Complete solutions to Exercise 7(c)

1. Expanding out the brackets gives:

When

$$y = 8x^{2} - x^{4}$$

$$\frac{dy}{dx} = 16x - 4x^{3} = 4x(4 - x^{2})$$
[Factorizing]

For stationary points $4x(4-x^2)=0$. This gives x=0 or $4-x^2=0$, $x^2=4$, $x=\pm 2$

$$-x^2 = 0, x^2 = 4, x = \pm 2$$

$$x = 0, \quad y = 0$$

$$x = 2, \quad y = (8 \times 2^{2}) - 2^{4} = 16$$

$$x = -2, \quad y = (8 \times (-2)^{2}) - (-2)^{4} = 16$$

(0,0), (2,16) and (-2,16) are stationary points of y. How do we distinguish which one of these is a local maximum or local minimum?

Use (7.7) or (7.8) for x = 0, x = 2 and x = -2:

$$\frac{dy}{dx} = 4x\left(4 - x^2\right)$$

For
$$x < 0$$
, $\frac{dy}{dx} = (-)(+) < 0$ and for $x > 0$, $\frac{dy}{dx} = (+)(+) > 0$

Hence by (7.8) the stationary point (0,0) is a local minimum. For x = 2;

If
$$x < 2$$
, then $\frac{dy}{dx} = (+)(+) > 0$. If $x > 2$, then $\frac{dy}{dx} = (+)(-) < 0$.
By (7.7) the stationary point (2,16) is a local maximum. For $x = -2$;
If $x < -2$ then $\frac{dy}{dx} = (-)(-) > 0$. If $x > -2$ then $\frac{dy}{dx} = (-)(+) < 0$.

By (7.7) the stationary point (-2,16) is a local maximum. You can try particular values close to these stationary points.

2. First we need to find the stationary points by differentiating and putting the result to zero. .

We differentiate
$$a = \frac{10r+1}{5r^2+3150}$$
 by the quotient rule, (6.32):
 $u = 10r+1$ $v = 5r^2+3150$
 $u' = 10$ $v' = 10r$
 $\frac{da}{dr} = \frac{10(5r^2+3150)-(10r+1)10r}{(5r^2+3150)^2}$
 $= \frac{50r^2+31500-100r^2-10r}{(5r^2+3150)^2} = \frac{31500-10r-50r^2}{(5r^2+3150)^2}$

For $\frac{da}{dr} = 0$ we have $31500 - 10r - 50r^2 = 0$ Divide both sides by 10:

$$3150 - r - 5r^{2} = 0$$

5r^{2} + r - 3150 = 0 [Multiply by -1]

 $(u/v)' = (u'v - uv')/v^2$ (6.32)

Solutions 7(c)

Solving this quadratic equation; substituting a = 5, b = 1 and c = -3150 into (1.16):

$$r = \frac{-1 \pm \sqrt{1^2 + (4 \times 5 \times 3150)}}{10} = 25 \text{ or } -25.2$$

The gear ratio r = 25.

Thus r = 25 gives a stationary point of *a*, but how do we know that this value of *r* gives maximum acceleration?

We can use the second derivative test but we have

$$\frac{da}{dr} = \frac{31500 - 10r - 50r^2}{\left(5r^2 + 3150\right)^2}$$

and differentiating this expression seems horrendous. Easier to use the first derivative test (7.7).

The denominator of $\frac{da}{dr}$ is positive, so we only need to examine the sign of the numerator for r < 25 and r > 25. For r < 25, try r = 24:

$$31500 - (10 \times 24) - (50 \times 24^2) = 2460 > 0$$
, so $\frac{da}{dr} > 0$

For r > 25, try r = 26:

$$31500 - (10 \times 26) - (50 \times 26^2) = -2560 < 0$$
, so $\frac{da}{dr} < 0$

By (7.7) we have maximum acceleration at r = 25. 3. We have

$$P = \frac{V^2 R_L}{(R+R_L)^2}$$

By (6.32)
$$\frac{dP}{dR_L} = \frac{V^2 (R+R_L)^2 - 2V^2 R_L (R+R_L)}{(R+R_L)^4}$$
$$= \frac{V^2 (R+R_L) [V^2 (R+R_L) - 2V^2 R_L]}{(R+R_L)^4}$$
$$= \frac{V^2 R + V^2 R_L - 2V^2 R_L}{(R+R_L)^3} \qquad [\text{Cancelling } (R+R_L)]$$
$$= \frac{V^2 R - V^2 R_L}{(R+R_L)^3} \qquad [\text{Simplifying Numerator}]$$
$$= \frac{dP}{dR_L} = \frac{V^2 (R-R_L)}{(R+R_L)^3}$$
The numerator $V^2 (R-R_L) = 0$ gives $\frac{dP}{dR_L} = 0$. Hence $R - R_L = 0$, since $V \neq 0$

otherwise we would have no power.

$$(1.16) x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(6.32)
$$(u/v)' = (u'v - uv')/v^2$$

Solutions 7(c)

To show $R = R_L$ produces maximum power, we can use the first derivative test (7.7) because it is painless compared to differentiating

$$\frac{dP}{dR_L} = \frac{V^2 \left(R - R_L\right)}{\left(R + R_L\right)^3}$$

Only need to inspect the sign of $R - R_L$ because the remaining terms are positive.

If
$$R_L < R$$
 then $R - R_L > 0$ so $\frac{dP}{dR_L} > 0$.
If $R_L > R$ then $R - R_L < 0$ so $\frac{dP}{dR_L} < 0$.

By (7.7), $R = R_L$ gives maximum power transfer. 4. We have

$$E = \frac{Vb}{ba-a^2} = Vb(ba-a^2)^{-1}$$

Differentiating

$$\frac{dE}{da} = -Vb(ba - a^2)^{-2}(b - 2a) = \frac{-Vb(b - 2a)}{(ba - a^2)^2}$$
$$\frac{dE}{da} = \frac{Vb(2a - b)}{(ba - a^2)^2} \qquad \left(\begin{array}{c} \text{taking out a negative sign} \\ \text{from } (2a - b) \end{array}\right)$$

For stationary point, $\frac{dE}{da} = 0$ so the numerator = 0: Vb(2a-b) = 0

$$2a - b = 0$$
$$a = \frac{b}{2}$$

How can we show that $a = \frac{b}{2}$ produces minimum *E*? Use the first derivative test (7.8):

$$\frac{dE}{da} = \frac{Vb(2a-b)}{\left(ba-a^2\right)^2}$$

We only need to check the sign of 2a - b because the remaining terms are positive. If $a < \frac{b}{2}$ then 2a - b < 0, so $\frac{dE}{da} < 0$. If $a > \frac{b}{2}$ then 2a - b > 0, so $\frac{dE}{da} > 0$. By (7.8), $a = \frac{b}{2}$ gives the minimum electric stress. 5. The maximum value is $E = 2\pi fk$ because cos function lies between -1 and +1 $(-1 \le \cos(2\pi ft) \le 1)$.