$ we have $\omega=\sqrt{\frac{10}{1}}=\sqrt{10}$.

Substituting $A=1, B=0.5$ and $\omega=\sqrt{10}$ into $\theta=A \cos (\omega t)+B \sin (\omega t)$ gives:

$$
\theta=\cos (\sqrt{10} t)+0.5 \sin (\sqrt{10} t)
$$

We use (4.75) to put θ into $R \cos (\omega t \pm \beta)$ form with $a=1, b=0.5$:

$$
R=\sqrt{1^{2}+0.5^{2}}=\sqrt{1.25}=1.12, \beta=\tan ^{-1}\left(\frac{0.5}{1}\right)=26.57^{\circ}
$$

Hence $\theta=1.12 \cos \left(\sqrt{10} t-26.57^{\circ}\right)$. Amplitude $=1.12$, period $=2 \pi / \sqrt{10}=1.99 \mathrm{~s}$ and phase $=26.57^{\circ}$ lagging.
(4.76) $a \cos (\theta)+b \sin (\theta)=R \cos (\theta-\beta)$ with $R=\sqrt{a^{2}+b^{2}}$ and $\beta=\tan ^{-1}\left(\frac{b}{a}\right)$
5. (i) By substituting $A=\sqrt{3}, B=1$ and $\omega=10$ into $x=A \cos (\omega t)+B \sin (\omega t)$ we have:

$$
x=\sqrt{3} \cos (10 t)+\sin (10 t)
$$

Applying (4.75) with $a=\sqrt{3}$ and $b=1$ gives:

$$
R=\sqrt{(\sqrt{3})^{2}+1^{2}}=2 \text { and } \beta=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}
$$

Hence $x=2 \cos \left(10 t-\frac{\pi}{6}\right)$. So the amplitude $=2$.
(ii) For sketch we need to find the period and time displacement of $x=2 \cos \left(10 t-\frac{\pi}{6}\right)$. The period $T=\frac{2 \pi}{10}=\frac{\pi}{5} \mathrm{~s}$ and time displacement $=\frac{\pi / 6}{10}=\frac{\pi}{60} \mathrm{~s}$.
So $x=2 \cos \left(10 t-\frac{\pi}{6}\right)$ lags $2 \cos (10 t)$ by $\frac{\pi}{60} \mathrm{~s}$.

6. Using (4.75) we have $r=4 \sqrt{2} \cos \left(2 t-\frac{\pi}{4}\right)$.

Amplitude $=4 \sqrt{2}$, period $=\frac{2 \pi}{2}=\pi \mathrm{s}$. For sketch we have to evaluate the time displacement:

$$
\text { time displacement } \underset{\text { by }}{=}=\frac{\pi / 43)}{2}=\frac{\pi}{8} \mathrm{~s}
$$

$r=4 \sqrt{2} \cos \left(2 t-\frac{\pi}{4}\right)$ lags $4 \sqrt{2} \cos (2 t)$ by $\frac{\pi}{8} s$.

$$
\begin{equation*}
\text { time displacement }=\frac{\alpha}{\omega} \tag{4.33}
\end{equation*}
$$

(4.76) $a \cos (\theta)+b \sin (\theta)=R \cos (\theta-\beta)$ with $R=\sqrt{a^{2}+b^{2}}$ and $\beta=\tan ^{-1}\left(\frac{b}{a}\right)$

