Complete solutions to Miscellaneous Intro

1 . What does $1 \mathrm{~mm}^{3}$ mean?

$$
1 \mathrm{~mm}^{3}=1 \mathrm{~mm} \times 1 \mathrm{~mm} \times 1 \mathrm{~mm}
$$

Since $1000 \mathrm{~mm}=1 \mathrm{~m}$ so $1 \mathrm{~mm}=0.001 \mathrm{~m}$

$$
\begin{aligned}
1 \mathrm{~mm}^{3}=1 \mathrm{~mm} \times 1 \mathrm{~mm} \times 1 \mathrm{~mm} & =0.001 \mathrm{~m} \times 0.001 \mathrm{~m} \times 0.001 \mathrm{~m} \\
& =1 \times 10^{-9} \mathrm{~m}^{3}
\end{aligned}
$$

2. (a) $5^{3}=5 \times 5 \times 5=125$
(b) $\sqrt{100}=10$
(c) We can either use a calculator to evaluate $\sqrt[3]{-8}$ or we know $2 \times 2 \times 2=8$ and so $(-2) \times(-2) \times(-2)=-8$. Thus

$$
\sqrt[3]{-8}=-2
$$

(d) $\sqrt{\frac{196}{49}}=\frac{\sqrt{196}}{\sqrt{49}}= \pm \frac{14}{7}=(14 \div 7)=2$
(e) In the case $\sqrt{12^{2}+5^{2}}$ we cannot take the square root of each individual term. We first evaluate $12^{2}+5^{2}$ and then take the square root.

$$
\sqrt{12^{2}+5^{2}}=\sqrt{144+25}=\sqrt{169}=13
$$

3. (a) To add fractions $\frac{2}{3}+\frac{3}{5}$ we have to find the lowest common multiple of the denominators 3 and 5 . Since both these numbers are prime the lowest common multiple is $3 \times 5=15$.

$$
\begin{aligned}
& \frac{2}{3}=\frac{2 \times 5}{3 \times 5}=\frac{10}{15} \\
& \frac{3}{5}=\frac{3 \times 3}{5 \times 3}=\frac{9}{15}
\end{aligned}
$$

Replacing the original fractions, $\frac{2}{3}$ and $\frac{3}{5}$, with equivalent fractions, $\frac{10}{15}$ and $\frac{9}{15}$ respectively, gives:

$$
\frac{2}{3}+\frac{3}{5}=\frac{10}{15}+\frac{9}{15}=\frac{10+9}{15}=\frac{19}{15}
$$

Of course the numbers 19 and 15 have no whole number which is a common factor so it cannot be reduced any further.
(b) How do we multiply fractions?

Multiply the numerators and multiply the denominators:

$$
\frac{2}{3} \times \frac{4}{5}=\frac{2 \times 4}{3 \times 5}=\frac{8}{15}
$$

(c) How do we divide fractions?

We turn the second fraction upside down and multiply:

$$
\frac{2}{3} \div \frac{3}{5}=\frac{2}{3} \times \frac{5}{3}=\frac{2 \times 5}{3 \times 3}=\frac{10}{9}
$$

4. (a) (i) $3.1415926=3.142$ (3 d.p.) \quad (ii) $3.1415926=3.14$ (3 s.f.)
(b) We first evaluate $\sqrt{10}$ on a calculator:

$$
\sqrt{10}=3.162278 \text { (} 6 \text { d.p.) }
$$

(i) $\sqrt{10}=3.16$ (2 d.p.) \quad (ii) $\sqrt{10}=3.162$ (3 d.p.)
(c) (i) $1.6449=1.64$ (2 d.p.) (ii) $1.6449=1.645$ ($3 \mathrm{~d} . \mathrm{p}$.)
(d) First we calculate 16^{5} on a calculator:

$$
16^{5}=1048576
$$

$\begin{array}{ll}\text { (i) } 16^{5}=1000000(1 \text { s.f.) } & \text { (ii) } 1050000 \text { (} 3 \text { s.f.) }\end{array}$
(e) How do we evaluate $2^{2^{4}}+1$ on a calculator?

Using a calculator, $2^{4}=16$. We have

$$
\begin{aligned}
2^{2^{4}}+1 & =2^{16}+1 \\
& =65536+1 \\
& =65537
\end{aligned}
$$

(i) $2^{2^{4}}+1=65500$ (3 s.f.)
(ii) $2^{2^{4}}+1=66000$ (2 s.f.)
5. For this question we use BROIDMAS and a calculator: (All solutions are correct to 2 d.p.).
(a) $\frac{\pi}{4}+1=(\pi \div 4)+1=1.79$
(b) We have

$$
\begin{aligned}
\frac{-(-7) \pm \sqrt{(-7)^{2}-(4 \times 1 \times 12)}}{2} & =\frac{7 \pm \sqrt{49-48}}{2} \\
& =\frac{7 \pm \sqrt{1}}{2} \\
& =\frac{7 \pm 1}{2} \\
& =\frac{7+1}{2} \text { or } \frac{7-1}{2} \\
& =\frac{8}{2} \text { or } \frac{6}{2} \\
& =4 \text { or } 3=4.00 \text { or } 3.00
\end{aligned}
$$

