$$\sqrt{3}\cos(\theta) - \sin(\theta) = 2\cos(\theta + 30^\circ)$$

(4.75) $a\cos(\theta) + b\sin(\theta) = R\cos(\theta - \beta)$ with $R = \sqrt{a^2 + b^2}$ and $\beta = \tan^{-1}\left(\frac{b}{a}\right)$

 $2\cos(\theta + 30^\circ)$ is the graph of $2\cos(\theta)$ but leading by 30° :

$$R = \sqrt{1^2 + 0.5^2} = \sqrt{1.25} = 1.12, \ \beta = \tan^{-1}\left(\frac{0.5}{1}\right) = 26.57^{\circ}$$

Hence $\theta = 1.12\cos(\sqrt{10}t - 26.57^{\circ})$ Amplitude = 1.12, period = $2\pi/\sqrt{10} = 1.99s$ and phase = 26.57° lagging.

(4.76) $a\cos(\theta) + b\sin(\theta) = R\cos(\theta - \beta)$ with $R = \sqrt{a^2 + b^2}$ and $\beta = \tan^{-1}\left(\frac{b}{a}\right)$

5. (i) By substituting $A = \sqrt{3}$, B = 1 and $\omega = 10$ into $x = A\cos(\omega t) + B\sin(\omega t)$ we have:

$$x = \sqrt{3} \cos(10t) + \sin(10t)$$
Applying (4.75) with $a = \sqrt{3}$ and $b = 1$ gives:
 $R = \sqrt{(\sqrt{3})^2 + 1^2} = 2$ and $\beta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$
Hence $x = 2\cos\left(10t - \frac{\pi}{6}\right)$. So the amplitude = 2.
(ii) For sketch we need to find the period and time displacement of
 $x = 2\cos\left(10t - \frac{\pi}{6}\right)$. The period $T = \frac{2\pi}{10} = \frac{\pi}{5}$ s and time displacement $= \frac{\pi/6}{10} = \frac{\pi}{60}$ s.
So $x = 2\cos\left(10t - \frac{\pi}{6}\right)$ lags $2\cos(10t)$ by $\frac{\pi}{60}$ s.
 $x(\text{mm})$
 $2\cos(10t) - \frac{\pi}{5} - \frac{\pi}{5} + \frac{\pi}{60}$

6. Using (4.75) we have $r = 4\sqrt{2}\cos\left(2t - \frac{\pi}{4}\right)$.

Amplitude = $4\sqrt{2}$, period = $\frac{2\pi}{2} = \pi s$. For sketch we have to evaluate the time displacement:

time displacement
$$\lim_{by (4.33)} \frac{\pi}{2} = \frac{\pi}{8} s$$

$$r = 4\sqrt{2}\cos\left(2t - \frac{\pi}{4}\right) \text{ lags } 4\sqrt{2}\cos(2t) \text{ by } \frac{\pi}{8}s.$$

$$r(\text{cm})$$

$$4\sqrt{2}$$

$$4\sqrt{2}\cos(2t)$$

$$1 + 4\sqrt{2}\cos\left(2t - \frac{\pi}{4}\right)$$

$$\pi + \frac{\pi}{8}$$

(4.33) time displacement=
$$\frac{\alpha}{\omega}$$

(4.76) $a\cos(\theta) + b\sin(\theta) = R\cos(\theta - \beta)$ with $R = \sqrt{a^2 + b^2}$ and $\beta = \tan^{-1}\left(\frac{b}{a}\right)$