Complete solutions to Miscellaneous Intro

1. What does $1mm^3$ mean? $1mm^3 = 1mm \times 1mm \times 1mm$ Since 1000mm = 1m so 1mm = 0.001m $1mm^3 = 1mm \times 1mm \times 1mm = 0.001m \times 0.001m \times 0.001m$

 $=1 \times 10^{-9} m^3$

2. (a) $5^3 = 5 \times 5 \times 5 = 125$ (b) $\sqrt{100} = 10$

(c) We can either use a calculator to evaluate $\sqrt[3]{-8}$ or we know $2 \times 2 \times 2 = 8$ and so $(-2) \times (-2) \times (-2) = -8$. Thus

$$\sqrt[3]{-8} = -2$$

(d)
$$\sqrt{\frac{196}{49}} = \frac{\sqrt{196}}{\sqrt{49}} = \pm \frac{14}{7} = (14 \div 7) = 2$$

(e) In the case $\sqrt{12^2 + 5^2}$ we cannot take the square root of each individual term. We first evaluate $12^2 + 5^2$ and then take the square root.

$$\sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13$$

3. (a) To add fractions $\frac{2}{3} + \frac{3}{5}$ we have to find the lowest common multiple of the denominators 3 and 5. Since both these numbers are prime the lowest common multiple is $3 \times 5 = 15$.

$$\frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15}$$
$$\frac{3}{5} = \frac{3 \times 3}{5 \times 3} = \frac{9}{15}$$

Replacing the original fractions, $\frac{2}{3}$ and $\frac{3}{5}$, with equivalent fractions,

 $\frac{10}{15}$ and $\frac{9}{15}$ respectively, gives:

$$\frac{2}{3} + \frac{3}{5} = \frac{10}{15} + \frac{9}{15} = \frac{10+9}{15} = \frac{19}{15}$$

Of course the numbers 19 and 15 have no whole number which is a common factor so it cannot be reduced any further.

(b) How do we multiply fractions?

Multiply the numerators and multiply the denominators:

$$\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3 \times 5} = \frac{8}{15}$$

(c) How do we divide fractions?

We turn the second fraction upside down and multiply:

$$\frac{2}{3} \div \frac{3}{5} = \frac{2}{3} \times \frac{5}{3} = \frac{2 \times 5}{3 \times 3} = \frac{10}{9}$$

4. (a) (i) 3.1415926 = 3.142 (3 d.p.) (ii) 3.1415926 = 3.14 (3 s.f.) (b) We first evaluate $\sqrt{10}$ on a calculator: $\sqrt{10} = 3.162278$ (6 d.p.) (i) $\sqrt{10} = 3.16$ (2 d.p.) (ii) $\sqrt{10} = 3.162$ (3 d.p.) (c) (i) 1.6449 = 1.64 (2 d.p.) (ii) 1.6449 = 1.645 (3 d.p.) 1

(d) First we calculate 16^5 on a calculator: $16^5 = 1048576$ (i) $16^5 = 1000000$ (1 s.f.) (ii) 1050000 (3 s.f.) (e) How do we evaluate $2^{2^4} + 1$ on a calculator?

Using a calculator, $2^4 = 16$. We have

$$2^{2^{4}} + 1 = 2^{16} + 1$$

= 65536 + 1
= 65537

(i)
$$2^{2^4} + 1 = 65500$$
 (3 s.f.) (ii) $2^{2^4} + 1 = 66000$ (2 s.f.)

5. For this question we use BROIDMAS and a calculator: (All solutions are correct to 2 d.p.).

(a)
$$\frac{\pi}{4} + 1 = (\pi \div 4) + 1 = 1.79$$

$$\frac{-(-7) \pm \sqrt{(-7)^2 - (4 \times 1 \times 12)}}{2} = \frac{7 \pm \sqrt{49 - 48}}{2}$$
$$= \frac{7 \pm \sqrt{1}}{2}$$
$$= \frac{7 \pm 1}{2}$$
$$= \frac{7 \pm 1}{2}$$
$$= \frac{7 \pm 1}{2} \text{ or } \frac{7 - 1}{2}$$
$$= \frac{8}{2} \text{ or } \frac{6}{2}$$
$$= 4 \text{ or } 3 = 4.00 \text{ or } 3.00$$

(c) We first evaluate the square root of $(30 \times 5) + 1$ and then multiply the result by $\frac{2}{3}$:

$$\frac{2}{3}\sqrt{(30\times5)+1} = \frac{2}{3}\sqrt{151} = \frac{2}{3}\times\sqrt{151}$$
$$= \frac{2}{3}\times12.288$$
$$= 8.19$$

(d) We first evaluate the brackets (BROIDMAS) and then take the result to the power of 5. To get the final answer we multiply by
$$\sqrt{10\pi}$$
:

$$\left(\frac{5}{2.718}\right)^5 \sqrt{10\pi} = (1.840)^5 \sqrt{10\pi}$$
$$= 21.067 \times \sqrt{10 \times \pi}$$
$$= 21.067 \times \sqrt{31.416}$$
$$= 21.067 \times 5.605$$
$$= 118.08$$