(c) We first evaluate the square root of $(30 \times 5)+1$ and then multiply the result by $\frac{2}{3}$:

$$
\begin{aligned}
\frac{2}{3} \sqrt{(30 \times 5)+1} & =\frac{2}{3} \sqrt{151}=\frac{2}{3} \times \sqrt{151} \\
& =\frac{2}{3} \times 12.288 \\
& =8.19
\end{aligned}
$$

(d) We first evaluate the brackets (BROIDMAS) and then take the result to the power of 5 . To get the final answer we multiply by $\sqrt{10 \pi}$:

$$
\begin{aligned}
\left(\frac{5}{2.718}\right)^{5} \sqrt{10 \pi} & =(1.840)^{5} \sqrt{10 \pi} \\
& =21.067 \times \sqrt{10 \times \pi} \\
& =21.067 \times \sqrt{31.416} \\
& =21.067 \times 5.605 \\
& =118.08
\end{aligned}
$$

6. Need to use the Exp or EE button on your calculator for this question. The Exp or EE button gives $10{ }^{\text {index }}$:
(a) $\frac{1}{2 \pi \times 50 \times 3 \times 10^{-6}}=\frac{1}{9.425 \times 10^{-4}}$ then press $\frac{1}{x}$ or x^{-1} button to give the result 1061.03 (2 d.p.)
(b) $\frac{\left(5 \times 10^{6}\right) \pm \sqrt{\left(5 \times 10^{6}\right)^{2}-\left(16 \times 10^{12}\right)}}{2}=\frac{\left(5 \times 10^{6}\right) \pm \sqrt{\left(25 \times 10^{12}\right)-\left(16 \times 10^{12}\right)}}{2}$

$$
\begin{aligned}
& =\frac{\left(5 \times 10^{6}\right) \pm \sqrt{9 \times 10^{12}}}{2} \\
& =\frac{\left(5 \times 10^{6}\right) \pm\left(3 \times 10^{6}\right)}{2} \\
& =\frac{\left(5 \times 10^{6}\right)-\left(3 \times 10^{6}\right)}{2} \text { or } \frac{\left(5 \times 10^{6}\right)+\left(3 \times 10^{6}\right)}{2} \\
& =\frac{2 \times 10^{6}}{2} \text { or } \frac{8 \times 10^{6}}{2} \\
& =1 \times 10^{6} \text { or } 4 \times 10^{6}
\end{aligned}
$$

7. (a) $378000 V=0.378 \times 10^{6} V=0.378 M V$ (because $M=m e g a=10^{6}$)
(b) $0.00001 A=10 \times 10^{-6} A=10 \mu A \quad$ (because $\mu=$ micro $=10^{-6}$)
(c) $1300 \Omega=1.3 \times 10^{3} \Omega=1.3 \mathrm{k} \Omega$
(because $k=$ kilo $=10^{3}$)
8. (a) We first find 5% of 100Ω :

$$
5 \% \text { of } 100 \Omega=\frac{5}{1 \emptyset \emptyset} \times 1 \emptyset \emptyset \Omega=5 \Omega
$$

Thus $100 \Omega \pm 5 \%=100 \Omega \pm 5 \Omega=(100-5) \Omega$ to $(100+5) \Omega=95 \Omega$ to 105Ω.
(b) What is $5 k \Omega$ equal to?

$$
5 k \Omega=5 \times 10^{3} \Omega=5000 \Omega
$$

How do we find 2.5% of 5000Ω ?

$$
\begin{aligned}
2.5 \% \text { of } 5000 \Omega & =\frac{2.5}{100} \times 5000 \Omega \\
& =125 \Omega
\end{aligned}
$$

Thus

$$
\begin{aligned}
5 k \Omega \pm 2.5 \% & =5000 \Omega \pm 125 \Omega \\
& =5000 \Omega-125 \Omega \text { to } 5000 \Omega+125 \Omega \\
& =4875 \Omega \text { to } 5125 \Omega \\
& =4.875 \mathrm{k} \Omega \text { to } 5.125 \mathrm{k} \Omega
\end{aligned}
$$

(c) What is $13 M \Omega$?

$$
13 M \Omega=13 \times 10^{6} \Omega=13000000 \Omega
$$

Similarly

$$
\begin{aligned}
0.1 \% \text { of } 13000000 \Omega & =\frac{0.1}{10 \emptyset} \times 130000 \emptyset \emptyset \Omega \\
& =13000 \Omega
\end{aligned}
$$

Also

$$
\begin{aligned}
13 M \Omega \pm 0.1 \% & =13000000 \Omega \pm 13000 \Omega \\
& =13000000 \Omega-13000 \Omega \text { to } 13000000 \Omega+13000 \Omega \\
& =12987000 \Omega \text { to } 13013000 \Omega \\
& =12.987 M \Omega \text { to } 13.013 M \Omega
\end{aligned}
$$

