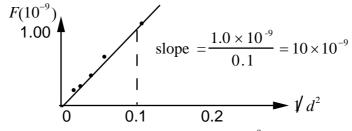

Complete solutions to Exercise 5(d)

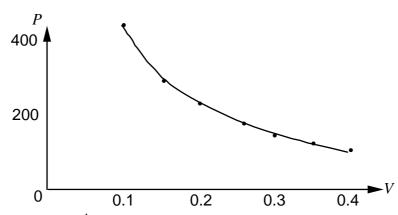
1. We plot A against r^2 :

r^2	4	9	16	25	36
\overline{A}	12.57	28.27	50.27	78.54	113.10

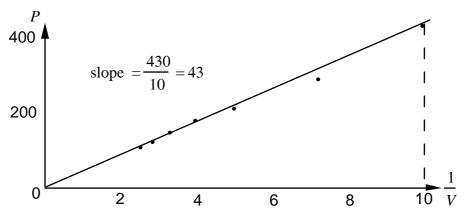


The intercept = 0 and gradient = 3.14. So k = 3.14 and b = 0. The results in the table seem to be obtained from the formula for the area of a circle πr^2 .

2. Since the rule is $F = \frac{k}{d^2}$ we plot the graph of F against $\frac{1}{d^2}$:


d^2	4	9	16	25	36	49
$1/d^2$	0.250	0.111	0.063	0.040	0.027	0.020
\overline{F}	2.510	1.110	0.630	0.400	0.280	0.200

We plot $1/d^2$ horizontally against F vertically.


The gradient = k, so $k = 10 \times 10^{-9}$. Hence $F = \frac{10 \times 10^{-9}}{d^2}$.

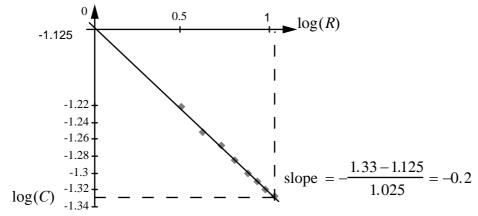
3. (i)

(ii) We tabulate P and 1/V:

								_
	1/ <i>V</i>	10.00	6.67	5.00	4.00	3.33	2.86	2.50
	P	416	277	208	166	139	119	104

(iii) P against 1/V is a straight line through the origin, so the intercept is equal to zero, hence $P = \frac{k}{V}$ where k is the gradient. Since k = 43 we have

$$P = \frac{43}{V}$$


4. Taking $\log s$ of $C = kR^n$ gives:

$$\log(C) = \log(kR^n) \underset{\text{by (5.17)}}{=} \log(R^n) + \log(k)$$

$$\log(C) = \underbrace{n\log(R)}_{\text{by }(5.19)} + \log(k)$$

We plot log(C) vertically against log(R) horizontally:

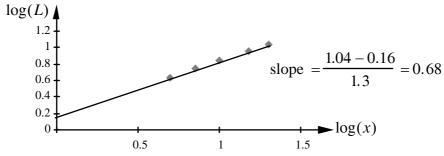
	<u> </u>			/ /				
log(R)	0.48	0.60	0.70	0.78	0.85	0.90	0.95	1.00
$\log(C)$	-1.221	-1.252	-1.268	-1.284	-1.301	-1.310	-1.319	-1.328

We have n = gradient = -0.2. What is the value of k? Well

$$log(k) = -1.125$$
 (vertical intercept)
 $k = 10^{-1.125} = 0.075$

Checking the fitted parameters by calculation is useful. As a check the values of C using $0.075R^{-0.2}$ for R=3, 6 and 10 gives 0.060, 0.052, 0.047 respectively.

$$(5.17) \qquad \log(AB) = \log(A) + \log(B)$$


$$\log(A^n) = n\log(A)$$

5. Taking $\log s$ of $L = kx^n$ gives:

$$\log(L) = \log(kx^n)$$
$$= n\log(x) + \log(k)$$

Plot $\log(L)$ against $\log(x)$:

log(x)	0.70	0.85	1.00	1.18	1.30		
$\log(L)$	0.64	0.74	0.84	0.96	1.04		

Since we have a straight line so the results obey

$$L = kx^n$$

where n = slope = 0.54 and

$$\log(k) = 0.164$$

$$k = 10^{0.164} = 1.46$$

Hence $L = 1.46x^{0.68}$.

As a check:

X	5.00	7.00	10.00	15.00	20.00
L (given in	4.39	5.49	6.95	9.12	11.05
question)					
My L	4.33	5.44	6.92	9.11	11.06