6. Need to use the Exp or EE button on your calculator for this question. The Exp or EE button gives 10^{index} :

(a)
$$\frac{1}{2\pi \times 50 \times 3 \times 10^{-6}} = \frac{1}{9.425 \times 10^{-4}}$$
 then press $\frac{1}{x}$ or x^{-1} button to give the result 1061.03 (2 d.p.)
(b) $\frac{(5 \times 10^{6}) \pm \sqrt{(5 \times 10^{6})^{2} - (16 \times 10^{12})}}{2} = \frac{(5 \times 10^{6}) \pm \sqrt{(25 \times 10^{12}) - (16 \times 10^{12})}}{2}$
 $= \frac{(5 \times 10^{6}) \pm \sqrt{9 \times 10^{12}}}{2}$
 $= \frac{(5 \times 10^{10}) \pm \sqrt{9 \times 10^{12}}}{2}$
 $(5 \times 10^{10}) \pm 1.3 \times 10^{10} \times 1000 \pm 50$
 $= 1250$
Thus
 $5 \times 10^{10} \times 10000 \pm 1250$
 $= 4.875 \Omega \text{ to } 5.125 \Omega$
 $= 1300000 \Omega$
Similarly
 $0.1\% \text{ of } 130000000 = \frac{0.1}{100} \times 13000000\Omega$

Also

$$13M\Omega \pm 0.1\% = 1300000\Omega \pm 13000\Omega$$

= 1300000\Omega - 13000\Omega to 1300000\Omega + 13000\Omega
= 12987000\Omega to 13013000\Omega
= 12.987M\Omega to 13.013M\Omega

9. What is the easiest way to simplify the ratio $1\frac{1}{2}:10\frac{3}{4}$?

Use your calculator
$$(a \frac{b}{c} button)$$
:
 $1\frac{1}{2}:10\frac{3}{4} = 1\frac{1}{2} \div 10\frac{3}{4}$
 $= \frac{6}{43}$ (by calculator)
Hence $1\frac{1}{2}:10\frac{3}{4} = 6:43$.
10. We first simplify $0.5 \times 10^{-3} \times 50 \times 10^{3}$, how?
 $10^{-3} = \frac{1}{10^{3}}$, we have
 $0.5 \times 10^{-3} \times 50 \times 10^{3} = 0.5 \times \frac{1}{10^{3}} \times 50 \times 10^{3}$
 $= 0.5 \times 1 \times 50$ (cancelling $10^{3} \cdot s$)
 $= 25$

We need to find 15% of 25.

15% of
$$25 = \frac{15}{100} \times 25$$

= $\frac{15}{4}$
× 10³ is $\frac{15}{4}$.

Hence 15% of $0.5 \times 10^{-3} \times 50 \times 10^{3}$ is $\frac{15}{4}$

11. Similar to question 10, what can we cancel this time? 10^6 's because they are common between the numerator and denominator:

thermal efficiency $= \frac{3.5 \times 10^6}{24 \times 10^6} = \frac{3.5}{24}$ How do we write $\frac{3.5}{24}$ as a percentage? Multiply by 100: $\frac{3.5}{24} \times 100 = 14.58\%$ (2 d.p.) 12. What is 20*kW* equal to ?

Remember *k* denotes kilo which is 10^3 :

$$20kW = 20 \times 10^3 W = 20000 W$$

Thus the loss is:

6% of
$$20000W = \frac{6}{100} \times 20000W = 1200W = 1.2kW$$

13. Use BROIDMAS and a calculator. (All solutions are correct to 2 d.p.) (a) For 10^{index} we use Exp or EE button on our calculator.

$$\frac{20 \times 10^{11}}{1.5 \times 10^6} = 1333333.33$$

(b) Applying BROIDMAS gives:

4

$$\frac{115 \times 10^{3}}{(15 + 1.8)^{2}} = \frac{115 \times 10^{3}}{16.8^{2}}$$

$$= \frac{115 \times 10^{3}}{282.24}$$

$$= (115 \times 10^{3}) \div 282.24$$

$$= 407.45$$
(c) Use BROIDMAS:

$$500 + \frac{100^{2} - 157^{2}}{3 \times 10^{3}} - 160 = 500 + \frac{10000 - 24649}{3 \times 10^{3}} - 160$$

$$= 500 + \frac{-14649}{3 \times 10^{3}} - 160$$

$$= 500 - \frac{14649}{3 \times 10^{3}} - 160$$

$$= 500 - 4.883 - 160 = 335.12$$
(d) Similarly:

$$\frac{(2 \times 10^{6} \times 0.015) - (2 \times 10^{5} \times 0.075)}{1.44 - 1} = \frac{30000 - 15000}{0.44}$$

$$= \frac{15000}{0.44} (= 15000 \div 0.44)$$

$$= 34090.91$$
(e) We have

$$\frac{(20 \times 10^{9})(1 \times 10^{3})\left[(1.5 \times 10^{3})^{2} - (0.5 \times 10^{3})^{2}\right]^{3}}{25 \times 10^{21}}$$
(†)
We first evaluate the terms inside the square brackets:

$$\left[\left(1.5 \times 10^{3}\right)^{2} - \left(0.5 \times 10^{3}\right)^{2}\right]^{3} = [2250000 - 250000]^{\frac{3}{2}}$$

$$= (2 \times 10^{6})^{\frac{3}{2}}$$

$$= 2.828 \times 10^{9}$$

Substituting this into (1) gives

$$\frac{(20 \times 10^9)(1 \times 10^3)(2.828 \times 10^9)}{25 \times 10^{21}} = \frac{5.656 \times 10^{22}}{25 \times 10^{21}}$$

$$= 2.26$$