9. What is the easiest way to simplify the ratio $1 \frac{1}{2}: 10 \frac{3}{4}$?

Use your calculator (a / c button):

$$
\begin{aligned}
1 \frac{1}{2}: 10 \frac{3}{4} & =1 \frac{1}{2} \div 10 \frac{3}{4} \\
& =\frac{6}{43} \quad(\text { by calculator })
\end{aligned}
$$

Hence $1 \frac{1}{2}: 10 \frac{3}{4}=6: 43$.
10. We first simplify $0.5 \times 10^{-3} \times 50 \times 10^{3}$, how?
$10^{-3}=\frac{1}{10^{3}}$, we have

$$
\begin{aligned}
0.5 \times 10^{-3} \times 50 \times 10^{3} & =0.5 \times \frac{1}{10^{3}} \times 50 \times 10^{3} \\
& =0.5 \times 1 \times 50 \quad \quad\left(\text { cancelling } 10^{3} \mathrm{~s}\right) \\
& =25 \quad
\end{aligned}
$$

We need to find 15% of 25 .

$$
\begin{aligned}
15 \% \text { of } 25 & =\frac{15}{100} \times 25 \\
& =\frac{15}{4}
\end{aligned}
$$

Hence 15% of $0.5 \times 10^{-3} \times 50 \times 10^{3}$ is $\frac{15}{4}$.
11. Similar to question 10, what can we cancel this time?
10^{6} 's because they are common between the numerator and denominator:

$$
\text { thermal efficiency }=\frac{3.5 \times 10^{6}}{24 \times 10^{6}}=\frac{3.5}{24}
$$

How do we write $\frac{3.5}{24}$ as a percentage?
Multiply by $100: \frac{3.5}{24} \times 100=14.58 \%$ (2 d.p.)
12. What is $20 k W$ equal to?

Remember k denotes kilo which is 10^{3} :

$$
20 \mathrm{~kW}=20 \times 10^{3} \mathrm{~W}=20000 \mathrm{~W}
$$

Thus the loss is:

$$
6 \% \text { of } 20000 \mathrm{~W}=\frac{6}{1 \emptyset \emptyset} \times 20000 \mathrm{~W}=1200 \mathrm{~W}=1.2 \mathrm{~kW}
$$

13. Use BROIDMAS and a calculator. (All solutions are correct to 2 d.p.)
(a) For $10^{\text {index }}$ we use Exp or EE button on our calculator.

$$
\frac{20 \times 10^{11}}{1.5 \times 10^{6}}=1333333.33
$$

(b) Applying BROIDMAS gives:

$$
\begin{aligned}
\frac{115 \times 10^{3}}{(15+1.8)^{2}} & =\frac{115 \times 10^{3}}{16.8^{2}} \\
& =\frac{115 \times 10^{3}}{282.24} \\
& =\left(115 \times 10^{3}\right) \div 282.24 \\
& =407.45
\end{aligned}
$$

(c) Use BROIDMAS:

$$
\begin{aligned}
500+\frac{100^{2}-157^{2}}{3 \times 10^{3}}- & 160=500+\frac{10000-24649}{3 \times 10^{3}}-160 \\
& =500+\frac{-14649}{3 \times 10^{3}}-160 \\
& =500-\frac{14649}{3 \times 10^{3}}-160 \\
& =500-4.883-160=335.12
\end{aligned}
$$

(d) Similarly:

$$
\begin{align*}
& \begin{aligned}
\frac{\left(2 \times 10^{6} \times 0.015\right)-\left(2 \times 10^{5} \times 0.075\right)}{1.44-1} & =\frac{30000-15000}{0.44} \\
& =\frac{15000}{0.44} \quad(=15000 \div 0.44) \\
& =34090.91
\end{aligned} \\
& \text { (e) We have } \frac{\left(20 \times 10^{9}\right)\left(1 \times 10^{3}\right)\left[\left(1.5 \times 10^{3}\right)^{2}-\left(0.5 \times 10^{3}\right)^{2}\right]^{\frac{3}{2}}}{25 \times 10^{21}}
\end{align*}
$$

We first evaluate the terms inside the square brackets:

$$
\begin{aligned}
{\left[\left(1.5 \times 10^{3}\right)^{2}-\left(0.5 \times 10^{3}\right)^{2}\right]^{\frac{3}{2}} } & =[2250000-250000]^{\frac{3}{2}} \\
& =\left(2 \times 10^{6}\right)^{\frac{3}{2}} \\
& =2.828 \times 10^{9}
\end{aligned}
$$

Substituting this into ${ }^{(\dagger)}$ gives

$$
\begin{aligned}
\frac{\left(20 \times 10^{9}\right)\left(1 \times 10^{3}\right)\left(2.828 \times 10^{9}\right)}{25 \times 10^{21}} & =\frac{5.656 \times 10^{22}}{25 \times 10^{21}} \\
& =2.26
\end{aligned}
$$

