## Complete solutions to Exercise 7(c)

1. Expanding out the brackets gives:

$$
\begin{aligned}
& y=8 x^{2}-x^{4} \\
& \frac{d y}{d x}=16 x-4 x^{3}=4 x\left(4-x^{2}\right) \quad[\text { Factorizing }]
\end{aligned}
$$

For stationary points $4 x\left(4-x^{2}\right)=0$. This gives $x=0$ or

$$
4-x^{2}=0, x^{2}=4, x= \pm 2
$$

When $x=0, \quad y=0$

$$
\begin{aligned}
& x=2, \quad y=\left(8 \times 2^{2}\right)-2^{4}=16 \\
& x=-2, \quad y=\left(8 \times(-2)^{2}\right)-(-2)^{4}=16
\end{aligned}
$$

$(0,0),(2,16)$ and $(-2,16)$ are stationary points of $y$. How do we distinguish which one of these is a local maximum or local minimum?
Use (7.7) or (7.8) for $x=0, x=2$ and $x=-2$ :

$$
\frac{d y}{d x}=4 x\left(4-x^{2}\right)
$$

For $x<0, \frac{d y}{d x}=(-)(+)<0$ and for $x>0, \frac{d y}{d x}=(+)(+)>0$.
Hence by (7.8) the stationary point $(0,0)$ is a local minimum.
For $x=2$;
If $x<2$, then $\frac{d y}{d x}=(+)(+)>0$. If $x>2$, then $\frac{d y}{d x}=(+)(-)<0$.
By (7.7) the stationary point $(2,16)$ is a local maximum. For $x=-2$;
If $x<-2$ then $\frac{d y}{d x}=(-)(-)>0$. If $x>-2$ then $\frac{d y}{d x}=(-)(+)<0$.
By (7.7) the stationary point $(-2,16)$ is a local maximum. You can try particular values close to these stationary points.
2. First we need to find the stationary points by differentiating and putting the result to zero.
We differentiate $a=\frac{10 r+1}{5 r^{2}+3150}$ by the quotient rule, (6.32):

$$
\begin{aligned}
u & =10 r+1 \quad v=5 r^{2}+3150 \\
u^{\prime} & =10 \quad v^{\prime}=10 r \\
\frac{d a}{d r} & =\frac{10\left(5 r^{2}+3150\right)-(10 r+1) 10 r}{\left(5 r^{2}+3150\right)^{2}} \\
& =\frac{50 r^{2}+31500-100 r^{2}-10 r}{\left(5 r^{2}+3150\right)^{2}}=\frac{31500-10 r-50 r^{2}}{\left(5 r^{2}+3150\right)^{2}}
\end{aligned}
$$

For $\frac{d a}{d r}=0$ we have $31500-10 r-50 r^{2}=0$
Divide both sides by 10 :

$$
\begin{aligned}
& 3150-r-5 r^{2}=0 \\
& 5 r^{2}+r-3150=0 \quad[\text { Multiply by }-1]
\end{aligned}
$$

$$
\begin{equation*}
(u / v)^{\prime}=\left(u^{\prime} v-u v^{\prime}\right) / v^{2} \tag{6.32}
\end{equation*}
$$

Solving this quadratic equation; substituting $a=5, b=1$ and $c=-3150$ into (1.16):

$$
r=\frac{-1 \pm \sqrt{1^{2}+(4 \times 5 \times 3150)}}{10}=25 \text { or }-25.2
$$

The gear ratio $r=25$.
Thus $r=25$ gives a stationary point of $a$, but how do we know that this value of $r$ gives maximum acceleration?
We can use the second derivative test but we have

$$
\frac{d a}{d r}=\frac{31500-10 r-50 r^{2}}{\left(5 r^{2}+3150\right)^{2}}
$$

and differentiating this expression seems horrendous. Easier to use the first derivative test (7.7).
The denominator of $\frac{d a}{d r}$ is positive, so we only need to examine the sign of the numerator for $r<25$ and $r>25$.
For $r<25$, try $r=24$ :

$$
31500-(10 \times 24)-\left(50 \times 24^{2}\right)=2460>0, \text { so } \frac{d a}{d r}>0
$$

