Complete solutions to Exercise 7(d)

1 (i) For $s=0$ we have:

$$
\begin{aligned}
& s=t^{2}-4 t+3=0 \\
& (t-3)(t-1)=0 \quad \text { [Factorizing] } \\
& t=1 \mathrm{~s}, t=3 \mathrm{~s} \text { gives zero displacement }
\end{aligned}
$$

(ii) $s=t^{2}-4 t+3, v=\frac{d s}{d t}=2 t-4, a=\frac{d^{2} s}{d t^{2}}=2 \mathrm{~m} / \mathrm{s}^{2}$
2.

$$
\begin{align*}
& h=25 t-4.9 t^{2} \\
& v=\frac{d h}{d t}=25-9.8 t \\
& a=\frac{d^{2} h}{d t^{2}}=-9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{align*}
$$

Note constant acceleration. The maximum height is reached by the particle when $\frac{d h}{d t}=0$ and $\frac{d^{2} h}{d t^{2}}<0$. We already have $\frac{d^{2} h}{d t^{2}}=-9.8<0$.

$$
25-9.8 t=0 \text { gives } t=\frac{25}{9.8}=2.55 \mathrm{~s}
$$

By (7.2), when $t=2.55 s$ the maximum height is reached. So the maximum height can be found by substituting $t=2.55$ into (\dagger):

$$
h=(25 \times 2.55)-\left(4.9 \times 2.55^{2}\right)=31.9 \mathrm{~m}
$$

3. We have $s=3 t^{3}-9 t^{2}+10$:

$$
\begin{gathered}
v=\frac{d s}{d t}=9 t^{2}-18 t \\
9 t^{2}-18 t=0, t(9 t-18)=0 \text { gives } t=0 \mathrm{~s} \text { or } t=2 \mathrm{~s} \\
a=\frac{d v}{d t}=\frac{d}{d t}\left(9 t^{2}-18 t\right)=18 t-18 \\
18 t-18=0 \text { gives } t=1 \mathrm{~s}
\end{gathered}
$$

4. We have:

$$
\begin{aligned}
& \quad s=3 t^{3}-10 t^{2}+t-10 \\
& v=\frac{d s}{d t}=9 t^{2}-20 t+1 \\
& a=\frac{d^{2} s}{d t^{2}}=18 t-20
\end{aligned}
$$

5. From $s=t^{3}-6 t^{2}+12 t$ we have

$$
\begin{aligned}
v & =\frac{d s}{d t}=3 t^{2}-12 t+12 \\
& =3\left(t^{2}-4 t+4\right) \quad \text { [Factorizing] } \\
& =3(t-2)^{2}
\end{aligned}
$$

By using the section on completing the square of chapter 2, we know the minimum velocity occurs at $t=2$ and has a value of $v=0 \mathrm{~m} / \mathrm{s}$. Also when
(7.2) $\quad h^{\prime}=0, h^{\prime \prime}<0$ maximum
$t=0, v=3(0-2)^{2}=12 \mathrm{~m} / \mathrm{s}$. We have:

6. Differentiating $s=t^{3}-12 t^{2}+18 t$ gives:

$$
\begin{equation*}
v=\frac{d s}{d t}=3 t^{2}-24 t+18=3\left(t^{2}-8 t+6\right) \tag{*}
\end{equation*}
$$

To find the max, min points of v, we can complete the square on $(*)$.

$$
v=3\left(t^{2}-8 t+6\right)=3(t-4)^{2}-30
$$

We have a min at $t=4$ with a velocity $=-30 \mathrm{~m} / \mathrm{s}$.
When $t=0, v=18 \mathrm{~m} / \mathrm{s}$. Also we can find t when $v=0$. For $\left({ }^{*}\right)$ to be zero we have

$$
\begin{aligned}
3(t-4)^{2}-30 & =0 \\
(t-4)^{2} & =\frac{30}{3}=10 \\
t & =4 \pm \sqrt{10}
\end{aligned}
$$

Hence $v=0$ at $t=4+\sqrt{10}, t=4-\sqrt{10}$. Combining the above:

7. We have

$$
s=v^{-1}, \frac{d s}{d v}=-v^{-2}=-\frac{1}{v^{2}}:
$$

8. We have

$$
\begin{array}{rlr}
\theta & =t^{3}-80 \pi t & \\
\omega=\frac{d \theta}{d t}=3 t^{2}-80 \pi & \text { [Differentiating] } \\
\alpha=\frac{d^{2} \theta}{d t^{2}}=6 t & \text { [Differentiating] }
\end{array}
$$

At $t=1, \omega=3 .(1)^{2}-80 \pi=-248 \mathrm{rad} / \mathrm{s}$ and $\alpha=6 \mathrm{rad} / \mathrm{s}^{2}$.
9. Similar to EXAMPLE 14. (i) By (7.12), we need to differentiate θ twice to obtain α.
$\theta=\frac{1}{4} \sin \left(2 t+\frac{\pi}{6}\right), \frac{d \theta}{d t}=\frac{2}{4} \cos \left(2 t+\frac{\pi}{6}\right)=\frac{1}{2} \cos \left(2 t+\frac{\pi}{6}\right), \frac{d^{2} \theta}{d t^{2}}=-\frac{2}{2} \sin \left(2 t+\frac{\pi}{6}\right)$
(ii) For $\alpha=0$ we have

$$
\begin{aligned}
& -\sin \left(2 t+\frac{\pi}{6}\right)=0 \\
& \sin \left(2 t+\frac{\pi}{6}\right)=0 \\
& 2 t+\frac{\pi}{6}=\sin ^{-1}(0)=\pi \\
& 2 t=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}, t=\frac{5 \pi}{12} s
\end{aligned}
$$

10. The MAPLE output is on Web site.