For $r>25$, try $r=26$ :

$$
31500-(10 \times 26)-\left(50 \times 26^{2}\right)=-2560<0, \text { so } \frac{d a}{d r}<0
$$

By (7.7) we have maximum acceleration at $r=25$.
3. We have

By (6.32)

$$
\begin{aligned}
& P=\frac{V^{2} R_{L}}{\left(R+R_{L}\right)^{2}} \\
& \begin{aligned}
\frac{d P}{d R_{L}} & =\frac{V^{2}\left(R+R_{L}\right)^{2}-2 V^{2} R_{L}\left(R+R_{L}\right)}{\left(R+R_{L}\right)^{4}} \\
& =\frac{\left(R+R_{L}\right)\left[V^{2}\left(R+R_{L}\right)-2 V^{2} R_{L}\right]}{\left(R+R_{L}\right)^{4}} \\
& \left.=\frac{V^{2} R+V^{2} R_{L}-2 V^{2} R_{L}}{\left(R+R_{L}\right)^{3}} \quad \text { [Cancelling }\left(R+R_{L}\right)\right] \\
& =\frac{V^{2} R-V^{2} R_{L}}{\left(R+R_{L}\right)^{3}} \quad \text { [Simplifying Numerator] } \\
\frac{d P}{d R_{L}} & =\frac{V^{2}\left(R-R_{L}\right)}{\left(R+R_{L}\right)^{3}}
\end{aligned}
\end{aligned}
$$

The numerator $V^{2}\left(R-R_{L}\right)=0$ gives $\frac{d P}{d R_{L}}=0$. Hence $R-R_{L}=0$, since $V \neq 0$ otherwise we would have no power.

$$
\begin{align*}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}  \tag{1.16}\\
& (u / v)^{\prime}=\left(u^{\prime} v-u v^{\prime}\right) / v^{2} \tag{6.32}
\end{align*}
$$

To show $R=R_{L}$ produces maximum power, we can use the first derivative test (7.7) because it is painless compared to differentiating

$$
\frac{d P}{d R_{L}}=\frac{V^{2}\left(R-R_{L}\right)}{\left(R+R_{L}\right)^{3}}
$$

Only need to inspect the sign of $R-R_{L}$ because the remaining terms are positive.
If $R_{L}<R$ then $R-R_{L}>0$ so $\frac{d P}{d R_{L}}>0$.
If $R_{L}>R$ then $R-R_{L}<0$ so $\frac{d P}{d R_{L}}<0$.
By (7.7), $R=R_{L}$ gives maximum power transfer.
4. We have

$$
E=\frac{V b}{b a-a^{2}}=V b\left(b a-a^{2}\right)^{-1}
$$

Differentiating

$$
\begin{aligned}
& \frac{d E}{d a}=-V b\left(b a-a^{2}\right)^{-2}(b-2 a)=\frac{-V b(b-2 a)}{\left(b a-a^{2}\right)^{2}} \\
& \left.\frac{d E}{d a}=\frac{V b(2 a-b)}{\left(b a-a^{2}\right)^{2}} \quad \quad \begin{array}{l}
\text { taking out a negative sign } \\
\text { from }(2 a-b)
\end{array}\right)
\end{aligned}
$$

For stationary point, $\frac{d E}{d a}=0$ so the numerator $=0$ :

$$
\begin{array}{r}
V b(2 a-b)=0 \\
2 a-b=0 \\
a=\frac{b}{2}
\end{array}
$$

How can we show that $a=\frac{b}{2}$ produces minimum $E$ ?
Use the first derivative test (7.8):

$$
\frac{d E}{d a}=\frac{V b(2 a-b)}{\left(b a-a^{2}\right)^{2}}
$$

We only need to check the sign of $2 a-b$ because the remaining terms are positive.
If $a<\frac{b}{2}$ then $2 a-b<0$, so $\frac{d E}{d a}<0$.
If $a>\frac{b}{2}$ then $2 a-b>0$, so $\frac{d E}{d a}>0$.
By (7.8), $a=\frac{b}{2}$ gives the minimum electric stress.
5. The maximum value is $E=2 \pi f k$ because cos function lies between -1 and +1 $(-1 \leq \cos (2 \pi f t) \leq 1)$.

